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Solution Density and Search Strategy in
Narrative Generation

Cory Siler

Abstract—Intelligent interactive narrative systems coordinate a
cast of nonplayer characters to make the overall story experience
meaningful for the player. Narrative generation involves a tradeoff
between plot-structure requirements and quality of character be-
havior, as well as computational efficiency. We study this tradeoff
using the example of benchmark problems for narrative planning
algorithms. A typical narrative planning problem calls for a se-
quence of actions that leads to an overall plot goal being met,
while also requiring each action to respect constraints that create
the appearance of character autonomy. We consider simplified
solution definitions that enforce only plot requirements or only
character requirements, and we measure how often each of these
definitions leads to a solution that happens to meet both types of
requirements—i.e., the density with which narrative plans occur
among plot- or character-requirement-satisfying sequences. We
then investigate whether solution densities can guide the selection
of narrative planning algorithms. We compare the performance
of two search strategies: one that satisfies plot requirements first
and checks character requirements afterward, and one that con-
tinuously verifies character requirements. Our results show that
comparing solution densities does not by itself predict which of
these search strategies will be more efficient in terms of search
nodes visited, suggesting that other important factors exist. We
discuss what some of these factors could be. Our work opens
further investigation into characterizing narrative planning algo-
rithms and how they interact with specific domains. The results also
highlight the diversity and difficulty of solving narrative planning
problems.

Index Terms—Intelligent systems, algorithm design and analysis,
algorithms, artificial intelligence, computational and artificial
intelligence, computer applications, computers and information
processing, mathematics, modeling, systems engineering and
theory.

1. INTRODUCTION

HEN it comes to developing games with dynamic sto-
rylines and elaborate character interactions, manual
content authoring techniques such as dialogue trees dominate
the industry [1], but intelligent narrative generation technolo-
gies could open new opportunities. Rather than requiring steep
growth of authoring effort as the length and branching factor
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of the narratives increase [2], these technologies could allow
scale, complexity, and variety to be added easily; rather than
restricting player options to match preconceived paths, these
games could offer players greater freedom with the narrative
adapting at runtime to unexpected player decisions.

Although surprising outcomes from an unbounded “emergent
narrative” [3] are sometimes part of a system’s appeal, usually
the system author will have some requirements for the overall
progression of events. For instance, in an educational game or
training simulation, the scenario should unfold in a direction that
supports the system’s pedagogical goals; in a role-playing game,
the author may want certain important plot points to occur even
if the events in-between can vary. At the same time, the story’s
believability to the player can benefit from the individual virtual
characters behaving like autonomous agents—e.g., acting based
on limited information to further their own goals [4]—whether
the underlying architecture is a true multiagent system or the
characters are being controlled by a hidden central coordinator.

The most appropriate choice of architecture for a narrative
generation system depends on the relative importance and dif-
ficulty of meeting criteria such as these. We characterize the
problem of combining story-structure constraints with character
constraints as one of finding members of narrower solution
spaces within wider solution spaces, where “solutions” are
generated stories that have a given set of desired properties.

Consider the process of designing a narrative generator start-
ing from a fully centralized architecture. With direct control over
all of the characters, the central agent has full power over the
story structure formed by the collective sum of the characters’
actions. However, manipulating the characters freely can lead
to a jarring player experience if individual characters show no
consistency of their own. The designer can counteract this by
imposing some form of character model and requiring the central
agent to choose manipulations that are justified according to that
model, creating the illusion of autonomy [5]. The architecture
starts from a solution space that satisfies story-structure con-
straints, and narrows it to a solution space that also satisfies
character constraints.

Conversely, consider designing a narrative generator starting
from a fully multiagent architecture. There is no need to impose
the illusion of character autonomy because the characters are
already autonomous by the nature of the system. However,
to ensure that a story with a desired structure emerges, the
designer must add additional features—e.g., behind-the-scenes
collusion between the character agents [6], partial guidance
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from an experience manager agent [7], or simply the ability
to simulate many possible story trajectories offline and discard
them until a satisfying one is found [8]. The architecture starts
from a solution space that satisfies character constraints, and
narrows it to a solution space that also satisfies story-structure
constraints.

This article extends our previous work [9] providing the first
direct investigation of solution spaces in the narrative plan-
ning model of narrative generation. A solution to a narrative
planning problem is a sequence of character actions that sat-
isfies certain author- and character-oriented requirements. We
consider relaxed solution definitions consisting of author- or
character-oriented requirements. For a variety of benchmark
narrative planning problems, we count the solutions that exist
for each of the relaxed definitions, as well as for the strict
definition incorporating both types of requirements. By doing
so, we can see how frequently a strict solution occurs among
relaxed solutions, i.e., the density of the former space within the
latter ones.

This analysis highlights many examples of cases, where
a system designed only around author-oriented requirements
will often produce results that may be unsatisfactory from a
character-oriented perspective, and vice versa, supporting the
value of approaches that explicitly model both types of require-
ments. In addition to being interested in this information for its
own sake, we ultimately wish to use it to help guide the design
of narrative planning algorithms.

One relevant design factor is computational efficiency. So-
lution density has previously been used to characterize the
performance of search algorithms on classic sequential decision-
making problems [10]. We present an experiment that applies it
similarly for narrative planning. We test two variants of depth-
first search—one prioritizing author-oriented requirements, and
one prioritizing character-oriented requirements—to investigate
whether the choice of search strategy affects performance in
terms of how many search nodes are enumerated and whether
solution density can be used to predict which search strategy
will enumerate fewer search nodes.

Our results show a significant difference between the two
search strategies for some benchmarks, but not others. Among
significant results, the more space-efficient search strategy dif-
fers over domains and does not consistently align with the
solution densities we measured; that is, knowing the solution
densities alone is not enough to predict, which search strategy
will visit fewer nodes for a previously unknown domain. We con-
clude that while solution densities offer one tool for comparing
domains, they do not by themselves give enough information
about a search space to guide algorithm selection, and more
analysis tools are needed to complement them.

The rest of this article is as follows. In Section II, we situate
our research within the literature. In Section III, we introduce
notation and definitions for the types of narrative generation
problems we will be investigating. In Section IV, we enumerate
the solutions for a set of narrative generation problems according
to different definitions of a solution. In Section V, we define
an explanation-first search algorithm and an author-goal-first
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search algorithm as a component for the experiments that follow.
In Section VI, we compare the number of nodes visited by
these algorithms, and we relate our findings to the data from
Section IV. In Section VII, we discuss the future directions
suggested by our results.

II. RELATED WORK

Narrative generation technologies have a wide variety of
subcategories and approaches, as surveyed by Kybartas and
Bidarra [11]. Outside our scope are approaches that focus on
controlling the presentation (discourse) of a narrative, including
natural language generation, as well as approaches that focus
on generating the setting of a story world or the objects within.
Instead, we focus on the generation of plot as a sequence of
events within the story world.

Resolving the tension between a system’s control over story
structure and other desiderata like character believability (as well
as player agency [12]) has been an enduring theme in the past two
decades of narrative intelligence research. Mateas [13] proposed
that narrative systems exist on a spectrum from strong story,
where a central agent makes all character decisions, to strong
autonomy, where characters can act with full independence. The
advantage of the former is tight control over the overall story
structure; the advantage of the latter is the ability to harness
the wealth of available work in creating believable autonomous
agents. One of the most famous achievements in intelligent inter-
active narrative, Fagade [14], strives to balance these advantages
using a rich library of local character behaviors, an experience
manager that directs the characters with plot-advancing goals,
and the ability for a group of characters to perform a joint
behavior that is neither centrally imposed nor based fully on
individual autonomy. Contrast this with two prominent works
from the history of noninteractive story generation: The strongly
autonomous TALE-SPIN [15] lets a story emerge based on
how characters’ motivations, beliefs, and traits interact with
the system’s physical and social dynamics, while Dehn [16]
exemplified strong story by aiming to simulate the mind of an
author developing a plot structure rather than simulating the
story world itself.

The narrative planning family of narrative generation ap-
proaches adopts classical planning’s language of propositional
world state, propositional goals, and declarative action defini-
tions. A plan is taken to be the overall plot structure, with the
story characters carrying out the actions that comprise it. The
goal-directed nature of planning is appealing because it allows
for a form of authorial intent to be enforced; the author can
specify desired properties of a state, where the plot should even-
tually lead, i.e., an author goal [17]. It is typically assumed that
narrative planning is a tool of a strong-story experience manager
that performs all reasoning centrally, although Teutenberg and
Porteous [18] provided an example of a partially distributed
algorithm, where character agents propose candidate actions to
the experience manager.

The narrative planner [IPOCL [5] follows the paradigm of
partial-order planning, which constructs a plan as a directed
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acyclic graph of actions backward from the goal, adding actions,
and orderings only as needed to ensure preconditions and goal
propositions will be fulfilled; this guarantees that all plot events
are relevant to the outcome of the story by way of fulfilling or
enabling fulfillment of the author goal. IPOCL also promotes
character believability by introducing character goals, separate
from the author goal, and requiring all character actions to be
linked to character goal achievement in the same way that all
actions overall are linked to author goal achievement.

Later narrative planners iterate on this approach: CPOCL [19]
refines the [IPOCL algorithm so character actions can be linked
to character goal achievement through unexecuted steps, al-
lowing characters’ attempts at accomplishing their goals to fail
in the executed plan (e.g., because another character’s actions
interfered). Glaive [20] kept CPOCL’s concept of explaining
character actions with unexecuted steps but divorces it from
partial-order planning, instead achieving performance gains
through a state-space heuristic search. Sabre [21] performed
state-space search to find plans and character action explana-
tions like Glaive but adds a character belief model, including
the ability to anticipate actions by other characters. Sabre’s
model of author goal achievement as a form of story structure,
and goal-and-belief-based explainability as a form of character
believability, is the basis for our experiments. However, these are
not the only notions of story structure and character believability
that have been explored in the narrative planning literature; for
instance, Shirvani and Ware [22] incorporated an emotional
model into character motivation, Porteous et al. [23] used PDDL
state trajectory constraints to express mid-narrative authorial
intent, and Young [24] and Bae and Young [25] discussed
control over story structure to induce suspense and surprise,
respectively, in the audience.

Analyzing a narrative generation domain based on its solution
densities can be considered a form of analyzing its expressive
range, a concept first discussed by Whitehead [26] in the context
of characterizing platform game levels produced by a procedural
content generator. Later works apply this concept to narrative
generation: Partlan er al. [27] used metrics to evaluate the
influence of player choice in branching interactive scenarios,
and Kybartas er al. [28], [29] provided tools to visualize the
potential for character conflict in possible states of a simulated
story world. These forms of analysis, like ours, can help creators
of narrative systems understand how design decisions will affect
the set of possible stories their systems could produce.

The term “solution density” comes from the heuristic search
literature [10], where it refers to the ratio of actual solutions
to candidate solutions; for instance, a Boolean satisfiability
problem over n variables that has k satisfying assignments is
said to have a density of k/2™ [30].

III. NARRATIVE GENERATION SOLUTION DEFINITIONS

In this section, we introduce the notation for the formal model
of narrative generation we use in our experiments. While it is
unfeasible to define a single formalism that is representative of
the entire diverse spectrum of narrative generation approaches,
we aim to capture common features and generate solutions for

some well-defined existing narrative generation problems. To
achieve this, we use a modified version of a formalism intro-
duced by Shirvani et al. [4] and implemented in Sabre [21]. The
formalism ultimately derives from STRIPS-style [31] classical
planning. We build up to definitions for strict narrative-planning
solutions incorporating author and character constraints, and
relaxed solution definitions incorporating only author or only
character constraints.

A. Problem Instances

We consider narrative generation problems consisting of a
tuple (so, V,C, A, ga, G(c)).

V is a set of propositional variables. A state assigns a value
of true or false to each of those variables. s is a state called the
initial state, which is supplied to describe the starting state of
the story world.

C is a set of objects representing the story’s characters.
Characters have (possibly-wrong) beliefs about the state of
the world; for every character ¢ € C' and variable v € V, we
define an additional variable believes(c,v) € V representing
the proposition that a character c¢ believes v is true (other-
wise, ¢ believes v is false). Beliefs can be arbitrarily nested;
believes(cy, believes(cq,v)) is the proposition that character
c1 believes character ¢, believes v is true. A state tracks all
characters’ beliefs, including beliefs about each other’s beliefs
and so on. (See Shirvani et al. [32] for a discussion of how
the infinite set of resulting beliefs can be finitely represented.)
A character’s beliefs also correspond to a state; at any time, a
character believes exactly one value for each variable.

Aisasetofactions. Each action has preconditions and effects,
which are propositions over V. An action can be taken only in a
state where its preconditions holds, and results in a state where its
effects hold. Every action also defines a (possibly empty) set of
consenting characters from C. Intuitively, consenting characters
are the characters that “take” an action; in some solution types
defined later, these also affect which actions can be taken.

Jq 18 the author’s goal, a proposition over V. For every charac-
ter c € C, G(c) is a set of propositions over V'; these constitute
character goals for c.! These are used to define solutions later in
this section.

We illustrate with a running example based on the grandma
domains [33]. The character set C includes the Merchant and
the protagonist Tom. The variable set V' defines the locations of
the characters and of items such as a Coin and a Potion [e.g., the
variable at(Tom, Cottage) tracks whether Tom is at the Cot-
tage]. The initial state sy declares initial facts, such as Tom being
at the Cottage [i.e., at(Tom, Cottage) is true] with the Coin, the
Merchant being at the Market with the Potion, Tom believing the
Merchant is at the Market, and the Merchant not knowing Tom
is at the cottage [i.e., believes(Merchant, at(Tom, Cottage))
is false]. G(c) says the Merchant wants to have the Coin [i.e.,

!'Sabre uses a richer syntax, where desires are specified in terms of a utility
function instead of propositional goals; however, since the original forms of our
domains generally use propositional goals and we set up the utility functions
to handle these goals equivalently, we will use a goal-based formalism in this
article for brevity.
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at(Coin, Merchant) € G(Merchant)] and that Tom wants
to have the Potion at the Cottage. g, says the author goal
is also for Tom to have the Potion at the Cottage [i.e., g, =
(at(Tom, Cottage) A at(Potion, Tom)].

Actions in A include travel, give, pick-up, kill, and buy.
The action for Tom to fravel from the Cottage to the Market,
for instance, has the precondition that Tom is at the Cottage
[at(Tom, Cottage)] and the effects that Tom is at the Market
instead and that characters at these locations update their beliefs
to reflect this [at(Tom, Market) A —at(Tom, Cottage) A
Veecat(c, Cottage) — believes(c, at(Tom, Market)) A
.

B. Explaining Actions

What differentiates instances of the above problem from
classical planning instances is the addition of character goals,
character beliefs, and consenting characters for actions. This
makes possible some of the solution definitions we will consider
in Section III-C that impose character-based constraints on
chosen actions, reinforcing the idea that story characters should
behave like autonomous agents with their own goals and models
of the world. These constraints say that when an action is selected
to be taken by character c, there should exist a hypothetical plan
from c’s perspective, where the action helps lead to one of ¢’s
goalsin G/(¢) being achieved, thus giving c areason to participate
in the action.

Let s be a state. When s holds, let sy, be the state character ¢
believes the world is in, as defined by the believes propositions
in s. An action a € A taken in s is explained for consenting
character c iff:

1) Starting from state sy, where some goal g € G(c) does
not hold, there exists a legal sequence of actions (called an
explanation) that begins with action a and ends in a state
where ¢ holds.

2) Allactions in the explanation have consenting characters.’

3) If an action in the explanation has a consenting character
¢ # ¢, that action is explained for ¢'.

4) The explanation does not contain a strict subsequence that
also meets these criteria.

The first criterion ensures that from ¢’s perspective, a could
be part of a plan to achieve a goal; the last criterion ensures
that a; is actually relevant to the goal achievement, rather than
being redundant. The other criteria ensure that if ¢ anticipates an
action taking place outside of its own direct control, that action
is plausible based solely on ¢’s awareness of other characters’
beliefs and desires.

Returning to our grandma example, suppose we are in the
initial state and Tom travels from the Cottage to the Market.
To explain this action, we consider a plan Tom could have that
begins with this action and achieves his goal: He could use his
Coin to buy the Potion from the Merchant at the Market, and then
travel back to the Cottage. The buy action can only be included
if it is explainable for the Merchant, as she is another consenting

2In other words, a character can anticipate how other characters will behave,
but has no means of predicting events beyond any character’s control.
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character. We confirm that it is explainable, as it immediately
achieves the Merchant’s goal of having the Coin.

C. Solution Definitions

Starting from the initial state sg, consider a sequence of
actions (a1, as, . . ., a, ) where applying the effects of any action
a; to s; results in a state s;41. We call such a sequence legal
if each a;’s preconditions hold in s;. Possible “solutions” to a
narrative generation problem are taken from among legal action
sequences. We consider multiple definitions of a solution; given
a narrative generation instance P = (s, V, C, A, g,, G(c)), we
define:

1) Auth(P): The set of author-constraint-satisfying se-
quences, namely, those action sequences (a1, az, . . ., Gn),
where the author goal g, holds precisely after a,, is taken.

2) Char(P): The set of character-constraint-satisfying se-
quences, namely, those action sequences, where each ac-
tion is explained for its consenting characters.

3) Auth(P) N Char(P): The set of sequences that are both
author-constraint- and character-constraint-satisfying.

For instance, in grandma, an example of an Auth(P)N
Char(P) solution is the one where Tom travels to the Market,
buys the Potion, and travels back to the Cottage. An example
of a solution in Auth(P) but not Char(P) is one where the
Merchant travels to the Cottage and gives Tom the Potion; the
Merchant initially has no reason to travel to the Cottage as she
does not know Tom is there, and she has no reason to give him
the Potion as it does not help her get the Coin. An example of a
solution in C'har(P) but not Auth(P) is one where Tom fravels
to the Market only for the Merchant to kill him so she can pick-up
his Coin; the Merchant acts consistently with her own goal but
prevents the author goal from being achieved.

IV. MEASURING SOLUTION DENSITIES

In this section, we count solutions to characterize the solution
spaces of a variety of narrative generation domains. By “do-
main,” we mean a set of problem instances sharing the same
variables, characters, and actions; instances from a domain may
have different initial states and goals. We aimed to represent
domains from a variety of authors and contexts; for instance,
some were designed to gauge player perception of character
believability in an interactive adventure game (e.g., [33]), to
benchmark (e.g., Ware and Young [20]) or illustrate key features
of a planner (e.g., Christensen et al. [34]), or to serve as part of
a larger story generation pipeline (e.g., Cardona-Rivera and Li
[35D).

We used the following domains adapted for the Sabre narrative
planner [21].3

1) blackbeard, based on the Treasure Island domain
from Shirvani et al. [32].

2) fantasy from Ware and Young [36], adapted to add
character beliefs.

3Sabre and full domain definitions will be available in the near future.
[Online]. Available: http://cs.uky.edu/~sgware/projects/sabre/
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3) grandma-lose, the domain used for the simple ad-
venture game in the experiments of Ware et al. [33], but
with the author goal of the protagonist dying.

4) grandma-win,the same domain except with the author
goal matching the protagonist goal. (The original domain
has the disjunction of the “win” and “lose” goals as the
author goal.)

5) hospital from Porteous et al. [37], adapted to add
character beliefs and intentions and to have a solution
space small enough to fully enumerate.

6) hubris from Christensen et al. [34].

7) lovers from Farrell and Ware [38].

8) raiders from Ware and Young [20], adapted to add
character beliefs.

9) red from the Porteous et al. [37] adaptation of Riedl
[17], adapted to add character beliefs and intentions.

10) space from Ware and Young [36], adapted to add
character beliefs.

11) villains, a domain used for Cardona-Rivera and Li’s
PlotShot [35], omitting “discourse” actions used to de-
termine presentation rather than plot events.

Each of these domains is paired with a single “canoni-
cal” problem instance, except hospital which comes with
ten manually authored instances and lovers for which
we used 10 randomly generated instances known to be
solvable.

In order to enumerate the action sequences in Auth(P),
Char(P), and Auth(P) N Char(P) for each problem instance
P, we needed to limit the size of the solution spaces, as many
instances would allow an infinite number of solutions by repeat-
ing cycles of actions. For each problem instance, we imposed
a maximum depth on any given solution. Maximum depth d
means the solution can only be d actions long. Depth limit
also affects explanation length: If an action appears at depth
i and an explanation of length j is needed to explain it, we
require ¢ + j < d. We generated and counted all solutions up to
a maximum depth for each solution definition. We considered
only the executed sequence for determining what counts as a
unique solution; if there were multiple ways to explain the
same executed sequence, it still contributed only one to the
solution count. Furthermore, since many solutions in Char(P)
are simply truncations of longer solutions, we considered only
maximal sequences with respect to the solution definition and
maximum depth, i.e., sequences that were extended as far as they
could go within the depth limit while still meeting the solution
definition.

Tables I shows the number of solutions for each domain with
each solution definition. For multiinstance domains, the values
shown are averaged over the instances.

The table also shows as a ratio how densely Auth(P)N
Char(P) solutions occur among overall Auth(P) or Char(P),
calculated by dividing the solution count for Auth(P)N
Char(P) by the solution count for the other space. In other
words, this solution density expresses the probability that a
randomly sampled sequence in Auth(P) or Char(P) will be
an Auth(P) N Char(P) solution. Note that by this metric, a
larger Auth(P) or Char(P) does not inherently mean rarer

Auth(P) N Char(P) solutions; what matters is the propor-
tional size of the latter space. Note also that solution density
does not directly express the probability that an Auth(P) or
Char(P) sequence produced by a narrative generation algo-
rithm will be an Auth(P) N Char(P) solution, since there
are nonrandom elements to these algorithms; however, our ex-
periments in Section VI aim to capture whether the random-
sampling probability is a good proxy for the difficulty of algo-
rithmic generation.

By default, we set the maximum depth to be the lowest depth
at which solutions for Auth(P) N Char(P) appear; we make
reference to these results for our Section VI experiments, since
those experiments revolve around an iterative-deepening search
that stops at the first depth, where it finds Auth(P) N Char(P)
solutions. However, for some single-instance domains (limited
by available computation time and space), we repeated the data
collection at larger maximum depths; these additional results
are not referenced in the later experiments but are presented for
their own sake in the table. For instances with several points of
data, these results are also illustrated as plots in Fig. 1.

V. SEARCH STRATEGIES

A typical narrative planner searches for a solution defined
much like our Auth(P)N Char(P) space. It generates an
author-goal-achieving action sequence to be executed, plus un-
executed sequences constituting explanations, i.e., proofs that
the actions meet the character constraints. Sabre [21] does this
in what we will call an explanation-first search: Before it adds
an action to the tentative executed sequence, it generates an ex-
planation for that action, discarding the action if no explanation
is found. It assembles an author-goal-achieving sequence from
already-explained actions, so that when the final author-goal-
achieving action is added to the sequence, the whole sequence
is known to be a valid narrative plan. We will refer to this search
process as EXPFIRST, and we detail itin Algorithm 1. Generating
explanations is itself a search process; the explanation process,
EXPLAIN in Algorithm 2, likewise proceeds in an explanation-
first manner, but it treats a character’s beliefs as true and tries to
satisfy character goals rather than taking the actual world state
and satisfying author goals.

In contrast, some narrative planners (e.g., Glaive [20]) search
for solutions in an author-goal-first fashion: First they find a
sequence of not-yet-explained actions that achieves the author
goal (effectively, a classical plan), and then they try to generate
an explanation for each of those actions retroactively. We stereo-
type this process as AUTHFIRST in Algorithm 3. It differs from
EXPFIRST only in the timing of explanation generation within the
search for an author-goal-achieving state; to focus on the effects
of this difference, we keep the explanation procedure (EXPLAIN)
the same between both search strategies.

We use the vocabulary of nondeterministic choice for brevity;
in practice, we implement action choice as a depth-first search
procedure that must spend computational effort trying candidate
actions that will not be used in the final plan. EXPFIRST risks
wasting effort by generating unneeded explanations, because
an explained action may not lead to the author goal. In other
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TABLE I
SOLUTION COUNTS AND DENSITIES

domain max depth Char(P) Auth(P) Auth(P)N Auth(P) N Auth(P) N
Char(P) Char(P) density Char(P) density

within Char(P) within Auth(P)

blackbeard 3 6 4 2 0.333 0.500
blackbeard 4 23 26 5 0.217 0.192
blackbeard 5 86 165 19 0.221 0.115
blackbeard 6 299 926 60 0.201 0.065
blackbeard 7 1004 5239 188 0.187 0.036
blackbeard 8 4831 28893 1149 0.238 0.040
blackbeard 9 25986 159453 6973 0.268 0.044
fantasy 6 12 18 12 1.000 0.667
fantasy 7 12 1322 12 1.000 0.009
grandma-lose 4 8 1351 1 0.125 0.001
grandma-lose 5 37 13830 2 0.054 < 0.001
grandma-lose 6 403 140677 26 0.065 < 0.001
grandma-lose 7 4147 1437070 228 0.055 < 0.001
grandma-win 5 39 344 1 0.026 0.003
grandma-win 6 450 4485 11 0.024 0.002
grandma-win 7 4786 54866 129 0.027 0.002
hubris 5 3 12 1 0.333 0.083
hubris 6 3 48 3 1.000 0.063
hubris 7 4 165 4 1.000 0.024
hubris 8 4 528 4 1.000 0.008
raiders 7 10 706 3 0.300 0.004
raiders 8 9 3631 5 0.556 0.001
raiders 9 19 16386 8 0.421 < 0.001
raiders 10 16 77739 12 0.750 < 0.001
raiders 11 35 351553 20 0.571 < 0.001
red 5 515 2 2 0.004 1.000
space 3 4 1 1 0.250 1.000
space 4 9 9 2 0.222 0.222
space 5 20 70 6 0.300 0.086
space 6 68 407 22 0.324 0.054
space 7 162 2095 58 0.358 0.028
space 8 459 10057 161 0.351 0.016
space 9 1545 46732 530 0.343 0.011
space 10 3930 213373 1386 0.353 0.006
villains 8 1348 1476 360 0.267 0.244
hospital (avg.) 43 416.2 1504.9 216.0 0.520 0.143
lovers (avg.) 44 315.0 1237.5 19.6 0.062 0.016

Algorithm 1: EXPFIRST(s, A, g4, G(¢),d, ).

Input: Initial state sq, action set A, author goal g,
character goals G(c), depth limit d, current plan 7 (the
empty plan in the initial call)

Output: A sequence of actions in Auth(P) N Char(P),
or null if none exists within the depth limit

1: s < the state resulting from applying 7 to sg
2: if s = g, then

3 return 7

4: elseif d = O then

5: return null
6.

7

8

9

Nondeterministically choose action a € A legal in s
for all ¢, that are consenting characters for a do
if "EXPLAIN(s, A, G(c),d — 1, {a)) then
: return null
10: 7’ < the plan resulting from appending a to 7
11: return EXPFIRST(so, A, G(c),d — 1,7, ¢4)

words, the strategy is efficient at maintaining a sequence known
to be in Char(P), but wasteful if the sequence is not also in
Auth(P). AUTHFIRST averts this risk because it does not explain

an action until the action is already known to lead to the author
goal, but instead it risks wasting effort by generating sequences
that turn out not to be explainable. In other words, it prioritizes
finding a sequence known to be in Auth(P), but is wasteful if
the sequence is not also in Char(P).

VI. COMPARING SEARCH STRATEGIES

This section presents our results from benchmarking the
search algorithms in Section V on the domains in Section IV
in order to investigate how the choice of author- or character-
constraint prioritization in the search process relates to the
densities of narrative planning (Auth(P) N Char(P)) solutions
within the relaxed author-oriented (Auth(P)) or character-
oriented (Char(P)) solution spaces.

We implemented AUTHFIRST alongside the existing EXPFIRST
implementation in the Sabre narrative planner. As Sabre runs
its state-space search, it tracks the nodes visited during the
search process, i.e., the number of state-action pairs considered,
or the total number of recursive calls to AUTHFIRST/EXPFIRST
and EXPLAIN. We use nodes-visited count as our metric for
comparing the two search strategies; while it does not capture all
aspects of an algorithm’s space and time consumption, it offers a
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Fig. 1.

proxy measure that is independent of low-level implementation
details (assuming, as is true in our implementation, that candi-
date actions from a given state are explored in a random order)
and the platform on which the experiments are run.

To capture a “fair” search process without preexisting knowl-
edge of the depth at which solutions exist, we ran iterative-
deepening versions of each of our strategies, i.e., we started
at depth limit d = 1, restarted the process with d = 2 if no
solution was found, etc, tracking the cumulative nodes-visited
count for all successive calls. Note that this means only
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Visualizations of some of the data from Table I. Note the logarithmic scale.

minimum-depth Auth(P) N Char(P) solutions were found—
e.g., in reference to Table I, the search found only depth-3
solutions for blackbeard, depth-6 for fantasy, etc.

We collected search data for 10 runs each of AUTHFIRST and
EXPFIRST for each domain, randomizing the order in which
candidate actions were considered at each search node. For
single-instance domains, the 10 runs were on the same problem
instance; for multiple-instance domains, we used a different
instance per run. Table II shows the results: For a domain in the
first column, the average nodes-visited count for the AUTHFIRST
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Algorithm 2: Subroutine EXPLAIN(s, A, G(c¢), d, Tegp, Cep)-

Input: Initial state s, action set A, character goals G(c),
depth limit d, explanation so far 7., character ce,p;
Output: Boolean: Whether the first action of 7., can be
explained for c.,,, in state s by extending 7., with
maximum depth depth d

I:  spe < the state believed by ¢,y in s

2:  s;,, < the state resulting from applying Ty, t0 Spes
3: if s}, is undefined then

4: return false

5: elseif 7., nonredundantly achieves a goal for c.,,

then
6 return true
7. elseif d = 0 then
8: return false
9: Nondeterministically choose action a € A legal in s},
0: for all ¢, # c.., that are consenting characters for a
do
11:  if "EXPLAIN(s, A, G(c),d — 1, (a)) then
12: return false
13: 7’ < the plan resulting from appending a to 7y,
14: &' < the state resulting from taking a in s
15: return EXPLAIN(s, A, G(c),d — 1,7, Ceyp)

Algorithm 3: AUTHFIRST(s, A, go, G(¢),d, 7).
Input:Initial state s, action set A, author goal g,
character goals G(c), depth limit d, current plan 7 (the
empty plan in the initial call)
Output: A sequence of actions in Auth(P) N Char(P),
or null if none exists within the depth limit
1: s < the state resulting from applying 7 to sg
2: if s = g, then
3 return 7
4: elseif d = 0 then
5: return null
6.
7
8

Nondeterministically choose action a € A legal in s
7' < the plan resulting from appending a to 7
© Tfuu < AUTHFIRST(so, A, G(c),d — 1,7, ¢cq)
9: if sy = null then

10: return null

11:  for all ¢, that are consenting characters for a do

12:  if "EXPLAIN(s, A, G(c),d — 1, (a)) then

13: return null

14:  return 7y,

and EXPFIRST strategies are shown in the second and third
columns, respectively. The fourth column identifies which of
these strategies visited fewer node