
■ Recent developments have clarified the process of
generating partially ordered, partially specified
sequences of actions whose execution will
achieve an agent’s goal. This article summarizes a
progression of least commitment planners, start-
ing with one that handles the simple STRIPS repre-
sentation and ending with UCPOP, a planner that
manages actions with disjunctive precondition,
conditional effects, and universal quantification
over dynamic universes. Along the way, I explain
how Chapman’s formulation of the modal truth
criterion is misleading and why his NP-complete-
ness result for reasoning about plans with condi-
tional effects does not apply to UCPOP.

To achieve their goals, agents often need
to act in the world. Thus, it should be
no surprise that the quest of building

intelligent agents has forced AI researchers to
investigate algorithms for generating appro-
priate actions in a timely fashion. Of course,
the problem is not yet solved, but consider-
able progress has been made. In particular, AI
researchers have developed two complemen-
tary approaches to the problem of generating
these actions: (1) planning and (2) situated
action. These two techniques have different
strengths and weaknesses, as I illustrate later.
Planning is appropriate when a number of
actions must be executed in a coherent pat-
tern to achieve a goal or when the actions
interact in complex ways. Situated action is
appropriate when the best action can easily
be computed from the current state of the
world (that is, when no lookahead is neces-
sary because actions do not interfere with
each other).

For example, if one’s goal is to attend the
IJCAI-93 conference in Chambery, France,
advanced planning is suggested. The goal of

attending the conference engenders many
subgoals: booking plane tickets, getting to the
airport, changing dollars to francs, making
hotel reservations, finding the hotel, and so
on. Achieving these goals requires executing a
complex set of actions in the correct order,
and the prudent agent should spend time rea-
soning about these actions (and their proper
order) in advance. The slightest miscalcula-
tion (for example, attempting to make hotel
reservations after executing the trans–Atlantic
fly action) could lead to failure (that is, a mis-
erable night on the streets of Paris among the
city’s many hungry canines).

However, if the goal is to stay alive while
you play a fast-paced video game, advanced
planning might be less important. Instead, it
might suffice to watch the dangers as they
approach and shoot the most-threatening
attackers first. Indeed, wasting time deliberat-
ing about the best target might decrease one’s
success because the time would be better
spent shooting at the myriad enemy.
Domain-specific situated-action systems are
often implemented as production systems or
with hard-wired logic (combinational net-
works). Techniques for automatically compil-
ing these reactive systems from declarative
domain specifications and learning algo-
rithms for automatically improving their per-
formance are hot topics of research.

In this article, I neglect the situated tech-
niques and concentrate on the converse
approach to synthesizing actions: planning.
Planners are characterized by two dimensions
that distinguish the construction strategy and
the component size, respectively (figure 1).
One way of constructing plans is refinement,
the process of gradually adding actions and
constraints; retraction eliminates previously

Articles

WINTER 1994 27

An Introduction to Least
Commitment Planning

Daniel S. Weld

Copyright © 1994, AAAI. 0738-4602-1994 / $2.00

AI Magazine Volume 15 Number 4 (1994) (© AAAI)

The Planning Problem
Formally, a planning algorithm has three
input: (1) a description of the world in some
formal language, (2) a description of the
agent’s goal (that is, what behavior is desired)
in some formal language, and (3) a descrip-
tion of the possible actions that can be per-
formed (again, in some formal language). This
last description is often called a domain theory.

The planner’s output is a sequence of
actions that, when executed in any world sat-
isfying the initial state description, will
achieve the goal. Note that this formulation
of the planning problem is abstract. In fact, it
really specifies a class of planning problems
parameterized by the languages used to repre-
sent the world, goals, and actions.

For example, one might use propositional
logic to describe the effects of actions, but this
representation would preclude describing
actions with universally quantified effects.
The action of executing a UNIX rm* command
is most naturally described with quantifica-
tion: All files in the current directory are
deleted. Thus, one might describe the effects
of actions with first-order predicate calculus,
but this description assumes that all effects
are deterministic. It would be difficult to rep-
resent the precise effects of an action, such as
flipping a coin or prescribing a particular
medication for a sick patient (who might or
might not get better), without some form of
probabilistic representation.

In general, there is a spectrum of more and
more expressive languages for representing
the world, an agent’s goals, and possible

added components from a plan; and transfor-
mational planners interleave refinement and
retraction activities. A different dimension
concerns the basic blocks that a planner uses
when synthesizing a plan: Generative planners
construct plans from scratch, but case-based
planners use a library of previously synthe-
sized plans or plan fragments.1 Case-based
systems are motivated by the observation
that many of an agent’s actions are routine;
for example, when making the daily com-
mute to work or school, one probably exe-
cutes roughly the same actions in roughly the
same order. Even though these actions might
interact, one probably doesn’t need to think
much about the interactions because one has
executed similar actions so many times
before. The main challenge faced by propo-
nents of a case-based system is developing
similarity metrics that allow efficient retrieval
of appropriate (previously executed) plans
from memory. After all, if you are faced with
the task of getting to work, but you can’t stop
thinking about how you cooked dinner last
night, then you’ll likely arrive rather late.

In the next sections, I define the planning
problem more precisely and then describe
algorithms for solving the problem. I restrict
my attention to generative, refinement plan-
ning, but the algorithms can be adapted to
transformational and case-based approaches
(Hanks and Weld 1992). As we see, planning
is naturally formulated as a search problem,
but the choice of search space is critical to
performance.

Articles

28 AI MAGAZINE

Figure 1. Major Approaches for Reasoning about Action.

Reasoning about Action

Planning Situated
Action

Generative
Refinement

Case-Based
Refinement

Generative
Transform.

Case-Based
Transform.

actions. The task of writing a planning algo-
rithm is harder for more expressive represen-
tation languages, and the speed of the result-
ing algorithm decreases as well. In this article,
I explain how to build planners for several
languages, but they all make some simplify-
ing assumptions:

Atomic time: Execution of an action is
indivisible and uninterruptible; thus, we need
not consider the state of the world while exe-
cution is proceeding. Instead, we might mod-
el execution as an atomic transformation
from one world state to another. Simultane-
ously executed actions are impossible.

Deterministic effects: The effect of execut-
ing any action is a deterministic function of
the action and the state of the world when
the action is executed.

Omniscience: The agent has complete
knowledge of the initial state of the world
and the nature of its own actions.

Sole cause of change: The only way the
world changes is by the agent’s own actions.
There are no other agents, and the world is
static by default. Note that this assumption
means that the first input to the planner (the
world description) need only specify the ini-
tial state of the world.

Admittedly, these assumptions are unrealis-
tic, but they do simplify the problem to the
point where I can describe some simple algo-
rithms. Alternatively, skip ahead to the sec-
tion on advanced topics where I describe
extensions to the algorithms that relax these
assumptions.

I start our discussion of planning with a
simple language: the propositional STRIPS rep-
resentation.2 The propositional STRIPS repre-
sentation describes the initial state of the

world with a complete set of ground literals.
For example, the simple world consisting of a
table and three blocks shown on the left side
of figure 2 can be described with the follow-
ing true literals:

(on A Table) (on C A) (on B Table) (clear B) (clear C) .

Because we require the initial state descrip-
tion to be complete, all atomic formulas not
explicitly listed in the description are
assumed to be false (this statement is called
the closed-world assumption [Reiter 1980]).
Thus, (not (on A C)) and (not (clear A)) are
implicitly in the initial state description, as
are a bunch of other negative literals.

The STRIPS representation is restricted to
goals of attainment. In general, a planner
might accept an arbitrary description of the
behavior desired of the agent over time. For
example, one might specify that a robot
should cook breakfast but never leave the
house. Most planning research, however, has
considered goal descriptions that specify fea-
tures that should hold in the world at the dis-
tinguished time point after the plan is execut-
ed, even though the goal to remain in the
house is rendered inexpressible. Furthermore,
the STRIPS representation restricts the type of
goal states that can be specified to those
matching a conjunction of positive literals.
For example, the goal situation shown on the
right side of figure 2 could be described as the
conjunction of the two literals (on B C) and
(on A B), yielding a simple block-stacking
challenge called the Sussman anomaly.3

A domain theory, denoted by Λ, forms the
third part of a planning problem: It’s a formal
description of the actions that are available to
the agent. In the STRIPS representation, actions
are represented with preconditions and

Articles

WINTER 1994 29

C

A B

B

A

C

Figure 2. Initial and Goal States for the Sussman Anomaly Problem in the Blocks World.

manner, the solution to a planning problem
(that is, the plan) is a path through state
space. Note that the three-step solution listed
at the end of the previous section is the
shortest path between these two states, but
many other paths are possible.

The advantage of casting planning as a
simple search problem is the immediate
applicability of all the familiar brute force
and heuristic search algorithms (Korf 1988).
For example, one could use depth-first,
breadth-first, or iterative deepening A* search
starting from the initial state until the goal is
located. Alternatively, more sophisticated,
memory-bounded algorithms could be used
(Korf 1992; Russell 1992). Because the trade-
offs between these different searching algo-
rithms have been discussed extensively else-
where, I focus instead on the structure of the
search space. A handy way to focus on the
search space structure is to specify the plan-
ner with a nondeterministic algorithm. This
idea might seem strange at first, but I use it
extensively in subsequent sections, so it’s
important to learn it now. In fact, it’s simple:
When specifying the planning algorithm, one
uses a nondeterministic choose primitive.
This primitive takes a set of possible options
and magically selects the right one. The beau-
ty of this nondeterministic primitive lies in
its ease of implementation: It can be simulat-
ed with any conservative search method, or it
can be approximated with an aggressive
search strategy. By decoupling the search
strategy from the basic nondeterministic
algorithm, two things are accomplished: (1)
the algorithm becomes simpler and easier to
understand and (2) the implementor can easi-
ly switch between different search strategies
in an effort to improve performance.

Progression
Algorithm 1 contains a simple nondetermin-
istic planner that operates by searching for-
ward from the initial world state until it finds
a state in which the goal specification is satis-
fied.

Algorithm 1: PROGWS(word-state, goal-
list, Λ, path)

1. If world-state satisfies each conjunct
in goals-list,

2. Then return path,

3. Else let Act = choose from Λ an action
whose precondition is satisfied by world-
state:

(a) If no such choice was possible,

effects. The precondition of each action follows
the same restriction as the problem’s goal:
They are a conjunction of positive literals. An
action’s effect, however, is a conjunction that
can include both positive and negative liter-
als. For example, for the action move-C-from-
A-to-Table, we might define the precondition
as (and (on C A) (clear C)) and the effect as
(and (on C Table) (not (on C A)) (clear A)).

Actions can be executed only when their
precondition is true; in this case, we specified
that the robot can move C from A to the
table only when C is on top of A and has
nothing atop it. When an action is executed,
it changes the world description in the fol-
lowing way: All the positive literals in the
effect conjunction (called the action’s add list)
are added into the state description, and all
the negative literals (called the action’s delete
list) are removed.4 For example, executing
move-C-from-A-to-Table in the initial state
described earlier leads to a state in which
(on A Table) (on B Table) (on C Table)
(clear A) (clear B) (clear C) are true, and all
other atomic formulas are false.

When called with these input—a descrip-
tion of the initial state, a description of the
goal, and the domain theory—a planner
should return a sequence of actions that will
achieve the goal when executed in the initial
state. For example, when given the problem
defined by the Sussman anomaly’s initial and
goal states (figure 2) and a set of actions such
as that described previously, we would like
our planner to return a sequence such as

move-C-from-A-to-Table
move-B-from-Table-to-C
move-A-from-Table-to-B .
As we will see, there are a variety of algo-

rithms that can synthesize these sequences,
but some are more efficient than others. We
start by looking at planners that are concep-
tually simple and then look at more sophisti-
cated ways of planning.

Search through World Space
The simplest way to build a planner is to cast
the planning problem as through the space of
world states (shown in figure 3). Each node in
the graph denotes a state of the world, and
arcs connect worlds that can be reached by
executing a single action. In general, arcs are
directed, but in this encoding of the blocks
world, all actions are reversible; so, I replaced
two directed edges with a single arc to
increase readability. Note that the initial and
goal world states of the Sussman anomaly are
highlighted in gray. When phrased in this

Articles

30 AI MAGAZINE

(b) Then return failure,

(c) Else let S = the result of simulating
execution of Act in world-state and
return PROGWS(S, goal-list, Λ,
Concatenate(path, Act)).

The right way to think about a nondeter-
ministic algorithm is with you personally call-
ing the shots every time that the choose
primitive gets called. For example, if we try
PROGWS on the Sussman anomaly, the first call
to the procedure has world-state set to the ini-
tial state (the leftmost gray state in figure 3),
goal-list set to the implicit conjunction ((on A
B) (on B C)), and path set to the null
sequence. Because the initial state doesn’t sat-
isfy the goal, execution falls to line 3 of algo-
rithm 1, and choose is called. A moment’s
thought should convince you that the best
choice makes Move-C-from-A-to-Table the
first action; so, let’s assume that it is this
choice that is made by the computer. By giv-

ing the program a magical oracle, it can easily
find the sequence of three correct choices that
lead to a solution. Because we assume that the
oracle always makes the best choice, the pro-
gram can quit (confident that no solution is
possible) if it ever runs into a dead end.

Of course, if one wants to implement
PROGWS on any of the (nonmagical) computers
that exist today (and if one doesn’t want to
get a lot of electronic mail from the program
asking for advice!), then one needs to use
search. A simple technique is to implement
choose with breadth-first search. This way,
even though it wouldn’t have the oracle, the
planner could try all paths in parallel (storing
them on a queue and time slicing between
them) until it found a state that satisfied the
goal specification. Any time a nondeterminis-
tic algorithm finds a solution, the breadth-
first search version does too (although in the
worst case, it might take the searching version
exponentially longer).

Articles

WINTER 1994 31

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

B

C

A

B

CA

B

CA

B C

A

B C

A

B CAB

C

A

A

B

C

Figure 3. World Space.

preconditions(Act) ∪
(cur-goals—goals-added-by(Act)) .
In our example, act has (on A Table) as its

precondition and (and (on A B) (not (on A
Table))) as its effect; so, the result of regress-
ing (and (on A B) (on B C)) is (and (on A
Table) (on B C)).

Because act achieved (on A B), regression
removed the literal from the sentence (replac-
ing it with the precondition of act, namely, (on
A Table). Because act doesn’t affect the other
goal—(on B C)—it remains part of the weakest
precondition. Note that the sentence produced
by regression is still a conjunction; this is guar-
anteed true as long as action preconditions are
restricted to conjunctions. Hence, it is okay to
encode G and cur-goals with lists.

The next line of REGWS is also interesting. It
says that if choose can’t find an action whose
regression satisfies certain criteria, then a
dead end has been reached. There are three
parts to the dead-end check, and I discuss
them in turn:

First, if no action has an effect containing a
conjunct that matches one of the conjuncts
in cur-goals, then no action is profitable. To
see why this is the case, note that unless act
has a matching conjunct, the result of per-
forming goal regression will be a strictly larg-
er conjunctive sentence! Whenever G is satis-
fied by the initial state, the cur-goals will be
too. Thus, there is no point in considering
such an act because any successful plan that
might result could be improved by
eliminating it from the path.

Second, if the result of regressing cur-goals
through act is to make G undefined, then any
plan that adds act to this point in the path
will fail. What might make G undefined?
Recall that regression returns the weakest pre-
conditions that must be true before act is exe-
cuted to make cur-goals true after execution.
What if one of act’s effects directly conflicts
with cur-goals? The weakest precondition
would thus be undefined because no matter
what was true before act, execution would
ruin things. A good example is when one
tries to regress ((on A B) (on B C)) through
Move-A-from-B-to-Table. Because this action
negates (on A B), the weakest preconditions
are undefined.

Third, if G ⊃ cur-goal, then there’s really no
point in adding act to the path, for the same
reasons that were explained in the first part to
the dead-end check. In fact, one can show
that G ⊃ cur-goals whenever the action’s effect
doesn’t match any conjunct in cur-goals, but
the converse is false. Thus, strictly speaking,
the G ⊃ cur-goals renders the test of the first

Regression
Algorithm 1 describes just one way to convert
planning to a search through the space of
world states. Another approach, called regres-
sion planning (Waldinger 1977), is outlined in
algorithm 2. Instead of searching forward
from the initial state (which is what PROGWS

does), the REGWS algorithm (adapted from
Nilsson [1980]) searches backwards from the
goal. Intuitively, REGWS reasons as follows: “I
want to eat, so I need to cook dinner, so I
need to have food, so I need to buy food, so I
need to go to the store….” At each step, it
chooses an action that might possibly help
satisfy one of the outstanding goal conjuncts.

Algorithm 2: REGWS(init-state, cur-goals,
Λ, path)

1. If init-state satisfies each conjunct in
cur-goals,

2. Then return path,

3. Else:

(a) Let Act = choose from Λ, an action
whose effect matches at least one con-
junct in cur-goals.

(b) Let G = the result of regressing cur-
goals through Act.

(c) If no choice for Act was possible, G
is undefined, or G ⊃ cur-goals,

(d) Then return failure,

(e) Else return REGWS(init-state, G, Λ,
Concatenate(Act, path)).

To illustrate REGWS on a more concrete
example, the Sussman anomaly, cur-goals is
initially set to the list of conjuncts ((on A B)
(on B C)). The first call to choose demands an
action whose effect contains a conjunct that
appears in cur-goals. Because the action
Move-A-from-Table-to-B has the effect of
achieving (on A B), let’s assume that the plan-
ner magically (nondeterministically) makes
the choice.

The next step, called goal regression, forms
the core of the REGWS algorithm: G is assigned
the result of regressing a logical sentence (the
conjunction corresponding to the list cur-
goals) through the act action. The result of
this regression is another logical sentence
that encodes the weakest preconditions that
must be true before act is executed to assure
that cur-goals will be true after act is execut-
ed. This sentence is simply the union of Act’s
preconditions with all the current goals
except those provided by the effects of act:

Articles

32 AI MAGAZINE

part unnecessary; however, eliminating it
would result in reduced efficiency because
many more regressions would be required.

Analysis
My presentation of the PROGWS and REGWS

planning algorithms brings up several natural
questions. The first questions concern the
soundness (that is, If a plan is returned, will it
really work?) and the completeness (that is, If
a plan exists, does a sequence of nondeter-
ministic choices exist that will find it?) of the
algorithms. Although I won’t prove it here,
both algorithms are sound and complete.

The most important question, however, is,
Which algorithm is faster? In their nondeter-
ministic forms, of course, they have the same
complexity: With perfect luck, they’ll each
make the same number (say n) of nondeter-
ministic choices before finding a solution.
However, a real implementation must use
search to implement the nondeterminism; so,
an important question is, How many choices
must be considered at each nondeterministic
branch point? Let’s call this number b. Even a
small difference in b can lead to a tremendous
difference in planning efficiency because
brute-force searching time is O(bn).

If one grants the plausible assumption that
the goal of a planning problem is likely to
involve only a small fraction of the literals
used to describe the state, then regression
planning is likely to have a much smaller
branching factor at each call to choose; as a
result it’s likely to run much faster. To see this,
note that there will probably be many actions
that could be executed in the initial state but
only a few that are relevant to the goal (that is,
have effects that match the goal and have legal
regressions). Because PROGWS must consider all
actions whose preconditions are satisfied by
the initial state, it can’t benefit from the guid-
ance provided by the planning objective.

In some cases, of course, the situation can
be reversed. I should note that there are a vari-
ety of other search techniques (means-ends
analysis, bidirectional search, and so on) that I
haven’t discussed.5 The reason for this selec-
tive portrayal stems from the nature of world-
space search itself. As the next section shows,
it’s often much better to search the space of
partially specified plans.

Search through the
Space of Plans

In 1974, Earl Sacerdoti built a planner, called
NOAH, with many novel features. The innova-
tion I focus on here is the reformulation of

planning from one search problem to anoth-
er. Instead of searching the space of world
states (in which arcs denote action execu-
tion), Sacerdoti phrased planning as search
through plan space.6 In this space, nodes rep-
resent partially specified plans, and edges
denote plan-refinement operations such as
the addition of an action to a plan. Figure 4
illustrates one such space. Once again, the
initial and goal states are highlighted in gray.
The initial state represents the null plan,
which has no actions, and the goal state rep-
resents a complete, working plan for the Suss-
man anomaly. Note that although world-state
planners had to return the path between ini-
tial and goal states, in plan space, the goal
state is the solution.

Total-Order Planning
At this point, I am forced to confess. I
claimed that it’s useful to think of planning
as search through plan space, and I explained
that in plan space, nodes denote plans, but I
haven’t said what plans really are. In fact, this
issue is a subtle one that I discuss in some
depth, but for now, let’s consider a simple
answer and suppose that a plan is represented
as a totally ordered sequence of actions. In
this case, we can view the familiar REGWS algo-
rithm as isomorphic to a plan-space planner!
After all, at every recursive call, it passes
along an argument, path, that is a totally
ordered sequence of actions (that is, a plan).
In fact, if we watch the successive values of
path at each recursive call, we get the picture
shown in figure 4.

In summary, the nature of the space being
searched by an algorithm is (somewhat) in
the eye of the beholder. If we view REGWS as
searching the space of world states, it’s a
regression planner. If we view it as searching
the space of totally ordered plans, then the
plan-refinement operators modify the current
plan by appending new actions to the begin-
ning of the sequence.

What’s the point of thinking about plan-
ning as a search process through plan space?
This framework facilitates thinking about
alternative plan-refinement operators and
leads to more powerful planning algorithms.
For example, by adding new actions into the
plan at arbitrary locations, one can devise a
planner that works much better than one
that is restricted to appending the actions.
However, I won’t describe that algorithm here
because it’s possible to do even better by
changing the plan representation itself, as
described in the next subsection.

Articles

WINTER 1994 33

straint satisfaction to ensure the consistency
of O. Maintaining the consistency of a par-
tially ordered set of actions is just one (sim-
ple) example of constraint satisfaction in
planning. We see more in subsequent sec-
tions.

A key aspect of least commitment is track-
ing past decisions and the reasons for these
decisions. For example, if you purchase plane
tickets (to satisfy the goal of boarding the
plane), then you should be sure to take them
to the airport. If another goal (having your
hands free to open the taxi door, say) causes
you to drop the tickets, you should be sure to
pick them up again. A good way of ensuring
that the different actions introduced for dif-
ferent goals won’t interfere is to record the
dependencies between actions explicitly.7 To
record these dependencies, we use a data
structure, called a causal link, that was invent-
ed by Austin Tate (1977) for use in the NONLIN

planner. A causal link is a structure with three
fields: Two contain pointers to plan actions
(the link’s producer, Ap, and its consumer, Ac);
the third field is a proposition, Q, which is
both an effect of Ap and a precondition of Ac.
We write such a causal link as Ap →Q Ac and
store a plan’s links in the set L.

Causal links are used to detect when a new-
ly introduced action interferes with past deci-
sions. We call such an action a threat. More
precisely, suppose that <A, O, L> is a plan,
and Ap →Q Ac is a causal link in L. Let At be a
different action in A; we say that At threatens

Partial-Order Planning
Think for a moment about how you might
solve a planning problem. For concreteness, I
return to the introductory example of plan-
ning a trans–Atlantic trip to IJCAI-93. To
make the trip, one needs to purchase plane
tickets and buy a guide to France (to enable
choosing hotels and itinerary). However,
there’s no need to decide (yet) which pur-
chase should be executed first. This idea is
behind least commitment planning—to rep-
resent plans in a flexible way that enables
deferring decisions. Instead of committing
prematurely to a complete, totally ordered
sequence of actions, plans are represented as
a partially ordered sequence, and the plan-
ning algorithm practices least commitment
planning—only the essential ordering deci-
sions are recorded.

Plans, Causal Links, and Threats We
represent a plan as a three tuple <A, O, L> in
which A is a set of actions, O is a set of order-
ing constraints over A, and L is a set of causal
links (described later). For example, if A =
{A1, A2, A3}, then O might be the set {A1 < A3,
A2 < A3}. These constraints specify a plan in
which A3 is necessarily the last (of three)
actions but does not commit to a choice of
which of the three actions comes first. Note
that these ordering constraints are consistent
because at least one total order exists that sat-
isfies them. As least commitment planners
refine their plans, they must perform con-

Articles

34 AI MAGAZINE

Move A to B Move B to C
Move A to B

Move A to Table
Move A to B

Move C to Table
Move B to C
Move A to B

Figure 4. Plan Space.

Ap →Q Ac when O ∪ {Ap < At < Ac} is consistent,
and At has ¬Q as an effect. For example, if Ap

asserts Q = (on A B), which is a precondition
of Ac, and the plan contains Ap →Q Ac, then At

would be considered a threat if it moved A off
B, and the ordering constraints didn’t prevent
At from being executed between Ap and Ac.

When a plan contains a threat, there is a
danger that the plan won’t work as anticipat-
ed. To prevent this situation from happening,
the planning algorithm must check for
threats and take evasive countermeasures. For
example, the algorithm could add an addi-
tional ordering constraint to ensure that At is
executed before Ap. This particular threat-pro-
tection method is called demotion; adding the
symmetric constraint Ac < At is called promo-
tion.8 As we see in subsequent sections, there
are other ways to protect against threats as
well.

Representing Planning Problems as
Null Plans Uniformity is the key to sim-
plicity. It turns out that the simplest way to
describe a plan-space planning algorithm is to
make it use one uniform representation for
both planning problems and incomplete
plans. The secret to achieving this uniformity
is an encoding trick: The initial state descrip-
tion and goal conjunct can be bundled into a
special three tuple called the null plan.

The encoding is simple. The null plan of a
planning problem has two actions, A =
{A0, A∞} ; one ordering constraint, O = {A0, A∞} ;

and no causal links, L = {}. All the planning
activity stems from these two actions. A0 is
the *start* action; that is, it has no precondi-
tions, and its effect specifies which proposi-
tions are true in the planning problem’s ini-
tial state and which are false.9 A∞ is the *end*
action; that is, it has no effects, but its precon-
dition is set to be the conjunction from the
goal of the planning problem. For example,
the null plan corresponding to the Sussman
anomaly is shown in figure 5.

The POP Algorithm I now describe a sim-
ple regressive algorithm that searches the
space of plans.10 POP starts with the null plan
for a planning problem and makes nondeter-
ministic choices until all conjuncts of every
action’s precondition have been supported by
causal links, and all threatened links have
been protected from possible interference.
The ordering constraints, O, of this final plan
can still specify only a partial order; in this
case, any total order consistent with O is guar-
anteed to be an action sequence that solves
the planning problem. In algorithm 3, the
first argument to POP is a plan structure, and
the second is an agenda of goals that need to
be supported by links. Each item on the agen-
da is represented as a pair <Q,Ai>, where Q is a
conjunct of the precondition of Ai. (Note:
many times the identity of Ai is clear from the
context, and we pretend that agenda contains
propositions, such as Q, instead of <Q,Ai>
pairs.)

Articles

WINTER 1994 35

start

(on c a) (clear b) (clear c) (on a table) (on b table)

end

(on a b) (on b c)

Figure 5. The Null Plan for the Sussman Anomaly Contains Two Actions: The *start* Action Precedes the *End* Action.

(a) Demotion: Add At < Ap to O’.

(b) Promotion: Add Ac < At to O’.

If neither constraint is consistent, then
return failure.

6. Recursive invocation: POP(<A’,O’,L’>,
agenda’, Λ).

It’s important to understand how this algo-
rithm works in detail, so I now illustrate its
behavior on the Sussman anomaly. When
making the initial call, I provide two argu-
ments: the null plan, shown in figure 5, and
agenda = {<(on A B), A∞>, <(on B C), A∞>} .
Because agenda isn’t empty, control passes to
line 2 of the POP algorithm. There are two
choices for the immediate goal—Q =
(on A B) or Q = (on B C)—so POP must make a
choice. Now comes a crucial but subtle point.
POP has to choose between the two subgoals,
but this choice was not written with the non-
deterministic choose primitive—why not?
The answer is that the choice does not matter
as far as completeness is concerned; eventual-
ly, both choices must be made. As a result,
there is no reason for a searching version of
the program to backtrack over this choice.
Does this mean that the choice doesn’t mat-
ter? Absolutely not! One choice might lead
the planner to find an answer quickly, but
the other choice might lead to enormous

Algorithm 3: POP(<A,O,L>, agenda),

1. Termination: If agenda is empty,
return <A,O,L>.

2. Goal selection: Let <Q,Aneed> be a pair
on the agenda (by definition, Aneed ∈
A, and Q is a conjunct of the precondi-
tion of Aneed).

3. Action selection: Let Aadd = choose an
action that adds Q (either a newly
instantiated action from Λ or an action
already in A that can be ordered consis-
tently prior to Aneed). If no such action
exists, then return failure. Let L’ = L ∪
{Aadd →Q Aneed}, and let O’ = O ∪ {Aadd <
Aneed}. If Aadd is newly instantiated, then
A’ = A ∪ {Aadd} and O’ = O’ ∪ {A0 < Aadd <
A∞} (otherwise, let A’ = A).

4. Updating of goal set: Let agenda’ =
agenda — {<Q,Aneed>}.

If Aadd is newly instantiated, then for
each conjunct, Qi, of its precondition,
add <Qi,Aadd> to agenda’.

5. Causal link protection: For every
action At that might threaten a causal
link Ap →R Ac, add a consistent ordering
constraint, either

Articles

36 AI MAGAZINE

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

end

(on a b) (on b c)

Figure 6. After Adding a Causal Link to Support (on B C), the Plan Is as Shown, and Agenda Contains {(clear B) (clear C) (on B
Table) (on A B)} as Open Propositions.

search. In practice, the choice can be very
important for efficiency, and it is often useful
to interleave reasoning about different sub-
goals. However, the order in which subgoals
are considered by the planner does not affect
completeness, and it is not important to a
nondeterministic algorithm—the same num-
ber of nondeterministic choices will be made
either way.

Anyway, suppose POP selects (on B C) from
the agenda as the goal to work on first; Aneed is
set to A∞. Line 3 needs to choose (a real non-
deterministic choice this time!) an action,
Aadd, which has (on B C) as an effect. Suppose
that the magic oracle suggests making Aadd a
new instance of a move-B-from-Table-to-C
action. A new causal link, Aadd (on →BC) A∞, is
added to L’, and the agenda is updated.
Because there are no threats to the sole link,
line 6 makes a recursive call with the argu-
ments depicted in figure 6.

On the second invocation of POP, agenda is
still not empty, so another goal must be cho-
sen. Suppose that the (clear B) conjunct of the
recently added move-B-from-Table-to-C
action’s precondition is selected as Q in line 2.
Next, in line 3, choose is called to make the
nondeterministic choice of a producing

action. Suppose that instead of instantiating a
new action (as I illustrated last time), the
planner decides to reuse an existing one: the
start action A0. The net effect of this pass
through POP is to add a single link to L, as
illustrated in figure 7, and to shrink agenda
slightly.

Suppose that on the third invocation of
POP, the planner selects the top-level goal (on
A B) from agenda. Once again, several possi-
bilities exist for the nondeterministic choice
of line 3. Suppose that POP decides to instanti-
ate a new move-A-from-Table-to-B action as
Aadd. A new causal link gets added to L, the
new action is constrained to precede A∞, and
agenda is updated. Things get a bit more
interesting when control flow reaches line 5.
Note that both of the new actions, move-A-
from-Table-to-B and move-B-from-Table-to-C,
are constrained to precede A∞, but O contains
no constraints on their relative ordering. Fur-
thermore, note that move-A-from-Table-to-B
negates (clear B), but this action means that it
threatens the link from A0 labeled (clear B)
(figure 8).

To protect against this threat, POP must
nondeterministically choose an ordering con-
straint. In general, there are two possibilities:

Articles

WINTER 1994 37

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

end

(on a b) (on b c)

Figure 7. After Adding a Causal Link to Support (clear B), the Plan Has Two Causal Links, and Agenda Is Set to {(clear C) (on B
Table) (on A B)}.

Implementation Details To implement
POP, one must choose data structures to repre-
sent the partial order over actions (O). The
operations that the data structure needs to
support are adding new constraints to O, test-
ing if O is consistent, determining if Ai can
consistently be ordered prior to Aj, and
returning the set of actions that can be
ordered before Aj. In fact, this set of interface
operations can be reduced to the ability to
add or delete Ai < Aj from O and test O for
consistency, but this set won’t necessarily
lead to the greatest efficiency because many
more queries are typically performed (that is,
in threat detection, as discussed in the follow-
ing paragraph) than there are true updates.
Caching the results of queries (that is, incre-
mentally computing the transitive closure)
can significantly increase performance. If a
denotes the number of actions in a plan, it
takes O(a3) time to compute the transitive

Constrain the move-A action after the move-
B action, or constrain move-A to precede the
start action A0. However, because line 3 of
POP assures that every action follows A0, this
last choice would make O inconsistent. Thus,
POP orders the threat after the link’s con-
sumer, as shown in figure 9.

Because the agenda still contains five
entries, much work is left to be done. Howev-
er, all subsequent decisions follow the same
lines of reasoning that I showed earlier, so I
omit them here. Eventually, POP returns the
plan shown in figure 10. Careful inspection
of this figure confirms that no link is threat-
ened. Indeed, the three actions in A (besides
the dummies A0 and A∞ are exactly the same
as the ones returned by the world-state plan-
ners of the previous section. Like those plan-
ners, one can prove that POP is sound and
complete.

Articles

38 AI MAGAZINE

Figure 8. Because the move-A Action Could Possibly Precede the move-B Action,
It Threatens the Link Labeled (clear B), as Indicated by the Dashed Line.

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

(move a from table to b)
(clear b) (clear a) (on a table)

(on a b) (clear table) ~(on a table) ~(clear b)

end

(on a b) (on b c)

closure and O(a2) space to store it, but queries
can be answered quickly (see the Floyd-War-
shall algorithm and discussion [Cormen, Leis-
erson, and Rivest 1991]). Considerable
research has focused on this time-space trade-
off and on variants that assume a different
interface to the temporal manager (see
Williamson and Hanks [1993] for a discussion
and pointers).

Another implementation detail concerns
the efficiency of testing for threatened causal
links. There can be O(a2) links and, hence,
O(a3) threats. I have found that the most effi-
cient way to handle threats is incrementally:
Whenever a new causal link is added to L, all
actions in A are tested to see if they threaten
it. This action takes O(a) time. Whenever a
new action instance is added to A, all links in
L are tested to see if they are threatened. This
action takes O(a2) time.

Analysis
In general, the expected performance of a
search algorithm is O(cbn). The three parame-
ters that determine performance are now
explained:

First, how many times is nondeterministic
choose called before a solution is obtained?
This parameter determines the exponent n.

Second, how many possibilities need to be
considered (by a searching algorithm) at each
call to choose? This parameter determines the
average branching factor b.

Third, how long does it take to process a
given node in the search space (that is, how
much processing goes on before the recursive
call)? I have written this parameter as the
constant c, although it is usually a function
of the size of the node being considered.

The cost for each node in the search space
c is different for REGWS and POP, but this differ-

Articles

WINTER 1994 39

Figure 9. After Promoting the Threatening Action, the Plan’s Actions Are Totally Ordered.

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

(move a from table to b)
(clear b) (clear a) (on a table)

(on a b) (clear table) ~(on a table) ~(clear b)

end

(on a b) (on b c)

can vary somewhat. In particular, REGWS

makes one call for each action introduced
(that is, n = a), but POP makes one call for
each precondition conjunct (actually more if
links are threatened). Ignoring the issue of
threatened links, POP will have a higher n if a
given action supports more than one precon-
dition conjunct, which is almost always the
case. For example, the *start* action often
supports many conjuncts. However, the ratio
between POP’s n and REGWS’s n can never be
greater than the maximum number of pre-

ence doesn’t matter much in practice. For the
world-state planner, the operations for each
node can all be implemented in time propor-
tional to the number of current goals, |cur-
goals|, and the number and complexity of
actions. POP, however, has several operations
(testing for threatened links, for example)
whose complexity grows with the length of
the plan under consideration. We say that
these factors don’t matter much because the
exponential bn dominates these costs.

The number of nondeterministic calls, n,

Articles

40 AI MAGAZINE

start
(on c a) (clear b) (clear c) (on a table) (on b table)

(move c from a to table)
(on c a) (clear c)

(on c table) (clear a) ~(on c a)

(move b from table to c)
(clear table) ~(on b table) ~(clear c) (on b c)

(clear b) (clear c) (on b table)

(move a from table to b)
(clear b) (clear a) (on a table)

(on a b) (clear table) ~(on a table) ~(clear b)

end

(on a b) (on b c)

Figure 10. Eventually, This Plan Is Returned as a Solution.

condition conjuncts for each action, which is
typically a small constant (three for the
blocks world). In any case, the value of n cer-
tainly doesn’t suggest that POP will run faster.

However, POP usually does run faster, and b
is the reason why. POP achieves completeness
with a much smaller branching factor than
the world-space algorithms. At each call to
choose in line 3, POP has to consider only
those actions whose effects are relevant to the
particular goal, Q, chosen in line 2 of the
algorithm. Recall that this choice does not
require backtracking.

The situation with REGWS is different. Line
3a’s nondeterministic choice must consider
all actions whose effects are relevant to any
member of cur-goals. In other words, REGWS

has to backtrack over the choice of which
goal (Q) to work on next; failure to consider
all possibilities would sacrifice completeness.
The reason for this additional branching fac-
tor stems from the fact that REGWS links the
decision of which goal to work on next with
the decision of when to execute the resulting
actions. By using a least commitment
approach with the set of ordering constraints,
O, POP achieves a branching factor that is
smaller by a factor equal to the average size of
cur-goals (or agenda), which can grow large.
Indeed, the increased branching factor is usu-
ally the dominant effect.

There are many other factors involved, and
a detailed analysis is complex. See Barrett and
Weld (1994, 1993), Minton, Bresina, and
Drummond (1991), and Minton et al. (1992)
for different types of analytic comparisons
and experimental treatments.

It is also important to note that the POP

algorithm represents just one point on the
spectrum of possible least commitment plan-
ning algorithms. Brevity precludes a discus-
sion of other interesting possibilities, but see
Kambhampati (1993a, 1993b) for a survey of
approaches and a fascinating taxonomy of
design trade-offs.

Action Schemata with Variables
Because the idea of least commitment has
proven useful, it is natural to wonder if one
can take it further; indeed, this is both possi-
ble and useful! Before I describe the next step,
I want to highlight the relationship between
least commitment and constraint satisfaction.
Note that the key step in allowing POP to
delay decisions about when individual
actions are to be scheduled was including the
set of ordering constraints, O, and the atten-
dant constraint-satisfaction algorithms for

determining consistency. It turns out that we
can perform the same trick when choosing
which action to use to support an open con-
dition: Delay the decision by adding con-
straints and gradually refining them.

Take a look back at figure 9 in which POP

just created its first causal link from a new
move-B-from-Table-to-C action to support the
goal (on B C). How did this choice get made?
Line 3 of POP selected between all existing
(there were none) and new actions that had
(on B C) as an effect. What were the other
possibilities? Well, a move-B-from-A-to-C
action would have worked too. In addition, if
there were other blocks mentioned in the
problem, then POP would have had to consid-
er moving B from D or from E or…, but these
choices are absurd! Why (at this point in the
planning process) should POP have to worry
about where B is going to be? Instead, it is
much better to delay this commitment until
later (when some choices might easily be
ruled out).

We can accomplish this delay by having
POP add the action Move-B-from-?x-to-C,
where ?x denotes a variable whose value has
not yet been chosen. In fact, why not go all
the way and define a general move schema
that defines the class of actions that move an
arbitrary block, ?b, from an arbitrary prior
location, ?x, to any destination, ?y? I call
such an action schema an operator. When
choosing to instantiate this operator, one
could specify that ?b = B and ?y = C. Subse-
quent decisions could add more and more
constraints on the value of ?x until eventual-
ly it has a unique value. The key question is,
What types of constraints should be allowed?
The simplest answer is to allow codesignation
and noncodesignation constraints, which we
write as ?x = ?y and ?x ≠ ?y, respectively.11 To
make these ideas concrete, see the definition
of figure 11, which defines a move operator
that is reasonably general.12

Planning with Partially
Instantiated Actions
It should be fairly clear that the operator in
figure 11 is a much more economical descrip-
tion than the O(n3) fully specified move
actions it replaces (n is the number of blocks
in the world). In addition, the abstract
description has enormous software-engineer-
ing benefits; needless duplication would like-
ly lead to inconsistent domain definitions if
an error in one copy were replaced, but other
copies were mistakenly left unchanged.

However, representation is one thing, and
planning is another. How must the POP plan-

Articles

WINTER 1994 41

goal, Q, given the plan’s codesignation con-
straints; that is, MGU(Q, E, B) ≠ ⊥ . For exam-
ple, given the null plan for the Sussman
anomaly and the supposition that Q =
(on B C), the planner could nondeterministi-
cally choose to set Aadd to a new instance of
the move operator because the effect con-
junct (on ?b ?x) unifies with (on B C).

In line 3, when a new causal link is added
to the plan, binding constraints must be
added to B to force the producer’s effect to
supply the condition required by the con-
suming action. Continuing the Sussman
anomaly example, the constraints {?b = B, ?x
= C} must be added to B.

Also in line 3, when a new action instance
is created from an operator in Λ, the planner
must ensure that all variables referred to in
the action have not been used previously in
the plan. For example, later in the Sussman
anomaly example, when a second move
action is instantiated to support the (on A B)
goal, this action must not reuse the variable
names ?b, ?x, or ?y. Instead, for example, the
new action instance could be referred to as
?b1, ?x1, and ?y1.

Line 4 (update goal set) of POP removes Q
from agenda and adds the preconditions of
Aadd if it is newly instantiated. Because opera-
tors include some precondition conjuncts
that specify noncodesignation constraints
(for example, (≠ ?b ?x)), these preconditions
need to be treated specially (that is, added to
B rather than to agenda). Thus, instead of
adding all Aadd’s preconditions to agenda,
only the logical preconditions (for example,
(clear B)) should be added.

Line 5 (causal link protection) of POP con-
siders every action At ∈ A that might threaten
a causal link Ap →R AC ∈ L and either promotes

ning algorithm be modified to handle partial-
ly instantiated actions resulting from general
operators such as the one in figure 11? I
explain the changes in this subsection.

The data-structure–representing plans must
include a slot for the set of variable binding
(codesignation) constraints. Thus, a plan is
now <A, O, L, B>, and a problem’s null plan
has B = {}.13

We also need some way to perform unifica-
tion. Let MGU(Q, R, B) be a function that
returns the most general unifier of literals Q
and R with respect to the codesignation con-
straints in B. ⊥ is returned if no such unifier
exists. The form of a general unifier is taken
to be a set of pairs {(u,v)}, indicating that u
and v must codesignate to ensure that Q and
R unify. This form allows us to treat codesig-
nation constraints in B as a conjunction of
general unifiers (although, in general, B might
contain noncodesignation constraints as well,
even though MGU() cannot generate them).

MGU((on ?x B), (on A B)) = {(?x, A)}
MGU((on ?x B), (on A B), {(?x, C)}) = ⊥
For shorthand, we sometimes write MGU(Q,R)
rather than explicitly specify an empty set of
bindings. Furthermore, we assume that redun-
dantly negated literals are treated in the obvi-
ous way. That is, ¬¬P unifies with P.

When ∆ is a logical sentence, the notation
∆\B (or ∆\MGU(Q,R)) denotes the sentence
resulting from substituting ground values for
variables wherever possible given the codesig-
nation constraints returned by unification.

In line 3 of POP (action selection), the
choice of Aadd must consider all existing
actions (or new actions that could be instanti-
ated from an operator in Λ) such that one of
Aadd’s effect conjuncts, E, unifies with the

Articles

42 AI MAGAZINE

(define (operator move)
:parameters (?b ?x ?y)
:precondition (and (on ?b ?x) (clear ?b) (clear ?y)

(≠ ?b ?x) (≠ ?b ?y) (≠ ?x ?y) (≠ ?y Table))
:effect (and (on ?b ?y) (not (on ?b ?x))

(clear ?x) (not (clear ?y))))

Figure 11. Variables, Codesignation (=), and Noncodesignation (≠) Constraints
Allow Specification of More General Action Schemata.

it or demotes it. Now that actions have vari-
ables in them, the meaning of the phrase
“might threaten” is subject to interpretation.
If At has (not (clear ?y1)) as an effect, could it
threaten a link labeled (clear B)? Well, unless
B contains a constraint of the form ?y1 ≠ B,
then the planner might eventually add the
codesignation ?y1 = B, and the threat would
be undeniable. However, it is best to wait
until the unification of ?y1 and B is forced,
that is, until they unify with no substitution
returned. Only at this point does the planner
need to decide between adding At < Ap or Ac <
At to O.14

One final change is necessary. Line 1 of POP

returns the plan if agenda is empty, but an
extra test is now required. We can return a
plan only if all variables have been con-
strained to a unique (constant) value. This
test is necessary to ensure that all threatened
links are actually recognized (see the previous
paragraph). Fortunately, we can get this test
for free by requiring that the initial state con-
tain no variables and that all variables men-
tioned in the effects of an operator be includ-
ed in the preconditions of an operator. With
these restrictions on legal operator syntax,
the binding constraints added by line 3 are
guaranteed to result in unique values.

Implementation Details
To implement the generalized POP algorithm
just described, one must choose data struc-
tures for representing the binding con-
straints, B. The necessary operations include
the addition of constraints, the testing for
consistency, unification, and substitution of
ground values. Note that the familiar algo-
rithms for unification are inadequate for our
tasks because they accept only equality con-
straints, whereas we require noncodesigna-
tion constraints as well.

This subsection describes one way to
implement these functions. Casual readers
might want to skip this discussion and jump
directly to Conditional Effects and Disjunc-
tion.

One implementation represents B as a list
of varset structures, defined as follows: Each
varset has three fields—const, cd-set, and
ncd-set. The const field is either empty or
represents a unique constant. The cd-set field
is a list of variables that are constrained to
codesignate, and the ncd-set is a list of vari-
ables and constants that are constrained not
to codesignate with any of the variables in
cd-set or the constant in const.

To add a constraint of the form ?x = ?y to
B, one first searches through B to find the

first varsets for ?x and ?y. If they are distinct
and both have const fields set, then the con-
straint is inconsistent. Otherwise, a new emp-
ty varset is created, and the const field is
copied from whichever of the two found
varsets had it set (if any). Next, the union of
the two cd-sets is assigned to the new struc-
ture and, likewise, for the ncd-sets. If any
member of the resulting ncd-set is in the
resulting cd-set, then the operation is incon-
sistent. If not, then the new varset is pushed
onto the B list. Adding a constraint where
either ?x or ?y is a constant is done in the
same way.

To add a constraint of the form ?x ≠ ?y to B,
one first searches through B to find the
varsets for ?x and ?y. If either symbol is in the
cd-set of the other varset, then it fails; other-
wise, make a copy of the varsets, augmenting
the ncd-sets, and push the two new copies
onto B.

These routines might seem inefficient
(note that they do not remove old varsets
from B, and they make numerous copies;
however, they perform well in practice
because they enable the planner to explore
many plans in parallel (that is, using an arbi-
trary search technique) with reasonable space
efficiency (because the B structures are shared
between plans). If one restricts the planner to
depth-first search, then a more efficient
codesignation algorithm (that removes con-
straints during backtracking) is possible.

Another efficiency issue concerns the cre-
ation of new variable names when instantiat-
ing new actions from operators. A simple
caching scheme can eliminate unnecessary
copying and provide substantial speedup.15

Conditional Effects
and Disjunction

One annoying aspect of the move operator of
figure 11 is the restriction that the destina-
tion location can’t be the table. This restric-
tion means that to describe the possible
movement actions, it’s necessary to augment
move with an additional operator, move-to-
table, that describes the actions that move
blocks from an arbitrary place to the table.
The restriction is irritating for both software-
engineering and efficiency reasons, but I con-
centrate on the latter. Note that the existence
of two separate movement operators means
that the planner has to commit (at algorithm
line 3) whether the destination should be the
table or some other block—even if it is
adding the action to achieve some goal, Q,
that has nothing to do with the destination.

Articles

WINTER 1994 43

First, recall that line 3 (action selection) of
the POP algorithm selects a new or existing
action, Aadd, whose effect unifies with the
goal, Q. If the consequent of a conditional
effect unifies with Q, then it can be used to
support the causal link. In this case, line 4
(update goal set) must add the conditional
effect’s antecedent to agenda. Without condi-
tional effects, POP line 5 (causal link protec-
tion) makes the nondeterministic choice
between adding At < Ap to O’ (that is, demo-
tion) or adding Ac < At to O’ (that is, promo-
tion). If the threatening effect is conditional,
however, then an alternative threat-resolu-
tion technique, called confrontation, is possi-
ble: Add the negation of the conditional
effect’s antecedent to the agenda. For an
example of confrontation, see later in the
article.

Note that confrontation introduces negat-
ed goals, something we have not discussed
previously. For the most part, negated goals
are just like positive goals: They can be sup-
ported by an action whenever the action has
an effect that matches. The one difference
concerns the initial state. Because it is conve-
nient to avoid specifying all the facts that are
initially false, special machinery is necessary
to implement the closed-world assumption.

Disjunctive Preconditions
It’s also handy to allow actions (and the
antecedents of conditional effects) to contain
disjunctive preconditions. Although disjunc-
tive preconditions can quickly cause the
search space to explode, they are useful when
used with moderation. Planning with them is
simple. In line 2 (goal selection), after select-
ing the agenda from Q, an extra test is added.
If Q = (or Q1 Q2), then Q is removed from
agenda, and a nondeterministic call to choose

For example, if move were added to support
the open condition (clear A), then the plan-
ner would have to prematurely commit to the
destination of the block on top of A. This vio-
lation of the principle of least commitment
causes reduced planning efficiency.

Previously, I alluded to the fact that we
could relax this annoying restriction if the
action language allowed conditional effects.
Indeed, conditional effects are useful and rep-
resent an important step in the journey
toward increasingly expressive action-repre-
sentation languages that I described at the
beginning of this article. The basic idea is
simple: We allow a special when clause in the
syntax of action effects. When takes two
arguments, an antecedent and a consequent.
Both the antecedent and the consequent
parts can be filled by a single literal or a con-
junction of literals, but their interpretation is
different. The antecedent refers to the world
before the action is executed, and the conse-
quent refers to the world after execution. The
interpretation is that execution of the action
will have the consequent’s effect just in the
case that the antecedent is true immediately
before execution (that is, much like the
action’s precondition determines if execution
itself is legal). Figure 12 illustrates how condi-
tional effects allow a more general definition
of move.

Planning with Conditional Effects
Historically, planning with actions that have
conditional effects was thought to be an
inherently expensive and problematic affair.
Thus, it might come as a surprise that condi-
tional effects demand only two small modifi-
cations to the planning algorithm presented
earlier.

Articles

44 AI MAGAZINE

(define (operator move)
:parameters (?b ?x ?y)
:precondition (and (on ?b ?x) (clear ?b) (clear ?y)

(≠ ?b ?x) (≠ ?b ?y) (≠ ?x ?y))
:effect (and (on ?b ?y) (not (on ?b ?x)) (clear ?x)

(when (≠ ?y Table) (not (clear ?y)))))

Figure 12. Conditional Effects Allow the Move Operator to Be Used When the Source or Destination
Location Is the Table (compare with figure 11).

selects either Q1 or Q2. Whichever disjunct is
selected is added back into the agenda.

Note that we are only allowing precondi-
tions, not effects, to be disjunctive. Even
though the previous section described condi-
tional effects, (when P Q) should not be con-
fused with effects that allow logical implica-
tion, that is, (=> P Q). In particular, (when P
Q) is not the same as (or (not P) Q). The
antecedent of a conditional effect refers to
the state of the world before the action is exe-
cuted; only the consequent actually specifies
a change to the world.

Although it is easy to extend the planner
to handle disjunctive preconditions, disjunc-
tive effects are much harder. Disjunctive
effects only make sense when describing an
action that has unpredictable effects. For
example, the action of flipping a coin might
be described with a disjunctive effect (or
(heads ?x) (tails ?x)). Planning with actions
whose effects are only partially known is
tricky and warrants more room than I have in
this simple introduction. See Kushmerick,
Hanks, and Weld (1994); Etzioni et al. (1992);
Krebsbach, Olawsky, and Gini (1992); Peot
and Smith (1992); Olawsky and Gini (1990);
Kaelbling (1988); Schoppers (1987); and War-
ren (1976).

Universal Quantification
Now we are ready to take the next major step
toward more expressive actions. Allowing
universal quantification in preconditions

allows one to easily describe real-world
actions such as the UNIX rmdir command that
deletes a directory only if all files inside it
have already been deleted. Universally quan-
tified effects allow one to describe actions
such as chmod* that set the protection of all
files in a given directory. Naturally, universal
quantification is equally useful in describing
physical domains. One can use universally
quantified preconditions to avoid the need
for a special clear predicate (with its atten-
dant need for the user to specify how each
action affects the clearness of other objects).
Instead, one could provide move with a pre-
condition that says ?b can’t be picked up
unless all other blocks aren’t on ?b. Universal-
ly quantified conditional effects allow the
specification of objects such as briefcases,
where moving the briefcase causes all objects
inside to move as well (figure 13).

Assumptions
To implement a planner, UCPOP, that handles
universally quantified preconditions and
effects, I need to make a few simplifying
assumptions.16 First, I assume that the world
being modeled has a finite, static universe of
objects. Furthermore, each object has a type.
For each object in the universe, the initial
state description must include a unary atomic
sentence declaring its type. For example, the
initial description might include sentences of
the form (block A) and (briefcase B), where
block and briefcase are two types.17

Our assumption that the universe is static

Articles

WINTER 1994 45

(define (operator move)
:parameters (?b ?l ?m)
:precondition (and (briefcase ?b) (at ?b ?l) (≠ ?m ?l))
:effect (and (at ?b ?m)

(not (at ?b ?l))
(forall ((object ?x))

(when (in ?x ?b)
(and (at ?x ?m) (not (at ?x ?l)))))))

Figure 13. Moving a Briefcase Causes All Objects Inside the Briefcase to Move as Well.
Describing this move requires universally quantified conditional effects.

The forall quantifies over all ?x that have type object.

of the universe of x and then generate the
appropriate set of clauses ∆i by substitution
and renaming. Because each type’s universe is
assumed to be finite, the universal base is
guaranteed to be finite as well. Two more
examples illustrate the handling of existential
quantification. First, if ∆ is

(exists ((briefcase ?b))
(forall ((book ?y)) (in ?y ?b))) ,

then the universal base is19

(and (briefcase ?b) (in moby ?b)
(in crime ?b) (in dict ?b)) .

Second, suppose that the universe of brief-
case is {B1,B2}, and ∆ is

(forall((briefcase ?b))
(exists ((book ?y)) (in ?y ?b))) .

Then the universal base contains two Skolem
constants (?y1 and ?y2):

(and (book ?y1) (in ?y1 B1) (book ?y2)
(in ?y2 B2)) .

Because there are only two briefcases, the
Skolem constants ?y1 and ?y2 exhaust the
range of the Skolem function whose domain
is the universe of briefcases. Because of the
finite, static universe assumption, we can
always do this expansion when creating the
universal base.

The UCPOP Algorithm
The UCPOP planning algorithm is based on POP

(algorithm 3); it is modified to allow action
schemata with variables, conditional effects,
disjunctive preconditions, and universal quan-
tification. In previous sections, I discussed the
modifications required by most of these lan-
guage enhancements, and now that the univer-
sal base has been defined, it’s easy to explain
the last modification. Before I do, however, it
helps to define a few utility functions:

First, if a goal or precondition is a universal-
ly quantified sentence, then UCPOP computes
the universal base and plans to achieve it
instead.

Second, if an effect involves universal
quantification, UCPOP does not immediately
compute the universal base. Instead, the uni-
versal base is generated incrementally, and
the effect is used to support causal links.

Third, we need to change the definition of
threaten to account for universally quantified
effects. Let Ap →Q Ac be a causal link. If a step
At exists that satisfies the following condi-
tions, then it is a threat to Ap →Q Ac. Thus, (1)
Ap < At < Ac is consistent with O; (2) At has an
effect conjunct R (or has a conditional effect
whose consequent has a conjunct); (3)
MGU(Q, ¬R, B) does not equal ⊥ ; and (4) for
all pairs (u,v) ∈ MGU(Q,¬R,B), either u or v is a

means that action effects must not assert type
information. If an action were allowed to
assert (not (briefcase B)), then this assertion
would amount to the destruction of an
object. Similarly, execution of an effect that
said (block G001) would create a new block.
For now, we don’t allow either of these types
of effects.

The Universal Base
To assure the systematic establishment of
goals and subgoals that have universally
quantified clauses, UCPOP maps these formulas
into a corresponding ground version. The
universal base ϒ of a first-order, function-free
sentence, ∆, is recursively defined as follows:

ϒ(∆) = ∆ if contains no quantifiers
ϒ(∀ t1 x ∆(x))= ϒ(∆1) ^…^ ϒ(∆n) ,

where the ∆i corresponds to each possible
interpretation of ∆(x) under the universe of
discourse, {C1,...,Cn}, that is, the possible
objects of type t1 (Genesereth and Nilsson
1987). In each ∆i, all references to x have
been replaced with the constant Ci. For exam-
ple, suppose that the universe of book is
{moby, crime, dict}. If ∆ is (forall ((book ?y))
(in ?y B)), then the universal base ϒ(∆) is the
following conjunction:

(and (in moby B) (in crime B) (in dict B)) .

Under the static universe assumption, if
this goal is satisfied, then the universally
quantified goal is satisfied as well. We call the
ground sentence the universal base because
all universally quantified variables are
replaced with constants.

To handle interleaved universal and exis-
tential quantifiers, we need to extend the def-
inition as follows:

ϒ(∃ t1y∆(y)) = t1(y) ^ ϒ(∆(y))
ϒ(∀ t1x ∃ t2y ∆(x,y))= t2(y1) ^ ϒ(∆1) ^ …

^ t2(yn) ^ ϒ(∆n) .
Once again the ∆i corresponds to each possi-
ble interpretation of ∆(x,y) under the universe
of discourse for type t1: {C1,…,Cn}. In each ∆i,
all references to x have been replaced with
the constant Ci. In addition, references to y
have been replaced with Skolem constants
(that is, the yi).18 All existential quantifiers are
eliminated as well, but the remaining free
variables (which act as Skolem constants) are
implicitly quantified existentially. Because we
are careful to generate one such Skolem con-
stant for each possible assignment of values
to the universally quantified variables in the
enclosing scope, there is no need to generate
and reason about Skolem functions. In other
words, instead of using y = f(x), we enumerate
the set {f(C1),f(C2),…,f(Cn)} for each member

Articles

46 AI MAGAZINE

member of the effect’s universally quantified
variables.

In other words, an action is considered a
threat when unification returns bindings on
nothing but the effect’s universally quantified
variables. Previously I mentioned that we
wanted to consider an action to be a threat
only if B necessarily forced the codesignation.
With ordinary least commitment variables,
this happens when MGU() returns the empty
set. However, with universally quantified
effects, the situation is different. For example,
consider a UNIX chmod* action whose effect
makes all files ?f write protected. This action
necessarily threatens a link labeled (writable
foo.tex) even though MGU() returns a bind-
ing, (?f, foo.tex), on the effect’s universally
quantified variable ?f.

Put another way, the chmod* action is a
threat because (writable foo.tex) is a member
of the universal base of its effect. If all univer-
sally quantified effects were replaced with
their universal base at operator instantiation
time, then MGU() would never return bind-
ings on universally quantified variables
(because there wouldn’t be any!). Although
this substitution would eliminate the need
for special treatment of universal variables (in
the definition of threats given earlier), it
would be inefficient. Because universally
quantified effects are expanded into their
universal base incrementally, the definition
of threat must be altered. A summary of algo-
rithm 4 follows.

Algorithm 4: UCPOP(<A,O,L,B>, agenda, Λ)

1. Termination: If agenda is empty,
return <A,O,L,B>.

2. Goal reduction: Remove a goal
<Q,Ac> from agenda.

(a) If Q is a quantified sentence, then
post the universal base <ϒ(Q),Ac> to
agenda. Go to 2.

(b) If Q is a conjunction of Qi, then
post each <Qi,Ac> to agenda. Go to 2.

(c) If Q is a disjunction of Qi, then
nondeterministically choose one dis-
junct, Qk, and post <Qk,Ac> to agenda.
Go to 2.

(d) If Q is a literal, and a link
Ap →¬Q Ac exists in L, fail (an impossible
plan).

3. Operator selection: Nondeterministi-
cally choose any existing (from A) or
new (instantiated from Λ) action, Ap,
with effect conjunct R such that Ap < Ac

is consistent with O, and R (note R is a
consequent conjunct if the effect is con-
ditional) unifies with given B. If no such
choice exists, then fail. Otherwise, let

(a) L’ = L ∪ {Ap →Q Ac}.

(b) B’ = B ∪ {(u,v)|(u,v) e MGU(Q,R,B) ^
u,v not universally quantified variables
of the effect}.

(c) O’ = O ∪ {Ap < Ac}.

4. Enabling of new actions and effects:
Let A’ = A and agenda’ = agenda.
If Ap ∉ A, then add Ap to A’, add
<preconds(Ap)\MGU(Q,R,B),Ap> to agen-
da’, add {Ao < Ap < A∞} to O, and add
non–cd-constraints (Ap) to B’. If the
effect is conditional, and it has not
already been used to establish a link in L,
then add its antecedent to agenda after
substituting with MGU(Q,R,B).

5. Causal link protection: For each
causal link l = Ai →P Aj in L and for each
action At that threatens l nondeterminis-
tically, choose one of the following (or if
no choice exists, fail):

(a) Promotion : If consistent, let
O’ = O’ ∪ {Aj < At}.

(b) Demotion: If consistent, let
O’ = O’ ∪ {At < Ai}.

(c) Confrontation: If At’s threatening
effect is conditional with antecedent S
and consequent R , then add
<¬S\MGU(P,¬R),At> to agenda’.

6. Recursive invocation: If B is incon-
sistent, then fail; else call
UCPOP(<A’,O’,L’,B’>, agenda’, Λ).

Although I do not prove it here (see Pen-
berthy and Weld [1992] instead), UCPOP is
both sound and complete for its action repre-
sentation given the assumptions of the fixed,
static universe.

Confrontation Example
To see a concrete example of UCPOP in action,
recall the move operator defined in figure 13
that transports a briefcase from location ?l to
?m along with its contents. Remember, unlike
our previous definition, move lets the agent
directly move only the briefcase; all other
objects must be moved indirectly. Suppose we
now define an operator that removes an item
?x from the briefcase, as shown in figure 14.

Note that take-out doesn’t change the loca-
tion of ?x, so it remains in the location that
the briefcase was last moved to.

Articles

WINTER 1994 47

choice and links to the initial state. Because
the one link isn’t threatened, UCPOP calls itself
recursively with the plan shown in figure 15.

Now UCPOP removes the last goal—(at B
office)—from the agenda (line 2) and shifts
control to line 3 of the algorithm. There are
two ways to achieve this goal, but because no
existing steps have effects that match the
goal, both options involve instantiating a new
move step. One obvious way to achieve the
goal is to move B directly to the office, but
the other method is to move a different brief-
case to work and have as a subgoal getting B
inside the other briefcase. Because there isn’t
any other briefcase, the second approach
would result in backtracking. Suppose instead
that UCPOP makes the correct nondeterminis-
tic choice and updates the set of actions,
links, and bindings appropriately. Because the
move action is newly added, its precondi-
tion—(and (briefcase B) (at B ?l))—is added to
the goal agenda. At this point, there are no
threatened links; so, UCPOP calls itself recur-

Suppose that there is just one briefcase, B,
that is at home with a paycheck, P, inside it,
as codified by the following initial condi-
tions: (and (briefcase B) (at B home) (in P B)
(at P home)). Furthermore, suppose that we
like P at home, but we want the briefcase at
work; in other words, our goal is (and (at B
office) (at P home)). We call UCPOP with the
null plan and agenda containing the pair
<(and (at B office) (at P home)), A∞>,20 and
Λ = the move and take-out operators. Because
agenda is nonempty, the goal is removed
from the agenda, recognized as a conjunc-
tion, and reduced to two literals that are both
put back on the agenda (UCPOP line 2b). UCPOP

line 2 is now executed again, and the goal (at
P home) is removed from agenda; because it
is a literal, control proceeds to line 3 (opera-
tor selection). There are two ways to support
this goal: (1) create a new instance of a move
action or (2) link to the initial conditions
(that is, the existing step A0). Suppose that
UCPOP makes the correct nondeterministic

Articles

48 AI MAGAZINE

(define (operator take-out)
:parameters (?x ?b)
:precondition (in ?x ?b)
:effect (not (in ?x ?b)))

Figure 14. This Action Removes an Item from the Briefcase.

Figure 15. One Subgoal Is Easy to Support.

(at B office) (at P home)

end

(briefcase B) (at B home) (in P B) (at P home)

start

Articles

WINTER 1994 49

Figure 16. A New Move Step Supports the Second Goal without Threatening the First Link.

Figure 17. Now That Codesignation Constraints Bind ?l to Home,
the Move Step Threatens an Existing Link.

move B ?l office
(briefcase B) (at B ?l) (in ?o1 B)

(at B office) (at P home)

end

(at B office) ~(at B ?l) (at ?o1 office) ~(at ?o1 ?l)

(briefcase B) (at B home) (in P B) (at P home)

start

move B home office
(briefcase B) (at B home) (in ?o1 B)

(at B office) (at P home)

end

(at B office) ~(at B home) (at ?o1 office) ~(at ?o1 home)

(briefcase B) (at B home) (in P B) (at P home)

start

value home, the most general unifier consists
solely of (?o1, P). Now the threat is real, as fig-
ure 17 shows.

To protect against the threat (line 5 of the
algorithm), UCPOP must choose nondetermin-
istically between three techniques: promo-
tion, demotion, and confrontation. In the
current situation, however, both promotion
and demotion are impossible because move
can’t come before the *start* action Ao or
after the *end* action A∞. Fortunately, the
threatening effect is conditional; so, con-
frontation is a viable technique. The move
step affects the location of the paycheck only
when (in P B); so, UCPOP posts its negation as
a new subgoal of move on the agenda. Note
that although unification with universally
quantified variables was ignored during
threat detection, the constraints on ?o1 are
crucially important when posting this new
subgoal. UCPOP does not need to ensure that
nothing is in the briefcase; it just has to
remove the paycheck. As a result, the subgoal
generated by confrontation is specific to P, as
illustrated in figure 18.

Satisfying the new subgoal requires instan-

sively with the plan shown in figure 16. Note
that some of the effects of move are shown in
gray rather than black, signifying that they
are conditional. Furthermore, note that the
variable ?o1 is surrounded by a circle to
denote that it is universally quantified.

The conjunctive goal—(and (briefcase B)
(at B ?l))—gets reduced into its component
literals that get chosen in turn. In both cases,
it is possible to link them to the initial state
in the same way that was illustrated earlier.
However, when UCPOP uses the initial condi-
tion (at B home) to support move’s precondi-
tion (at B ?l), it is forced to add (?l, home) to
the plan’s set of codesignation constraints.
This change to B causes move to threaten the
link labeled (at P home), as signified by the
dashed line in figure 17.

Previously, the link wasn’t threatened by
move because MSU((at ?o1 ?l)), (at P home),B)
unified with a complex unifier—
{(?l, home),(?o1, P)}. Although the second
binding pair contains a universally quantified
variable ?o1, the first pair does not; so, the
definition of threat is unsatisfied. However,
after the B is extended to constrain ?l to the

Articles

50 AI MAGAZINE

Figure 18. After Confronting the Threat.

move B home office
(briefcase B) (at B home) ~(in P B) (in ?o1 B)

(at B office) (at P home)

end

(at B office) ~(at B home) (at ?o1 office) ~(at ?o1 home)

(briefcase B) (at B home) (in P B) (at P home)

start

tiating and adding a take-out step to A, which
adds another subgoal to the agenda. Howev-
er, the goal of (in P B) is easily satisfied by the
initial conditions; so, UCPOP quickly returns
the plan shown in figure 19 as its solution to
this planning problem.

Quantification Example
Although the example in the previous subsec-
tion illustrated UCPOP’s basic operation and
use of confrontation to protect threatened
links, it did not demonstrate the planner’s
capability to handle universally quantified
goals. We also did not link to a universally
quantified effect to demonstrate the incre-
mental expansion of the universal base. To
demonstrate these features, let’s consider
another primitive operator and another prob-
lem. The new action schema allows one to

add items to the briefcase (figure 20).
Note that put-in requires that ?x and the

briefcase be in the same location and that it
disallows putting the briefcase inside itself.

Suppose that the initial conditions specify
that the following facts are true (and all oth-
ers are false):

(and (object D) (object B) (briefcase B)
(at B home) (at D office)) .

As our goal, we request that every object be
at home:

(forall ((object ?o)) (at ?o home)) .
The null plan corresponding to this prob-

lem is shown in figure 21.
When UCPOP is first called, line 2a immedi-

ately recognizes the sole agenda entry—(forall
((object ?o)) (at ?o home)))—as a quantified
sentence and expands it into the universal
base. Control shifts back to line 2 with agen-

Articles

WINTER 1994 51

Figure 19. Final Plan.

(briefcase B) (at B home) (in P B) (at P home)

start

(in P B)

~(in P B)

move B home office
(briefcase B) (at B home) ~(in P B) (in ?o1 B)

(at B office) ~(at B home) (at ?o1 office) ~(at ?o1 home)

(at B office) (at P home)

end

take-out P B

Articles

52 AI MAGAZINE

Figure 20. What Good Is a Briefcase If We Can’t Put Things into It?

Figure 21. Dummy Plan Representing Problem.
Note that (in D B) is explicitly listed as false because it is relevant later in the example. In fact, the closed-world assumption states that

all propositions that are not explicitly listed as true are presumed false.

(define (operator put-in)
:parameters (?x ?b ?l)
:precondition (and (≠ ?x ?b) (at ?x ?l) (at ?b ?l) (briefcase ?b))
:effect (in ?x ?b))

(forall ((object ?x)) (at ?x home))

end

(object D) (object B) (briefcase B) (at B home) ~(in D B) (at D office)

start

Figure 22. After Supporting First Conjunct.

(at B home) (at D home)

end

move B ?l home
(briefcase B) (at B ?l) (in ?o1 B)

(at B home) ~(at B ?l) (at ?o1 home) ~(at ?o1 ?l)

(object D) (object B) (briefcase B) (at B home) ~(in D B) (at D office)

start

da containing (and (at B home) (at D home)).
On this iteration, line 2b splits the conjunc-
tion into its component parts and jumps back
to line 2. At this point, the agenda contains
two entries—(at B home) and (at D home)
—both tagged with A∞. On the next iteration,
suppose Q = (at B home); this time, none of
line 2’s cases are satisfied; so, control pro-
ceeds to line 3. Suppose that UCPOP nondeter-
ministically chooses to instantiate a new
instance of move to support the goal. The
links, bindings, and orderings are updated;
then in line 4, the new action is added to A,
and its preconditions are added to the agen-
da. When the recursive call occurs (UCPOP line
6), the updated plan is shown, as in figure 22.

On the next iteration, suppose that Q =
(at D home). Because Q is a literal, control
goes to line 3. Suppose that UCPOP wisely (that
is, nondeterministically) chooses to support
this goal with the existing move action. In
particular, it decides to use the universally
quantified conditional effect that any object
?o1 in the briefcase will get moved as well as
the briefcase. Now is the time to incremental-
ly expand the effect’s universal base. The key
step is at the end of line 4 where UCPOP adds

the new goal—(in D B)—instantiated from
the antecedent of the conditional effect to
agenda. The resulting plan is shown in figure
23. Note that although I have drawn
(at D home) and (at D ?l) as instantiated
effects of move, they aren’t actually explicitly
added to the data structures. There’s no point
as long as the universally quantified version
is there; so, perhaps the catch phrase “incre-
mentally generating the universal base for
effects” is misleading. You might prefer to
think of it as not being generated at all.

Now that we’ve covered most of the inter-
esting stuff, I’ll fast forward to the end
(figure 24).

Quantification over
Dynamic Universes
To this point, the discussion of universal
quantification has assumed that the universe
of discourse for each type is finite, static, and
known to the agent. In this section, I explain
how to handle dynamic universes, that is,
domains whose action effects can create new
objects or delete existing ones.21 I address two
independent questions in turn: (1) how
object creation and destruction should be

Articles

WINTER 1994 53

Figure 23. After Incrementally Expanding Part of the Universal Base of the Universally Quantified Effect.

(at B home) (at D home)

end

move B ?l home
(briefcase B) (at B ?l) (in D B) (in ?o1 B)

(at B home) ~(at B ?l) (at D home) ~(at D ?l) (at ?o1 home) ...

(object D) (object B) (briefcase B) (at B home) ~(in D B) (at D office)

start

Articles

54 AI MAGAZINE

(at B home) (at D home)

(object D) (object B) (briefcase B) (at B home) ~(in D B) (at D office)

end

start

move B home office
(briefcase B) (at B home) ~(in D B) (in ?o3 B)

(at B office) ~(at B home) (at ?o3 office) ~(at ?o3 home)

put-in D B
(briefcase B) (at B office) (at D office)

(in D B)

move B office home
(object D) (briefcase B) (at B office) (in D B) (in ?o1 B)

(at B home) ~(at B office) (at D home) ~(at D office) (at ?o1 home) ...

Figure 24. Final Plan.

represented (syntactically) in the action lan-
guage and (2) how the planner should handle
universally quantified goals in the face of
these possible effects.

One can model an action that destroys an
object with an effect that negates the object’s
type predicate. For example, if dict is of type
book, then destroying the dictionary can be
represented with an effect asserting (not
(book dict)). Similarly, an action that creates a
new book need only have an effect that
asserts (book G0053) for some newly generat-
ed symbol G0053.

Extending UCPOP to handle object destruc-
tion is straightforward. For example, suppose
that the universe of book is {moby, dict}, and
the universe of ∆ is (forall ((book ?y))
(in ?y B)). Recall that if the universe of books
is static, it then generates (and (in moby B)
(in dict B)) as the universal base. To account
for potential destruction, UCPOP must simply
generate a slightly more elaborate universal
base:

(and (or (in moby B) (not (book moby)))
(or (in dict B) (not (book dict)))) .

As long as no new books are created, this
goal is satisfied exactly when the quantified
expression is satisfied. Note that this expres-
sion reduces immediately to the simpler one
if there are no destructive actions because
there will be no way to achieve the (not
(book ... subgoals.22

It’s somewhat trickier to handle actions
that create new objects. Without object cre-
ation, UCPOP can determine the universe of
discourse for a type such as book by match-
ing (book ?x) against the effects of the initial
state. In the previous example, UCPOP deter-
mines that moby and dict are the only possi-
ble books in this manner: by matching
against the initial state. However, if arbitrary
actions can create objects of type book, then
when expanding the universal base for a pre-
condition of action Ac, UCPOP must consider
all books that are possibly created by all
actions that are possibly ordered prior to
Ac—but that’s not all. Because subsequent
problem solving might add new actions to
the plan, and these actions might be ordered
prior to Ac, UCPOP has to maintain a list of
previously expanded forall goals. Whenever a
new action is added, it is checked against the
list of forall goals; if the new action creates an
object whose type has previously been
expanded, then the forall goal is reconsid-
ered, and the universal base is incrementally
updated.23 This update gets tricky if the goal
expression involves nested universal and exis-
tential quantifiers because the incremental

Articles

WINTER 1994 55

David Chapman’s
“Planning for Conjunctive Goals”

Although the landmark paper “Planning for Conjunctive

Goals” (Chapman 1987) clarified the topic of least commit-

ment planning for many readers, it contained a number of

results that were misleading. Chapman’s central contribution was

the modal truth criterion (MTC), a formal specification for a simple

version of NONLIN’s question-answering algorithm (Tate 1977). In a

nutshell, MTC lists the necessary and sufficient conditions for

ensuring that a condition be true at a specific point in time given a

partially ordered set of partially specified actions. Chapman

observed that MTC can be used for both plan verification and plan

generation; to demonstrate the latter, he implemented a sound and

complete planner called TWEAK.

Chapman also proved that evaluating MTC is NP hard when

actions contain conditional effects. Because TWEAK evaluated MTC

repeatedly in its innermost loop, Chapman (and other researchers)

speculated that least commitment planning would not scale up to

expressive action languages, for example, those allowing condi-

tional effects.

Fortunately, Chapman’s pessimism was ungrounded. The flaw in

his arguments stem from the difference between determining

whether a condition is true and ensuring that it be true; a planner

need only do the latter. For example, the modified algorithm adds

actions whose effects are sufficient to make goal conditions true;

whether a given effect is necessary is of no concern as long as the

planner nondeterministically considers every alternative. Nowhere

does the planner ask whether a condition is true in the plan;

instead it adds actions and posts sufficient constraints to make it

true.

Once these constraints are posted, the planner must ensure that all

constraints are satisfied before it can terminate successfully. The

combination of causal links and a threat-detection algorithm ren-

ders this check inexpensive on a per-plan basis; however, it can

increase the number of plans visited because of the nondeterminis-

tic choice to promote, demote, or confront. In other words, the

modified algorithm pushes the complexity of evaluating MTC into

the size of the search space. For an in-depth discussion of this sub-

ject and other aspects of Chapman’s results, see Kambhampati and

Nau (1993); for more information on least commitment planning

with conditional effects, see Collins and Pryor (1992), Penberthy

and Weld (1992), and Pednault (1991).

(Bylander 1991). In some cases, planning is
undecidable (Erol, Nau, and Subrahmanian
1992). As a result, we can’t expect any of the
planners described in this article to perform
quickly on all problems all the time. In fact,
to achieve reasonable performance much of
the time, it is usually necessary to add
domain-dependent control knowledge, and
in addition, it is often necessary to sacrifice
completeness. Because the nondeterministic
choose function is implemented with search,
adding domain knowledge amounts to using
an aggressive heuristic search algorithm
rather than breadth-first or iterative deepen-
ing depth-first search. A simple way to
encode domain information is to provide a
ranking function (that is, a function that
takes a plan and returns a real number indi-
cating metrically how good it is). Unfortu-
nately, few estimators are known that are
both efficient and useful. A better idea is to
use knowledge-based search, that is, to build a
miniature production system that uses a
knowledge base of forward-chaining rules to
guide each nondeterministic choice. Acquir-
ing domain-dependent knowledge in this
rulelike form is much easier because individu-
al rules refer to local decisions, and there is
no need to weight the pieces as required
when computing a single metric rank. These
ideas were first explored in the SOAR system
(Laird, Newell, and Rosenbloom 1987) and
refined in the PRODIGY planner (Minton et al.
1989b); they were also incorporated in the
UCPOP implementation as described in Barrett
et al. (1993).

Machine-learning techniques can be used
to automatically derive these production
rules. Many learning algorithms have been
explored, including explanation-based learn-
ing (Minton 1988), static domain compilation
(Etzioni 1993a, 1993c; Smith and Peot 1993),
abstraction (Knoblock 1990), and derivational
analogy (Veloso 1992). See also the case-based
planner built in the POP (SNLP) framework
(Hanks and Weld 1992) and a similar system
(Kambhampati and Hendler 1992) that was
built on a reduction schemata planner.

Production-rule control can also be used to
implement refinement by hierarchical reduc-
tion schemata, a traditional planning method
(Currie and Tate 1991; Yang 1990; Charniak
and McDermott, 1984; Tate 1977).

Another form of search control exploits the
notion of resources. SIPE (Wilkins, 1990,
1988a) is an impressive planner that uses
sophisticated heuristics to handle domains of
industrial complexity.

Both the POP and UCPOP planners support

expansion must create the appropriate num-
ber of new Skolem constants.

Implementation
Common Lisp source code for the planner is
available for nonprofit use through anony-
mous FTP (on june.cs.washington.edu as the
compressed file ftp/pub/ai/ucpop.tar.Z [use
binary mode for transfer]). The code is simple
enough for classroom use but efficient (that
is, it takes about 2 to 20 microseconds to
explore and refine a partial plan on a SPARC-
IPX). In addition to the features described in
this section, UCPOP 2.0 provides the following
enhancements: (1) declarative specification of
control rules that guide the nondeterministic
search, (2) a graphic plan-space browser writ-
ten in CLIM for portability, (3) domain axioms,
(4) predicates that call Lisp code when used
in action preconditions (useful when the
domain theory involves arithmetic, and so
on), (5) a set of domain theories (including
those used in this article and many more) for
experimentation, and (6) a users’ manual
(Barrett et al. 1993).

Advanced Topics
The discussion in this article was restricted to
goals of attainment. Although I explained
how to handle goal descriptions involving
disjunction and universal quantification (not
just conjunction as in STRIPS), I assumed that
the goal is a logical expression describing a
single world state—the one attained after the
complete plan is executed. However, it’s often
useful to specify general constraints on the
agent’s behavior over time as part of the goal.
For example, one might want to specify that
a household robot should never set the house
on fire and that a software robot (that is, a
softbot [Etzioni, Lesh, and Segal, 1993b;
Etzioni and Segal 1992]) shouldn’t delete
valuable files. One class of behavioral con-
straints, called maintenance goals, can be
implemented easily on top of by an exten-
sion of the causal link threat-detection mech-
anism; see Weld and Etzioni (1994) and
Etzioni et al. (1992). Drummond (1989)
describes a rich language for expressing goals,
including those of maintenance. The GEMPLAN

planner also handles a wide range of behav-
ioral goals (Lansky 1988). ZENO synthesizes
plans to achieve universally quantified tem-
poral and metric goals (Penberthy and Weld
1994).

Even simple propositional STRIPS planning
is P-space complete if actions can have more
than two conjuncts in their preconditions

Articles

56 AI MAGAZINE

open conditions with a single causal link,
even when other actions in the plan provide
redundant support. The restriction to one
link for each precondition can be seen as a
violation of least commitment because it
demands that the planner respond to threats
even in cases where one of the redundant
supports is not in jeopardy. The idea of multi-
ple causal support dates back to the NONLIN

planner (Tate 1977) but see Kambhampati
1992, 1992b) for a clean formalization. See
Kambhampati (1993b) for an excellent analy-
sis of the different design choices in planning
algorithms.

It’s also possible to build planners that
handle even more expressive action lan-
guages than the ones described here. Ped-
nault (1989) describes the ADL language,
which is slightly more expressive than that
handled by UCPOP; he discusses the theory
behind regression planning for this language
in Pednault (1988), but no one has imple-
mented a planner for the full language.24

Many other extensions have been imple-
mented, however, including incomplete
information, execution, and sensing opera-
tions (Golden, Etzioni, and Weld 1994;
Etzioni et al. 1992; Peot and Smith 1992);
probabilistic planning (Draper, Hanks, and
Weld 1994; Kushmerick, Hanks, and Weld
1993); decision-theoretic specification of
goals (Williamson and Hanks 1994); and met-
ric time and continuous change (Penberthy
and Weld 1994). Many extensions remain to
be investigated, for example, richer utility
models (Wellman 1993; Haddawy and Hanks
1992), domain axioms, exogeneous events,
the generation of safe plans (Weld and
Etzioni 1994), and multiple cooperating
agents (Shoham 1993).

There’s much more of interest, but I can’t
describe it here. See Allen, Hendler, and Tate
(1990) for the tip of the iceberg.

Acknowledgments
I thank Franz Amador, Tony Barrett, Darren
Cronquist, Denise Draper, Ernie Davis, Oren
Etzioni, Nort Fowler, Rao Kambhampati,
Craig Knoblock, Nick Kushmerick, Neal Lesh,
Karen Lochbaum, Ramesh Patil, Kari Pulli,
Ying Sun, Austin Tate, and Mike Williamson
for helpful comments. This research was
funded in part by the Office of Naval
Research, grant 90-J-1904, and the National
Science Foundation, grant IRI-8957302.

Notes
1. For example, CHEF (Hammond 1990) and SPA

(Hanks and Weld 1992) are good examples of a
transformational case-based planner, but PRODIGY-
ANALOGY (Veloso and Carbonell 1993) and PRIAR

(Kambhampati and Hendler 1992) are examples of
a case-based, refinement planner. All the algo-
rithms presented in the remainder of this article are
generative, refinement algorithms. However,
GORDIUS (Simmons 1988a) is a good example of a
generative, transformational planner (although it
can be used in case-based mode as well).

2. The acronym STRIPS stands for Stanford Research
Institute problem solver, which is a famous and
influential planner built in the 1970s to control an
unstable mobile robot known affectionately as
SHAKEY (Fikes and Nilsson 1971).

3. The etymology of the name is a bit puzzling
because the problem was discovered at the Mas-
sachusetts Institute of Technology in 1973 by Allen
Brown, who noticed that the HACKER problem solver
had problems dealing with it. Because HACKER was
the core of Gerald Sussman’s Ph.D. thesis, he got
stuck with the name. In subsequent years, numer-
ous researchers searched for elegant ways to handle
it. Tate’s (1975) INTERPLAN system used more sophis-
ticated reasoning about goal interactions to find an
optimal solution, and Sacerdoti’s (1975) NOAH plan-
ner introduced a more flexible representation to
sidestep the problem. Because the planners
described in this article adopt these techniques,
they have no problem with the anomalous situa-
tion. Still it’s worth explaining why the problem
flummoxed early researchers. Note that the prob-
lem has two subgoals: (1) to achieve (on A B) and
(2) to achieve (on B C). It seems natural to try
divide and conquer, but if we try to achieve the
first subgoal before starting the second, then the
obvious solution is to put C on the table, then put
A on B. Then we accidentally wind up with A on B
when B is still on the table. Of course, one can’t get
B on without taking B off; so, trying to solve the
first subgoal first appears to be a mistake. However,
if we try to achieve (on B C) first, then we have a
similar problem: B is on C, but A is still buried at
the bottom of the stack. No matter which order is
tried, the subgoals interfere with each other.
Humans seem to use divide and conquer, so why
can’t computers? In fact, they can, as I show in the
section on plan-space search.

4. It’s illegal for an action’s effect to include both
an atomic formula and its negation because it
would lead to an undefined result.

5. Means-end analysis, the problem-solving strate-
gy used by GPS (Newell and Simon 1963), is espe-
cially important, both from a historical perspective
and because of its ubiquity in machine-learning
research on speedup learning (Minton et al., 1989b;
Minton 1988). Unfortunately, GPS-like planners are
incomplete (for example, they cannot solve the
Sussman anomaly), which complicates analysis and
comparison to the algorithms in this article. Future
work is needed to investigate the benefits, if any, of
the GPS approach.

Articles

WINTER 1994 57

type t1 has a finite universe; as a result, n Skolem
constants are generated. If there were two leading,
universally quantified variables of the same type,
then n2 Skolem constants (yi,j) would be necessary.

19. Because ?b is free, it is implicitly existentially
quantified. Of course, because there are only two
briefcases, (briefcase ?b) is equivalent to saying that
the books have to be in B1 or B2. Hence, in this
case, ∆ and ϒ(∆) both specify an (implicit) disjunc-
tion. As a result, although this goal will be legal for
UCPOP, we cannot allow it as an action effect for the
reasons described in Disjunctive Preconditions.

20. Recall that we often refer to the agenda as if it
contained just the logical halves of these pairs. For
example, we might say that agenda contains one
entry—(and (at B office) (at P home))—tagged with
the step A∞. In either case, the idea is the same: A∞
is the step that has the logical sentence as a precon-
dition.

21. Infinite universes of discourse and situations in
which the agent has only incomplete information
can also be handled, but these are considerably
more difficult. See Golden, Etzioni, and Weld
(1994) for more information.

22. Although my strategy handles the standard log-
ical interpretation of the quantified expression, the
technique raises the question of whether one wants
one’s planner plotting out book-burning strategies.
I claim that this issue of plan quality and harmful
side effects is best treated separately because it
crops up in many situations other than universally
quantified goals. See Weld and Etzioni (1994), Lan-
sky (1993), Pollack (1992), and Wilkins (1988b) for
a discussion of this topic.

23. This technique was first used in the GORDIUS

planner (Simmons 1992).

24. McDermott’s (1991) PEDESTAL planner is a total
order planner that roughly handles the same subset
of ADL as UCPOP.

References
Allen, J.; Hendler, J.; and Tate, A., eds. 1990. Read-
ings in Planning. San Mateo, Calif.: Morgan Kauf-
mann.

Ambros-Ingerson, J., and Steel, S. 1988. Integrating
Planning, Execution, and Monitoring. In Proceed-
ings of the Seventh National Conference on Artifi-
cial Intelligence, 735–740. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Barrett, A., and Weld, D. 1994. Partial Order Plan-
ning: Evaluating Possible Efficiency Gains. Artificial
Intelligence 67(1): 71–112.

Barrett A., and Weld, D. 1993. Characterizing Sub-
goal Interactions for Planning. In Proceedings of
the Thirteenth International Joint Conference on
Artificial Intelligence, 1388–1393. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Barrett, A.; Golden, K.; Penberthy, J. S.; and Weld,
D. 1993. UCPOP User’s Manual, Version 2.0, Techni-
cal Report, 93-09-06, Dept. of Computer Science
and Engineering, Univ. of Washington.

Bylander, T. 1991. Complexity Results for Planning.

6. In fact, NOAH didn’t actually search the space in
any exhaustive manner (that is, unlike NONLIN [Tate
1977], it did no backtracking), but it is still credited
with reformulating the space in question.

7. An alternative approach is to repeatedly com-
pute these interactions, but this approach is often
less efficient.

8. The rationale behind the names stems from the
fact that demotion moves the threat lower in the
temporal ordering, but promotion moves it higher.

9. Actually, we adopt the convention that every
proposition that is not explicitly specified to be
true in the initial state is assumed to be false. This
convention is called the closed-world assumption
(CWA).

10. The POP planner is similar to McAllester’s SNLIP

algorithm (McAllester and Rosenblitt 1991), which
is an improved formalization of Chapman’s (1987)
TWEAK planner. The difference between SNLP and POP

concerns the definition of threat. SNLP treats At as a
threat to a link Ap →Q Ac when At has Q as an effect
as well as when it has ¬Q as an effect. Although
this might seem counterintuitive (what does it mat-
ter if Q is asserted twice?), the SNLP definition leads
to a property, called systematicity, that reduces the
overall size of the search space. It’s widely believed
that systematicity is interesting from a technical
point of view but does not necessarily lead to
increased planning speed. See Kambhampati
(1993a) for a discussion.

11. A more elaborate approach would incorporate
ideas from programming language–type systems.

12. Figure 11’s definition of move is restricted so
that the block can’t be moved to the table. This
restriction is necessary because the action’s effects
are different when the destination is the table.
Specifically, the normal definition of the block’s
world assumes that the table is always clear, but
blocks can have only one block on top of them.
Thus, moving a block onto another must negate
(clear ?y), but this negation mustn’t happen if ?y =
Table. Although it is possible to write a fully gener-
al move operator, it requires a more expressive
action language, such as one that allows condition-
al effects (described later).

13. B stands for binding.

14. This point (first suggested by Ambros-Ingerson
and Steel [1988]) is actually rather subtle, and other
possibilities have been explored. However, as
explained in Peot and Smith (1993) and Kambham-
pati (1993b), this approach has the advantage of
both simplicity and efficiency.

15. The idea is based on the observation that sib-
ling plans—those that explore different refinements
of the same parent—can reuse action instances.

16. These assumptions can be relaxed, but this dis-
cussion is beyond the scope of this article.

17. It’s fine for a given object to have multiple
types, but all types must be stated explicitly. For
example, the initial state could specify (briefcase B)
and (object B), but we do not allow a general facili-
ty for stating that all briefcases are objects.

18. Note that this definition relies on the fact that

Articles

58 AI MAGAZINE

In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, 274–279.
Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Chapman, D. 1987. Planning for Conjunctive
Goals. Artificial Intelligence 32(3): 333–377.

Charniak, E., and McDermott, E. 1984. Introduction
to Artificial Intelligence. Reading, Mass.: Addison-
Wesley.

Collins, G., and Pryor, L. 1992. Achieving the Func-
tionality of Filter Conditions in a Partial Order
Planner. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, 375–380. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Cormen, T.; Leiserson, C.; and Rivest, R. 1991.
Introduction to Algorithms. Cambridge, Mass.: MIT
Press.

Currie, K., and Tate, A. 1991. O-PLAN: The Open
Planning Architecture. Artificial Intelligence 52(1):
49–86.

Draper, D.; Hanks, S.; and Weld, D. 1994. Proba-
bilistic Planning with Information Gathering and
Contingent Execution. In Proceedings of the Sec-
ond International Conference on AI Planning Sys-
tems, 31–36. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Drummond, M. 1989. Situated Control Rules. In
Proceedings of the First International Conference on
Knowledge Representation and Reasoning, 103–113.
San Mateo, Calif.: Morgan Kaufmann.

Erol, K.; Nau, D.; and Subrahmanian, V. 1992.
When Is Planning Decidable? In Proceedings of the
First International Conference on AI Planning Systems,
222–227. San Mateo, Calif.: Morgan Kaufmann.

Etzioni, O. 1933a. Acquiring Search-Control
Knowledge via Static Analysis. Artificial Intelligence
62(2): 255–302.

Etzioni, O. 1993b. A Structural Theory of Explana-
tion-Based Learning. Artificial Intelligence 60(1):
93–140.

Etzioni, O. 1993c. Intelligence without Robots: A
Reply to Brooks. AI Magazine 14(4): 7–13.

Etzioni, O., and Segal, R. 1992. Softbots as Testbeds
for Machine Learning. Presented at the AAAI Spring
Symposium on Knowledge Assimilation, March
25–27, Stanford, Calif.

Etzioni, O.; Lesh, N.; and Segal, R. 1993. Building
Softbots for UNIX, Preliminary Technical Report, 93-
09-01, Dept. of Computer Science and Engineering,
Univ. of Washington.

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh,
N.; and Williamson, M. 1992. An Approach to
Planning with Incomplete Information. In Proceed-
ings of the Third International Conference on Principles
of Knowledge Representation and Reasoning, 115–125.
San Mateo, Calif.: Morgan Kaufmann.

Fikes, R., and Nilsson, N. 1971. STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence 2(3–4):
189–208.

Genesereth, M., and Nilsson, N. 1987. Logical Foun-

dations of Artificial Intelligence. San Mateo, Calif.:
Morgan Kaufmann.

Golden, K.; Etzioni, O.; and Weld, D. 1994.
Omnipotence without Omniscience: Sensor Man-
agement in Planning. In Proceedings of the Twelfth
National Conference on Artificial Intelligence,
1048–1054. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Haddawy, P., and Hanks, S. 1992. Representations
for Decision-Theoretic Planning: Utility Functions
for Deadline Goals. In Proceedings of the Third Inter-
national Conference on Principles of Knowledge Repre-
sentation and Reasoning, 71–82. San Mateo, Calif.:
Morgan Kaufmann.

Hammond, K. 1990. Explaining and Repairing
Plans That Fail. Artificial Intelligence 45:173–228.

Hanks, S. 1990. Practical Temporal Projection. In
Proceedings of the Eighth National Conference on
Artificial Intelligence, 158–163. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Hanks, S., and McDermott, D. 1994. Modeling a
Dynamic and Uncertain World I: Symbolic and
Probabilistic Reasoning about Change. Artificial
Intelligence 66(1): 1–56.

Hanks, S., and Weld, D. 1992. Systematic Adapta-
tion for Case-Based Planning. In Proceedings of the
First International Conference on AI Planning Systems,
96–105. San Mateo, Calif.: Morgan Kaufmann.

Kaelbling, L. P. 1988. Goals as Parallel Program
Specifications. In Proceedings of the Seventh
National Conference on Artificial Intelligence,
pages???. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Kambhampati, S. 1993a. On the Utility of System-
aticity: Understanding the Trade-Offs between
Redundancy and Commitment in Partial-Order
Planning. In Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence,
1380–1385. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Kambhampati, S. 1993b. Planning as Refinement
Search: A Unified Framework for Comparative
Analysis of Search Space Size and Performance,
Technical Report, TR-93-004, Dept. of Computer
Science and Engineering, Arizona State Univ.

Kambhampati, S. 1992a. Characterizing Multi-Con-
tributor Causal Structures for Planning. In
Proceedings of the First International Conference on AI
Planning Systems, 116–125. San Mateo, Calif.: Mor-
gan Kaufmann.

Kambhampati, S. 1992b. Multi-Contributor Causal
Structures for Planning: A Formalization and Evalu-
ation, Technical Report, CS-TR-92-019, Dept. of
Computer Science and Engineering, Arizona State
Univ.

Kambhampati, S., and Hendler, J. 1992. A Valida-
tion Structure Based Theory of Plan Modification
and Reuse. Artificial Intelligence 55:193–258.

Kambhampati, S., and Nau, D. S. 1993. On the
Nature and Role of Modal Truth Criteria in Plan-
ning, Technical Report, ISR-TR-93-30, Inst. for Sys-
tems Research, Univ. of Maryland.

Knoblock, C. 1990. Learning Abstraction Hierar-

Articles

WINTER 1994 59

Manual and Tutorial, CMU-CS-89-146, Dept. of
Computer Science, Carnegie-Mellon Univ.

Newell, A., and Simon, H. 1963. GPS: A Program
That Simulates Human Thought. In Computers and
Thought, eds. E. Feigenbaum and J. Feldman. New
York: McGraw-Hill.

Nilsson, N. 1980. Principles of Artificial Intelligence.
San Mateo, Calif.: Morgan Kaufmann.

Olawsky, D., and Gini, M. 1990. Deferred Planning
and Sensor Use. In Proceedings of the DARPA Work-
shop on Innovative Approaches to Planning, Schedul-
ing, and Control, pp. 166–174. San Mateo, Calif.:
Morgan Kaufmann.

Pednault, E. 1991. Generalizing Nonlinear Plan-
ning to Handle Complex Goals and Actions with
Context-Dependent Effects. In Proceedings of the
Twelfth International Joint Conference on Artificial
Intelligence, 240–245. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Pednault, E. 1989. ADL: Exploring the Middle
Ground between STRIPS and the Situation Calculus.
In Proceedings of the First Knowledge Representation
Conference, 324–332. San Mateo, Calif.: Morgan
Kaufmann.

Pednault, E. 1988. Synthesizing Plans That Contain
Actions with Context-Dependent Effects. Computa-
tional Intelligence 4(4): 356–372.

Penberthy, J. S., and Weld, D. 1994. Temporal Plan-
ning with Continuous Change. In Proceedings of
the Twelfth National Conference on Artificial Intel-
ligence, 1010–1015. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Penberthy, J. S., and Weld, D. 1992. UCPOP: A
Sound, Complete, Partial Order Planner for ADL. In
Proceedings of the Third International Conference on
the Principles of Knowledge Representation, 103–114.
San Mateo, Calif.: Morgan Kaufmann.

Peot, M., and Smith, D. 1993. Threat-Removal
Strategies for Partial-Order Planning. In Proceed-
ings of the Eleventh National Conference on Artifi-
cial Intelligence, 492–499. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Peot, M., and Smith, D. 1992. Conditional Nonlin-
ear Planning. In Proceedings of the First Conference on
AI Planning Systems, 189–197. San Mateo, Calif.:
Morgan Kaufmann.

Pollack, M. 1992. The Uses of Plans. Artificial Intel-
ligence 57(1): 43–68.

Reiter, R. 1980. A Logic for Default Reasoning. Arti-
ficial Intelligence 13:81–132.

Russell, S. 1992. Efficient Memory-Bounded Search
Algorithms. In Proceedings of the Tenth European
Conference on Artificial Intelligence, 1–5. New York:
Wiley.

Sacerdoti, E. 1975. The Nonlinear Nature of Plans.
In Proceedings of the Fourth International Joint
Conference on Artificial Intelligence, 206–214.
Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Schoppers, M. 1987. Universal Plans for Reactive
Robots in Unpredictable Environments. In Proceed-
ings of the Tenth International Conference on Arti-

chies for Problem Solving. In Proceedings of the
Eighth National Conference on Artificial Intelli-
gence, 923–928. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Korf, R. 1992. Linear-Space Best-First Search: Sum-
mary of Results. In Proceedings of the Tenth
National Conference on Artificial Intelligence,
533–538. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Korf, R. 1988. Search: A Survey of Recent Results. In
Exploring Artificial Intelligence, ed. H. Shrobe,
197–237. San Mateo, Calif.: Morgan Kaufmann.

Krebsbach, K.; Olawsky, D.; and Gini, M. 1992. An
Empirical Study of Sensing and Defaulting in Plan-
ning. In Proceedings of the First International Confer-
ence on AI Planning Systems, 136–144. San Mateo,
Calif.: Morgan Kaufmann.

Kushmerick, N.; Hanks, S.; and Weld, D. 1994. An
Algorithm for Probabilistic Least-Commitment
Planning. In Proceedings of the Twelfth National
Conference on Artificial Intelligence, 1073–1078.
Menlo Park, Calif.: American Association for Artifi-
cial Intelligence.

Laird, J.; Newell, A., and Rosenbloom, P. 1987. SOAR:
An Architecture for General Intelligence. Artificial
Intelligence 33(1): 1–64.

Lansky, A., ed. 1993. Foundations of Automatic
Planning: The Classical Approach and Beyond,
Technical Report SS-93-03, AAAI Press, Menlo Park,
Calif.

Lansky, A. 1988. Localized Event-Based Reasoning
for Multiagent Domains. Computational Intelligence
4(4): 319–340.

McAllester, D., and Rosenblitt, D. 1991. Systematic
Nonlinear Planning. In Proceedings of the Ninth
National Conference on Artificial Intelligence,
634–639. Menlo Park, Calif.: American Association
for Artificial Intelligence.

McDermott, D. 1991. Regression Planning. Interna-
tional Journal of Intelligent Systems 6:357–416.

Minton, S. 1988. Quantitative Results Concerning
the Utility of Explanation-Based Learning. In Pro-
ceedings of the Seventh National Conference on
Artificial Intelligence, 564–569. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Minton, S.; Bresina, J.; and Drummond, M. 1991.
Commitment Strategies in Planning: A Compara-
tive Analysis. In Proceedings of the Twelfth Inter-
national Joint Conference on Artificial Intelligence,
259–265. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Minton, S.; Drummond, M.; Bresina, J.; and
Phillips, A. 1992. Total Order vs. Partial Order Plan-
ning: Factors Influencing Performance. In Proceed-
ings of the Third International Conference on the Prin-
ciples of Knowledge Representation and Reasoning,
83–92. San Mateo, Calif.: Morgan Kaufmann.

Minton, S.; Carbonell, J. G. ; Knoblock, C. A.;
Kuokka, D. R.; Etzioni, O.; and Gil, Y. 1989. Expla-
nation-Based Learning: A Problem-Solving Perspec-
tive. Artificial Intelligence 40:63–118.

Minton, S.; Knoblock, C.; Koukka, D.; Gil, Y.;
Joseph, R.; and Carbonell, J. 1989. PRODIGY 2.0: The

Articles

60 AI MAGAZINE

ficial Intelligence, 1039–1046. Menlo Park, Calif.:
International Joint Conferences on Artificial Intelli-
gence.

Shoham, Y. 1993. Agent-Oriented Programming.
Artificial Intelligence 60(1): 51–92.

Simmons, R. 1992. The Roles of Associational and
Causal Reasoning in Problem Solving. Artificial
Intelligence 53(2–3): 159–208.

Simmons, R. 1988a. A Theory of Debugging Plans
and Interpretations. In Proceedings of the Seventh
National Conference on Artificial Intelligence,
94–99. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Simmons, R. 1988b. Combining Associational and
Causal Reasoning to Solve Interpretation and Plan-
ning Problems, Technical Report, AI-TR-1048, AI
Lab, Massachusetts Institute of Technology.

Smith, D., and Peot, M. 1993. Postponing Threats
in Partial-Order Planning. In Proceedings of the
Eleventh National Conference on Artificial Intelli-
gence, 500–506. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Tate, A. 1977. Generating Project Networks. In Pro-
ceedings of the Fifth International Joint Confer-
ence on Artificial Intelligence, 888–893. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Tate, A. 1975. Interacting Goals and Their Use. In
Proceedings of the Fourth International Joint Con-
ference on Artificial Intelligence, 215–218. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Veloso, M. 1992. Learning by Analogical Reasoning in
General Problem Solving. Ph.D. thesis, Technical
Report, CMU-CS-92-174, Carnegie Mellon Univ.

Veloso, M., and Carbonell, J. 1993. Derivational
Analogy in PRODIGY: Automating Case Acquisition,
Storage, and Utilization. Machine Learning
10:249–278.

Waldinger, R. 1977. Achieving Several Goals Simul-
taneously. In Machine Intelligence 8. Chichester,
U.K.: Ellis Horwood.

Warren, D. 1976. Generating Conditional Plans
and Programs. In Proceedings of AISB Summer Con-
ference, 44–354.

Weld, D., and Etzioni, O. 1994. The First Law of
Robotics (A Call to Arms). In Proceedings of the
Twelfth National Conference on Artificial Intelli-
gence, 1042–1047. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Wellman, M. 1993. Challenges for Decision-Theo-
retic Planning. In Foundations of Automatic Plan-
ning: The Classical Approach and Beyond, Techni-
cal Report SS-93-03, AAAI Press, Menlo Park, Calif.

Wilkins, D. 1990. Can AI Planners Solve Practical
Problems? Computational Intelligence 6(4): 232–246.

Wilkins, D. 1988a. Causal Reasoning in Planning.
Computational Intelligence 4(4): 373–380.

Wilkins, D. E. 1988b. Practical Planning. San Mateo,
Calif.: Morgan Kaufmann.

Williamson, M., and Hanks, S. 1994. Optimal Plan-
ning with a Goal-Directed Utility Model. In Pro-

ceedings of the Second International Conference
on AI Planning Systems, 176–181. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Williamson, M., and Hanks, S. 1993. Exploiting
Domain Structure to Achieve Efficient Temporal
Reasoning. In Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence,
152–157. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Yang, Q. 1990. Formalizing Planning Knowledge
for Hierarchical Planning. Computational Intelligence
6(1): 12–24.

Daniel Weld received bachelors degrees in both
computer science and biochemistry at Yale Univer-
sity in 1982. He received a Ph.D. from the Mas-
sachusetts Institute of Technology Artificial Intelli-
gence Lab in 1988 and immediately joined the
Department of Computer Science and Engineering
at the University of Washington, where he is now
associate professor. Weld received a Presidential
Young Investigator’s Award in 1989 and an Office
of Naval Research Young Investigator’s Award in
1990. He is associate editor of the Journal of AI
Research, was guest editor of Computational Intelli-
gence, and was elected to the executive council of
the American Association for Artificial Intelligence.
Weld’s research interests include planning, software
agents, and engineering problem solving.

Articles

WINTER 1994 61

AAAI Members:
Do We Have Your

Correct
Email Address?

AAAI will soon be sending information
about its programs out to members via
email—but we can’t do so unless we
have your correct email address!

If you haven’t already done so, please
send us a message (to membership
@aaai.org), subject line email address
update, with your correct email address
noted in the body of the message.

