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Intelligent Tutoring Systems (ITS) are computer programs that model learners’ psychological states to
provide individualized instruction. They have been developed for diverse subject areas (e.g., algebra,
medicine, law, reading) to help learners acquire domain-specific, cognitive and metacognitive knowl-
edge. A meta-analysis was conducted on research that compared the outcomes from students learning
from ITS to those learning from non-ITS learning environments. The meta-analysis examined how effect
sizes varied with type of ITS, type of comparison treatment received by learners, type of learning
outcome, whether knowledge to be learned was procedural or declarative, and other factors. After a
search of major bibliographic databases, 107 effect sizes involving 14,321 participants were extracted
and analyzed. The use of ITS was associated with greater achievement in comparison with teacher-led,
large-group instructiong( = .42), non-ITS computer-based instructiom € .57), and textbooks or
workbooks ¢ = .35). There was no significant difference between learning from ITS and learning from
individualized human tutoringg(= —.11) or small-group instructiomy (= .05). Significant, positive mean

effect sizes were found regardless of whether the ITS was used as the principal means of instruction, a
supplement to teacher-led instruction, an integral component of teacher-led instruction, or an aid to
homework. Significant, positive effect sizes were found at all levels of education, in almost all subject
domains evaluated, and whether or not the ITS provided feedback or modeled student misconceptions.
The claim that ITS are relatively effective tools for learning is consistent with our analysis of potential
publication bias.

Keywords:Intelligent Tutoring System, student model, effect size, meta-analysis

Supplemental materialsittp://dx.doi.org/10.1037/a0037123.supp

In 1970, computer scientist Jaime Carbonell published a reporfCorbett, Koedinger, & Anderson, 1997). Beyond the mixed-
on SCHOLAR, a program he designed to conduct limited, mixed-initiative dialogue, what was remarkable about SCHOLAR was the
initiative, instructional dialogues with a student about South Amer-way its architecture represented domain knowledge separately
ican geography (Carbonell, 1970). SCHOLAR used natural lanfrom the natural language interface. The separate, explicit domain
guage to answer a learner’'s question or pose a question and givepresentation allowed the program, in theory, to generate a di-
feedback about the correctness of the learner’s response. Althouglerse and combinatorally large set of questions and answer a
the term Intelligent Tutoring System (ITS) was not used in Car-similarly large and diverse set of questions posed by the learner.
bonell’s article, SCHOLAR is often regarded as the first ITS Framing his work as an extension and application of research in

artificial intelligence, Carbonell emphasized the fundamental dif-
ferences between SCHOLAR and the other types of computer-
assisted instruction being designed at the time. In particular, he
discussed how a domain representation can serve as the basis for

Wenting Ma, Faculty of Education, Simon Fraser University; Olusola 0. modeling student knowledge.

Adesope, Educational Psychology Program, Department of Educational BIP, another early example of an ITS (Barr, Beard, & Atkinson,

Leadership, Sport Studies, and Educational/Counseling Psychology, Colt976) assigned programming tasks to students that matched their
lege of Education, Washington State University; John C. Nesbit and Qingndividual learning needs and competencies. The BIP researchers
Liu, Faculty of Education, Simon Fraser University. constructed a domain representation that mapped goal skills (e.g.,

Support for this research was provided by a grant from the Socialyrinting variables) to the programming tasks that exercised them.
Sciences and Humanities Research Council of Canada (to John C. Nesbigy, jants' performances on a task supported inferences about their
and Washington State University's College of Education Faculty Fundmgacquisition of skills linked to that task. In this early ITS, like many

Award (to Olusola O. Adesope). th b desi dsi the student del |
Correspondence concerning this article should be addressed to Olusoﬁga ave been aesigned since, the student model was an overiay or

0. Adesope, Department of Educational Leadership, Sport Studies, angUbset of the domain model. By the time a special issue on
Educational/Counseling Psychology, College of Education, Washingtorintelligent Tutoring Systems appeared in theernational Journal
State University, Cleveland Hall 356, Pullman, WA 99164-2114. E-mail: of Man-Machine Studie¢Sleeman & Brown, 1979) it was clear
olusola.adesope@wsu.edu that a new type of instructional system and a new field of research
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had emerged. Almost all the articles in the special issue and in thenoderator variable to distinguish between feedback and no-
associated book (Sleeman & Brown, 1982) were centrally confeedback systems.
cerned with student modeling. Shute and Psotka (1996) presented an extended consideration of
As indicated in Figure 1, scholarly interest in ITS has grown the definition of ITS that included definitions elicited from leading
significantly since 1980. However, only since about 1997 have dTS researchers. In summarizing these expert definitions, they
significant number of evaluative studies been published whichmoted that (a) almost all agreed “that the most critical element is
compared the learning outcomes of students using ITS with thosgeal-time cognitive diagnosis (or student modeling)” and (b) “the
using other instructional methods. Research evaluating the instrugrext most frequently cited feature is adaptive remediation” (p. 14).
tional efficacy of ITS has been conducted from elementary toAn emphasis on student modeling as the key to adaptive tutoring
postsecondary levels in a wide range of knowledge domains inremains evident in more recent conceptualizations of ITS (Sotti-
cluding algebra (Koedinger, Anderson, Hadley, & Mark, 1997), lare, Graesser, Hu, & Holden, 2013). Drawing from these works
physics (Albacete & VanLehn, 2000), medical physiology (Woo etand our reading of published evaluations of ITS we adopted the
al., 2006), law (Pinkwart, Ashley, Lynch, & Aleven, 2009), lan- following definition.
guage learning (Tsiriga & Virvou, 2004), reading comprehension An ITS is a computer system that for each student:
(Mostow et al., 2002), and meta-cognitive skills (Mitrovic, 2003).
The purpose of our research was to review and critically assess 1. Performs tutoring functions by (a) presenting information

research that compared the learning outcomes of ITS with out- to be learned, (b) asking questions or assigning learning
comes from other modes of instruction. Expanding on recent tasks, (c) providing feedback or hints, (d) answering
meta-analyses of ITS effectiveness, our meta-analysis reviewed questions posed by students, or (e) offering prompts to
evaluative studies published prior to 2013 and covers all knowl- provoke cognitive, motivational or metacognitive change

edge domains and levels of education.
2. By computing inferences from student responses con-

What Isan ITS? structs either a persistent multidimensional model of the

student’s psychological states (such as subject matter

When conducting a meta-analysis it is crucial to articulate a knowledge, learning strategies, motivations, or emotions)

working definition of the subject so that clear and replicable or locates the student’s current psychological state in a
inclusion criteria can be established. The goals we set for our multidimensional domain model

definition of ITS were as follows:

 The definition should broadly conform to usage of the term by 3. Uses the student modeling functions identified in point 2
theorists and authors of peer-reviewed reports. to adapt one or more of the tutoring functions identified

* The definition should result in a minimal number of border- in point 1
line cases whose inclusion status is uncertain.

« Where theory and usage do not offer certain grounds to prefer An example of multidimensionality in an ITS is the use of
one definition over another, we accept the more inclusive defini-nultiple production rules to represent domain knowledge in the
tion and use moderator variables to mark the less inclusive criterigCognitive Tutors developed at Carnegie Mellon University (An-
For example, although one might assume that ITS exhibit a higlderson, Corbett, Koedinger, & Pelletier, 1995). Multidimensional-
degree of interactivity and offer feedback to learners’ responsesty of the student or domain model is necessary to distinguish ITS
some systems that otherwise qualify as ITS do not offer feedbackom adaptive systems that model student knowledge as a single
and instead provide features such as individualized task selectiombility parameter as do some adaptive instructional systems based
Our solution was to include such programs as ITS and use an item response theory (Veldkamp, Matteucci, & Eggen, 2011).
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Figure 1. Number of research articles (1980—-2012) retrieved with the term “intelligent tutor” from three
representative bibliographic databases.
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Indeed, the multidimensionality criterion is necessary to distin- 4. Atutor model that represents instructional strategies such
guish ITS from the many adaptive testing systems that use item as offering a hint when the student is unable to generate
response theory to model student knowledge as a single ability a correct response or assigning a problem that requires
parameter and which, by selecting questions matched to student knowledge only slightly beyond the current student
ability, may have incidental or intentional instructional effects model.

(Santopietro, 2011). However, we do categorize as an ITS, and

have included in our meta-analysis, an adaptive instructional sys- NOt all ITS have four distinct architectural components corre-

tem that uses item response theory to model student knowledge §Ponding to these conceptual components. For example, an ITS

multiple dimensions (C. M. Chen, Lee, & Chen, 2005). may have a single knowledge bas_e_ that serves as a domain_and
There are some sophisticated tutor characteristics that, whil§iudent model and have no explicit representation of teaching

likely desirable, we do not regard as essential to the definition offtrateégy. In our view, consistent with the definition we have

ITS. The modeling of student misconceptions or bugs has beeRrovided, the student modeling process, and its use to adapt

investigated since the 1970s (Brown & Burton, 1978), but becausdstruction, is the essgntlal fe_ature that distinguishes ITS from

many systems without misconception modeling have been identi9ther computer-based instructional systems.

fied as ITS in peer-reviewed research (e.g., Rowe & Schiavo,

1998) we chose to include such systems in our definition. Many Typesof ITS

ITS collect responses which are inputs the student makes to an ITS researchers have adopted a variety of student modeling
interface that supports the stepwise construction of an answer toe?pproaches including model-tracing (Roll, Baker, Aleven, &

problem. VanLehn (2011) assempled evidence that such Sterkoedinger, 2004), probabilistic modeling (Conati & VanLehn,
based tutors result in better learning outcomes than tutors thaltggg. Conati & Zhao, 2004), reconstructive bug modeling
work only with students’ final answers. Nevertheless, becaUS?Mitrovic & Dijordjevic-Kajan, 1995), and constraint-based mod-

peer-reviewed research has identified answer-based systems &g, (suraweera & Mitrovic, 2002). Because student modeling is
ITS (e.g., Tsiriga & Virvou, 2004), we have chosen to also include, core element of ITS design and there is value in analyzing the

these in our definition. learning outcomes associated with the most prevalent types of

Especially in reports appearing in the 1970s and 1980s, ITSydent modeling, we categorized the ITS in the studies we ana-
were frequently distinguished from other forms of computer-baseqyzed into the following four types.

instruction in terms of their architectural qualities. The “test-and-
branch” computer-based instruction systems being deployed ané
studied during that period required content authors to pre-program
sequenced presentations, questions, response feedback and condifutorial dialogues in which the computer and student exchange
tional branching to subsequent instruction (Hannum, 1986). Thusdeas using natural language have been a challenging goal for ITS
adaptation was usually sensitive to only the student’s most recenesearch since SCHOLAR (Carbonell, 1970). AutoTutor is an ITS
response. ITS researchers emphasized differences between tig@t supports natural language dialogue for instruction that, like
design theory of intelligent systems and that of the precedingnuch observed human tutoring, involves “imprecise verbal con-
instructional systems, and they articulated a four-component cortent, a low to medium level of user knowledge about a topic, and
ceptual structure for ITS that has been remarkably resilient, evegarnest literal replies” (Graesser et al., 2004, p. 181). AutoTutor
as ITS themselves varied significantly in their design (Dede, 1986models student knowledge by matching the students’ responses to
Hartley & Sleeman, 1973). The four “generally accepted” (Sotti-text passages representing expectations (i.e., learning goals) and
lare et al., 2013, p. ii) conceptual components of ITS are ag@nticipated misconceptions in the domain. The specified expecta-
follows: tions and misconceptions constitute a multidimensional domain
model. Matching is performed by a statistical method called latent
1. Aninterface that communicates with the learner by pre-semantic analysis (LSA; Landauer, Foltz, & Laham, 1998) that
senting and receiving information. Often constrained toreturns a similarity metric between an aggregation of the student’s
the subject domain (e.g., algebra), the interface deterresponses and each expectation and misconception in the domain
mines the moves the learner can make in solving prob-model. AutoTutor uses the result of the matching process to drive
lems, seeking information or responding to questions. scripted “dialogue moves” such as hints, feedback, prompts, and

assertions (Graesser et al., 2004, p. 183).
2. A domain model that represents the knowledge the stu-

dent is. i.ntended to Ie.arn. The model is a set of IogicaIModeI Tracing

propositions, production rules, natural language state-

ments, or any suitable knowledge representation format. The type of student modeling adopted in the cognitive tutors

developed at Carnegie Mellon University is rooted in Anderson’s

3. A student model that represents relevant aspects of th&CT-R theory of human learning and cognition (Anderson, 1993;

student’'s knowledge determined by the student's re-Anderson & Lebiéere, 1998). In the design of a cognitive tutor, the

sponses to questions or other interactions with the interskill to be learned is modeled by a set of production rules that can

face. Although the student model may be a subset oibe activated to solve automatically the problems in the domain

“overlay” of the domain model, in some ITS the student (Anderson et al., 1995). The production rules, which consist of

model represents common misconceptions or othewperations and the conditions under which they are triggered, are

“bugs” in the student’s knowledge. selected to form a psychologically realistic emulation how humans

Xpectation and Misconception Tailoring (EMT)
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solve problems in the domain. The operations in the domain modehe student “has” each concept and misconception. Bayesian net-
are exposed in the interface where the student can select them ¥eorks can be used to create much more complex models, such as
progress toward a problem solution. As the student selects operaynamic models of student problem solving in tutors that provide
tions amodel-tracingprocess maps them to a series of productionhints and coaching (Conati, Gertner, & VanLehn, 2002). Bayesian
rules in the domain model. If an error is detected, the student isietworking is a flexible method that can be used to implement
given immediate feedback and allowed to choose a different opmany different types of student models, including aspects of CBM
eration. After the student’s use of a production rule is identified byand knowledge tracing. In practice though, we found that ITS
model tracing, a Bayesian procedure cakedwledge-tracingan  researchers identified their ITS as belonging to at most one of the
be used to update an estimate of the probability that it has beefur types we have described.
correctly learned. Thus, the multidimensional student model in a
knowledge-tracing cognitive tutor is constituted as probabilities
assigned to production rules in the domain model. Why ITS May Be More Effective Than Other Forms

of Instruction

Constraint-Based Modeling (CBM) Prior reviews concluded that under some circumstances using
Constraint-based modeling is an established technique for stLiTTS results in grea_tter ach_levement than. partlc_lpatlng n ”‘?‘d"
ional classroom instruction and studying printed materials

dent modeling that is fundamentally different from the model )
tracing and knowledge tracing used in the cognitive tutors (Koda_(Steenbergen-Hu & Cooper, 2014; VanlLehn, 2011). We hy-

ganallur, Weitz, & Rosenthal, 2005). Based on Ohlsson’s theory OPothesize that a portion of the advantage of ITS over traditional
Iearning,from ;’)en‘ormance érrors (Ohlsson, 1994), CBM relore_classroom instruction and learning activities with printed ma-
sents domain knowledge as logical constraints by relating eacﬁei::alsfcan befattrlbutetd tg thedc_hartactf_rlstlchI'll'Sszharz with
constraint to states that could arise in the solution of a problem. A der orms o Icomptl)J e_lr_- afse Blns rug '?3” ( h )- k'C?Anb- )
constraint consists of three components: (a) a relevance conditioffder meta-analyses by Tamim, Bernard, Borokhovski, Abrami,

that indicates when the constraint is applicable, (b) a satisfactiofim_d Schmid (20%:_]') “0“”‘?' an effect lee_ '?f 'Sdl_ .for (I:E:I as the
condition that tests the current state of the student’s solution, angfimary means o Instruction compared with traditional classroom

(c) a feedback message that, when the solution state fails thaching. Researchers have explained the CBI advantage as result-
satisfaction condition, advises the student of the error and remind&9 from greater interactivity and adaptation than is available in
them of the principle that was violated by the error (Mitrovic, €acher-led, large-group instruction and presentational modes of
Martin, & Suraweera, 2007). To explain by analogy, if the rele- instruction. Spec_lflcally,_ they have attributed the effectiveness of
vance condition is “cooking a pot roast,” the satisfaction conditionCB! 10 greater immediacy of feedback (Azevedo & Bernard,
might be “oven temperature below 120 degrees Celsius” and th&99°), feedback that is more response-specific (Sosa, Berger, Saw,
feedback message might be “when cooking a pot roast remembé& Mary, 2011), greater cognitive engagement (Cohen & Dacanay,
to keep the oven temperature below 120 degrees Celsius.” Thud992), more opportunity for practice and feedback (Martin, Klein,
when a student's behavior violates a constraint, an error is detecte Sullivan, 2007), increased learner control (Hughes et al., 2013),
and appropriate feedback is provided (Mitrovic et al., 2011). If no@nd individualized task selection (Corbalan, Kester, & Van Mer-
constraint is violated, the student is considered to be on the righfi€nboer, 2006).

solution path. For modeling domain knowledge, constraints play a 1he prior quantitative reviews also concluded that using ITS is
similar role in CBM as production rules play in model tracing, @ssociated with greater achievement than using non-ITS CBI. We
except that constraints cannot be executed to generate a probldPothesize that multidimensional student modeling enables ITS
solution. Constraints can be used to model student knowledge in ¥ outperform non-ITS CBI on each of its advantages cited in the
variety of ways. For example, the ITS can represent a student’8revious paragraph. An ITS that models domain knowledge as

knowledge as constraints that were found to be relevant, satisfieBroduction rules can perform task selection by characterizing each
and violated during a problem solving session. task as a set of production rules required to complete it and each

student as a set of production rules that most need to be practiced,
and then finding the best match. This type of multidimensional
matching is likely to be more effective than unidimensionally
A Bayesian network is a tool for probabilistic reasoning and matching student ability to task difficulty. A system that monitors
representation of uncertain knowledge (Pearl, 1988). In ITSand models a student’s task choices and uses that model to indi-
Bayesian networks are used to represent a multidimensional doddualize learner-control options is likely to be more effective than
main model consisting of multiple variables. Connections betweer system that provides the same learner-control options to all
variables are specified to form a network, and inferencing aboustudents. Likewise, feedback adjusted to account for a history of
the value of a variable in the network is accomplished by Bayesiarprior interactions is likely to be more effective than feedback that
calculations on other variables connected to it (Millan, Loboda, &is determined only by the last response.
Pérez-de-la-Cruz, 2010). To take a simple example, a list of binary ITS may also be more effective than non-ITS CBI in the sense
target variables representing concepts and misconceptions mightat ITS can extend the general advantages of CBI to wider set of
constitute the domain model and a list of evidence variabledearning activities. For example, the ability to score and provide
representing test items might feed forward with connections to théndividualized comments on a student’'s essay would extend the
target variables. Taking the student’s performance on the test itemadvantage of immediate feedback well beyond what is possible in
as input, the Bayesian network would calculate the probability thanon-ITS CBI.

Bayesian Network M odeling
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Student modeling also enables ITS to interact with students at the same studies. First, the greater number of studies included in a
finer level of granularity than test-and-branch CBI systems. Van-more comprehensive review increases statistical power for detect-
Lehn (2011) argued that while CBI systems typically pose aing whether a mean effect size is significantly greater than zero or
question and offer feedback about students’ answers, ITS are abggnificantly different from an effect size at a different level of a
to interact with students at the level of the system interface thamoderator variable. Second, to perform a statistical comparison of
students operate on as they construct an answer. He hypothesiztige effect sizes of two or more categories of studies it is necessary
that whereas such interface-level interaction may scaffold student® establish them as two or more levels of a moderator variable in
to successfully complete multi-step problems, the answer-levethe same meta-analysis. In their discussion, Steenbergen-Hu and
hints and try-again loops of typical CBI systems “offer such weakCooper (2014) noted the disparity between the overall effect sizes
scaffolding and feedback that students are usually allowed to [quitdf their two meta-analyses and questioned whether ITS might
after several failed attempts” (p. 212). affect college students and K-12 students differently. Only by

including the different levels of schooling as different levels of a
Prior Quantitative Reviews of ITS and the Need for a mpderator variable iln the same ITS meta-analysis can we Qeter-
Comprehensive Synthesis mine .whether the.Qn‘ference between these levels is stgtlstlcally
significant. In addition to these reasons, a comprehensive meta-

VanLehn (2011) conducted a quantitative review to investigateanalysis of ITS is currently needed to incorporate and expose to
whether computerized or human tutors that deal with more finelycomparative review the studies that evaluated the effects of ITS in
grained student problem-solving responses are associated witk—12 subjects other than mathematics.
greater achievement in STEM subjects than tutoring systems that
work at the level of problem solutions. He found no difference in
outcomes among human tutoring, step-based systems, and substep-
based systems but a significant difference favoring these finer- This review synthesizes research on the relative effectiveness of
grained approaches over answer-based interventions that interdetelligent Tutoring Systems and addresses the following research
with learners at the level of problem solutions. Another notablequestions:
contribution of VanLehn'’s review was that he reported an effect
size ofd = 0.79 for human tutoring compared with no-treatment 1. Do students using ITS have different learning outcomes
controls, a value much smaller than the frequently cited, two- from students using other modes of instruction?
sigma effect sizes reported by Bloom (1984). VanLehn attributed
the larger effects reported by Bloom as the result of combining
individual tutoring with mastery learning, a strategy that other
tutoring research did not use. 3

Steenbergen-Hu and Cooper (2014) conducted a meta-analysis
of 39 studies evaluating the use of ITS for college students’
academic learning The studies appeared between 1990 and
2011and reported on 22 different types of ITS While mosttypes of 4 Do the effects associated with ITS vary with the meth-
ITS in the analysis were evaluated by only a single study, those odological features of the research?
evaluated in multiple studies included AutoTutor (Graesser, Chip-
man, Haynes, & Olney, 2005), ALEKS (Hagerty & Smith, 2005),
and xTEx-Sys (Grubigi Stankov, & Hrepic, 2008). The research-
ers found an overall, moderate, positive effegt .35) favoring
the use of ITS. When compared specifically to alternatives thaSelection Criteria
were either “self-reliant learning activities” or no-treatment con-
ditions, the use of ITS appeared to offer a large advantgge (
.86). However, the three studies that compared ITS to huma
tutoring resulted in a negative mean effect sge=(—.25) that was
not statistically significant.

The same authors (Steenbergen-Hu & Cooper, 2013) conducted
a meta-analysis of 34 studies from evaluations of ITS in K-12
mathematical learning. The studies were published between 1997
and 2010 and mostly compared the used of ITS to regular class-
room instruction. Using a random effects model, they obtained an  (c) compared learning outcomes from the ITS with outcomes
overall effect size that was not significantly different from zero. from a non-ITS mode of instructioh;

Notably, there was a statistically significant mean effect size
favoring ITS when learning was measured by course-specific tests  (d) were publicly available, online or in library archives;
but not when measured by standardized tests.

The previous meta-analyses were limited to subsets of the IT - . )
evaluat?on literature defineﬁ by subject or level of schooling. Ther * Studies that compared a group learning from ITS with a control group
y ) g. e_‘[hat received no instructional treatment were retained but were meta-

are two major reasons why a comprehensive mgta—analysi§ Bnalyzed separately to provide interpretive context for the results bearing
preferable to a collection of smaller analyses collectively coveringmore directly on the research questions.

Research Questions

2. Do the effects associated with ITS vary with character-
istics of the ITS?

Do the effects associated with ITS vary with character-
istics of the students, outcome assessments, and research
setting?

M ethod

To capture evidence relevant to the research questions, studies
Were considered eligible for inclusion in the meta-analysis if they:

(a) reported original data;

(b) assessed learning outcomes after interaction with software
that matched the definition of ITS presented in the introduc-
tory section of this review;
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(e) reported sufficient data to calculate effect size; leider, 2010; Cooper, Hedges, & Valentine, 2009; Lipsey & Wil-
son, 2001; Nesbit & Adesope, 2006). After coding had been
(f) reported measurable cognitive outcomes such as recalgompleted, the spreadsheet was imported to IBM® SPSS® Statis-
transfer, or a mix of both. tics software (Version 21) and later to Comprehensive Meta-
. . . analysis 2.2.048 for further analysis (Borenstein et al., 2009). The
Search, Retrieval, and Selection of Studies Comprehensive Meta-Analysis software was used to generate the
We conducted a comprehensive search for relevant research ibiased mean effect size (Hedgeg)s the standard error of
four major b|b||ograph|c databases: ERIC, Psyc|NFO, SpringerHedgeS'S unbiased estimate of the mean effect SiZe, 95% lower and
Link, and Web of Science. The search, which returned 26,613/pper confidence interval around each mean, and values for the
titles, applied the following key terms: intelligéutor’, intellige”  test of heterogeneity includin@, p andI-squared.
agent, cognit tutor*, adapt tutor, cognit virtual companiof, We interpreted the confidence intervals spanning a range above
and intelligé coaching systefn Also, the reference sections of Z€ro as indicating a statistically significant result favoring learning
review articles on Intelligent Tutoring Systems were manuallyfrom Intelligent Tutoring Systems over learning from other in-
searched to add studies to the selection pool (Arnott, Hastings, &tructional treatments. Moreover, the upper and lower 95% confi-
Allbritton, 2008; Conati, 2009; Steenbergen-Hu & Cooper, 2013,dence intervals were used to detect between-levels differences
2014; VanLehn, 2011; N. Wang et al., 2008). among different categories of analyses. Specifically, when the
In the initial screening phase, the abstracts of the articles wergonfidence intervals of categories were not overlapping, their
compared with criteria a, b, ¢ and d to exclude irrelevant studieséffect sizes were judged to be significantly different.
The 362 articles that passed the initial screening were retrieved, An important step in meta-analysis is testing whether the ob-
and full-text copies were further evaluated against all six inclusionserved effect sizes of individual studies that are averaged into a
criteria. Finally, the 107 studies (involving 14,321 participants) mean effect size all estimate the same population effect size. This
that met the inclusion criteria were coded using a pre-definedssumption of homogeneity of effects is tested byGhstatistic.
coding form and coding instructions developed for this meta-When all findings are drawn from the same populatiQrhas an
analysis. All effect sizes were calculated with Hedges'’s correctior@Pproximate chi-square distribution wikhl degrees of freedom,

for bias due to small sample sizes (Lipsey & Wilson, 2001). wherek is the number of studies that constitute a particular subset
of analysis. WherQQ exceeds the critical value of the chi-square

Coding Study Characteristics and Effect distribution, (i.e.,p < .05), the mean effect size is said to be

Sizes Extraction significantly heterogeneous, indicating that individual effect sizes

. . ) L do not estimate a common population mean (Borenstein et al.,
The coding form included 44 fixed-choice items and 37 com-5009: Lipsey & Wilson, 2001).

ment items, not all reported here, that elicited detailed information Two primary effect sizes produced extreme standardized scores
about the studies such as author, year published, source of t €33=>7 = 33 p < .001) and were thereby identified as

study, research questions, type of ITS, control treatment, 9rad8utliers. One of these studies produced an effect gize 2.25,

level of participants, research settings, duration of the study, rel'Whereas the other produced an effect sige= —1.10. Further

ability reporting and statistics needed for computing the effect Siz%xamination of these two studies did not reveal any methodolog-

of eac_h study. . . ical flaws. Comprehensive Meta-Analysis was used to determine
During the codm_g process, we observed that some StUdIeﬁ/hether removing the two outliers would yield a homogeneous
evaluated the learing outcomes of more than two groups. FOfjisyrihtion (Hedges & Olkin, 1985). First, we examined the forest

instance, in addition to a control group there might be a group thaf s o 41| 107 effect sizes and then removed the two potential
interacted with an ITS via text and another group that interacte utliers one at a time. The recalculated results showed that the

with the same ITS via an animat_ed agent. If each ITS and Comrollemoval of potential outliers did not improve the fit of the remain-
contrast were entered in the coding spreadsheet, the control gromillqg effect sizes to a simple model of homogeneity. However, as

would be counted twice, the overall weight attributed to the StUdyrecommended by Tabachnick and Fidell (2013), we adjusted each

would be inflated, and the two contrasts would be statisticallyeftect size toward the nearest other effect size in the distribution.
dependent. A coding strategy was followed to avoid staltlstlcal-l-he adjusted effect sizes wege= 1.5 and—0.5

dependence when there were more than two groups in a study 14 mayimize interpretation of results, we used both the fixed-
(Borenstein, Hedges, Higgins, & Rothstein, 2009; Lipsey & Wil- otact and random-effects model in all data analyses. A fixed-
son, 2901)‘ Specifically, when there was more than_one Cc_mtroéffect model operates under the assumption that all the studies
group in a study, any control group t_hat received no |n5trUCt'_0“a|nc|uded in the meta-analysis (107 studies in the present article)
treatment was dropped from the main meta-analysis according tgn 56 one true effect size, which is estimated to be the average
selection criterion ¢ and other control groups that did receiVeyge .t size. Conversely, a random-effects model operates under the
instructional  treatment were combined by calculating theiryggmption that there is more than one true effect and that the
weighted mean. Similarly, when there was more than one group iike ot sizes could vary from one study to the other (Borenstein et

a study that learned from an ITS, we combined them by calculatingil.’ 2009; Lipsey & Wilson, 2001). Considering the great diversity

their weighted mean. in the ways that research interventions are implemented (e.g., the
many different ways that ITS are designed and used) and the
variability that could potentially exist from aggregating such a
We followed standard guidelines for conducting a meta-analysignultiplicity of conditions, a random-effects model is usually re-
(Adesope & Nesbit, 2012; Adesope, Lavin, Thompson, & Unger-garded as a more accurate model than a fixed-effect model (Bo-

Data Analysis and Interpretation
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renstein et al., 2009; Denson, 2009; Hedges & Vevea, 1998that students who used ITS outperformed those who experi-
National Research Council, 1992). Therefore, we reported detailednced other modes of instruction. Conversely, a negative effect
results for the random-effects model and added summary resulsize indicates that students who used other modes of instruction
for the fixed-effect model to allow comparison with the fixed- performed better than those who used ITS.

effect results reported by prior ITS meta-analyses. Because the Table S2, shown in the online supplemental materials, sum-
fixed-effect results may give additional indication to researcheramarizes the characteristics of each study that met the inclusion
about the areas in which further research might yield significantriteria, including the author(s), subject domain, grade-level of
effect sizes we also reported which moderator variables and levelgarticipants, type of ITS, comparison treatment, study setting,
showed significant differences under a fixed-effect model. Anythe unbiased effect size, Hedgeg,sand 95% lower and upper
mean effect size reported without specifying the type of model wagonfidence intervals around each unbiased effect size.

generated by a random-effects model. Tables 1-6 present the results organized by the research ques-
tions. These tables present results for both the fixed- and random-
Results effects models and include the number of participaNjsit each

) ) o ] _ category, the number of studidg,(the weighted mean effect size
We found nine effect sizes (785 participants) derived from SiX(g+) and its standard errorSE, the 95% confidence interval
publications in which the control group did not receive instruc- ground the mean, and a test of heterogenely Each weighted

tional treatment but which otherwise met the inclusion criteriapmean effect size was obtained through weighting of independent
(Arroyo, Royer, & Wolf, 2011; Beal, Arroyo, Cohen, & Wolf, effect sizes by inverse variances.

2010; L. H. Chen, 2011; Halpern, Millis, Graesser, & Butler, 2012;

Shute, Hansen, & Almond, 2007; H. C. Wang, Rosé, & Chang,R ch Question 1: Do Students Using I TS Have

2011). As these effect sizes, shown in Table S1 in the onlin?P,ff L . E d .
supplementary materials, did not bear directly on our researc ifferent Learning Outcomes From Students Using

questions, they were analyzed separately to provide interpretivV®ther Modes of Instruction?
context for the main results. Under a random-effects model, they Tapje 1 shows the overall analysis of the weighted mean of
were found to have a statistically significant, weighted mean effech| statistically independent effect sizes. Under a fixed-effect
size ofg = 1.23. model, Table 1 shows a moderate, statistically significant effect
Figure 2 shows the distribution of effect sizes for the main ¢ learning with intelligent tutorsg = .36, p < .001) with
meta-analysis after adjustment of the two outliers. The effectjgpificant heterogeneityd(106) = 390.52,p < .001,12 = .73.
sizes are mainly clustered between —.25 and.75 standard deVijnger a random-effects model, the overall weighted mean
ations, indicating that in most studies the Intelligent Tutoring effect size was also statistically significant and moderagte- (
Systems groups outperformed their respective control groups41 p < .001).
Throughout the results section, a positive effect size indicates Tapje 1 also lists the breakdown of the comparison treatment
instruction in all studies. It shows that the majority of the
studies compared the use of intelligent tutors with large-group
human instructionk = 66). Under both the fixed- and random-
20 effects models, the use of ITS produced moderate, statistically
significant mean effect sizes when compared with large-group
human instruction which included but was not limited to tradi-
) tional classroom instructiong(= .44), individual computer-
based instruction (CBlg = .57) and the individual use of
157 textbooks or workbooksg( = .36). The use of ITS did not
] produce statistically significant effect sizes when compared
7"\\ with small-group human instruction (defined as any form of
/ S‘ synchronous instruction in groups of up to 8 students conducted

with the presence of a human tutor such as problem-based
107 ,Z x‘ learning and similar collaborative methods). Individual human

Frequency

instruction (i.e., human tutoring) appeared to offer a small,
non-significant advantage over the use of ITS. The between-
levels variance was statistically significant under both the
fixed- and random-effects modelg € .001). Post hoc analyses

found studies which compared the use of ITS to large-group
human instruction had effect sizes similar to those which com-
pared ITS to individual computer-based instruction and indi-
vidual use of textbooks or workbooks, but these all had signif-

N icantly higher weighted mean effect sizes than studies which
s 000 500 1.000 1.500 2,000 compared the use of ITS to human tutoring. Taken together,
Unbiased Effect Size (g) these results showed that students who used ITS learned sig-

nificantly more than students who used other modes of instruc-
Figure 2. Distribution of 107 effect sizesM = 0.43,SD = 0.40). tion except small-group and individual human tutoring.
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Table 1
Overall Mean Effect and Mean Effect Sizes for Comparison Treatments

Effect size 95% ClI Test of heterogeneity
Overall effect N k g+ SE Lower Upper Qs df p % (%)
Fixed-effect model 14,321 107 036 0.02 0.32 0.39 390.52 106  <.001 0.73
Random-effects model 14,321 107 041 0.04 0.34 0.48
Random-effects model Fixed-effect model
Effect size 95% ClI Effect size 95% ClI
Comparison treatments N k o+ SE Lower Upper Qg p g+ SE Lower Upper Qg p
Type of instruction 27.54 <.001 27.35 <.001
Large-group human instruction 11,296 66 0.44.05 0.35 0.53 0.37 0.02 0.33 041
Small-group human instruction 184 4 0.05 0.280.50 0.61 0.10 0.16 —0.21 0.41
Individual human instruction 404 5-0.11 0.10 -0.31 0.10 -0.11 0.10 -0.31 0.10
Individual CBI 1,034 15 0.57 0.11 0.34 0.79 0.47 0.06 0.34 0.59
Individual textbook or workbook 1,403 17 0.360.09 0.18 0.53 0.30 0.06 0.19 041

Note. CI = confidence interval, CBE computer-based instruction.
“p < .05.

The significant heterogeneity in the overall result indicatese Research Question 2: Do the Effects Associated With
was unattributed variability in the individual effect sizes that | TS vary With Characteristics of the I TS?
constitute the overall result. Therefore, moderator analyses
were conducted on ITS characteristics, sample characteristics The results in Table 2 show how different features and charac-
and methodological features of the studies to further determinéeristics of ITS moderated the overall effect of learning with these
the factors that may be responsible for the variability in effectsystems. We examined the effects of learning with different char-
sizes. acteristics of ITS including the type of ITS, the nature of inter-

Table 2
Weighted Mean Effect Sizes for Characteristics of Intelligent Tutoring Systems (ITS)

Random-effects model Fixed-effect model

This document is copyrighted by the American Psychological Association or one of its allied publishers.
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Effect size 95% ClI Effect size 95% Cl
Moderator variables N k gt SE Lower Upper Qg p g+ SE Lower Upper Qg p
Type of ITS 418 52 36.37 <.001
Model tracing 5970 21 0.35 0.07 0.22 047 0.25 0.03 0.20 0.31
Constraint-based modeling 569 7 0.24 0.160.08 0.56 0.20 0.09 0.03 0.37
Bayesian network modeling 1,417 10 0:540.10 0.35 0.73 0.52 0.06 0.41 0.63
Expectation and misconception tailoring 142 3 0.34 0.350.35 1.02 0.24 0.18 -0.12 0.59
Other 4,425 53 0.44 0.06 0.32 0.56 0.44 0.03 0.38 0.50
Not reported 1,798 13 0.40 0.10 0.20 0.59 0.43 0.05 0.32 0.54
ITS intervention 241 .79 32.38 <.001
Principal instruction 4,505 35 0.37 0.07 0.23 051 0.32 0.03 0.26 0.38
Integrated class instruction 4,045 15 0.330.08 0.17 0.49 0.25 0.03 0.18 0.31
Separate in-class activities 1,939 24 0.40.10 0.27 0.67 0.53 0.05 0.43 0.62
Supplementary after-class instruction 933 8 0.43.11 0.22 0.64 0.36 0.07 0.23 0.48
Homework 2,480 15 0.45 0.07 0.32 0.59 0.46 0.04 0.38 0.54
Not reported 419 10 0.48 0.13 0.23 0.74 0.47 0.10 0.27 0.66
Feedback provided? 455 .10 13.53 <.001
No 1,411 10 0.54 0.15 0.25 0.83 0.40 0.05 0.30 0.51
Yes 11,728 86 0.42 0.04 0.34 0.50 0.37 0.02 0.33 041
Not reported 1,182 11 0.21 0.10 0.02 0.41 0.15 0.06 0.04 0.27
Model misconception? 0.02 .99 5.14 .08
No 1,508 21 0.40 0.07 0.27 0.54 0.39 0.05 0.29 0.49
Yes 9,911 58 0.40 0.05 0.31 0.49 0.33 0.02 0.29 0.37
Not reported 2,902 28 0.42 0.10 0.23 0.61 0.43 0.04 0.35 0.51

Note CI = confidence interval.
“p < .05.
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Table 3
Weighted Mean Effect Sizes for Student and Study Characteristics
Random-effects model Fixed-effect model
Effect size 95% ClI Effect size 95% ClI
Moderator variables N k g+ SE Lower Upper Qg p g+ SE Lower Upper Qg p
Grade levels 2.2 .82 25.74 <.001
Elementary school 1,496 19 0:31 0.08 0.16 0.47 0.26 0.05 0.16 0.37
Middle school 810 10 0.41 0.13 0.15 0.66 0.45 0.07 0.31 0.59
High school 4355 14 040 0.10 0.21 0.59 0.25 0.03 0.18 0.31
Postsecondary 6,767 60 0743 0.05 0.33 0.53 0.43 0.03 0.38 048
Mixed grades 771 3 061 0.32 —0.02 1.25 0.42 0.07 0.28 0.57
Not reported 122 1 033 018 —-0.02 0.69 0.33 0.18 —0.02 0.69
Subject domains 6.53 .48 50.67 <.001
Mathematics and Accounting 8,038 35 (0.350.05 0.24 045 0.29 0.02 0.25 0.34
Physics 2,890 24 0.38 0.07 0.26 0.51 0.41 0.04 0.33 0.49
Computer Science 1,152 19 0751 0.11 0.30 0.72 0.46 0.06 0.34 058
Language and Literacy 1,075 14 0:340.11 0.12 0.56 0.27 0.06 0.15 0.39
Chemistry 141 2 0.16 0.17 —-0.17 0.48 0.16 0.17 —-0.17 0.48
Biology and Physiology 210 3 059 0.27 0.07 111 0.51 0.14 0.23 0.78
Humanities and Social Science 671 8 0.630.22 0.20 1.06 0.84 0.08 0.68 1.01
Others and Not Reported 144 2 123 0.96-0.65 3.10 0.53 0.17 0.20 0.87
Prior domain knowledge 3.45 .49 11.87 .02
Low 5265 32 0.38 0.06 0.27 0.49 0.37 0.03 0.31 0.43
Medium 1,356 17 0.28 0.08 0.12 045 0.27 0.06 0.16 0.38
High 77 2 051 0.29 -0.06 1.07 0.53 0.23 0.07 0.98
Varied 2,699 22 048 0.12 0.25 0.71 0.27 0.04 0.19 0.34
Not reported 4,924 34 0.46 0.06 0.34 0.58 0.41 0.03 0.35 0.47

Note CI = confidence interval.
*p < .05.

vention provided by the ITS, whether the ITS modeled miscon-significant effect sizes under both the fixed- and random-effects
ceptions, as well as whether the ITS provided feedback. Mostodels. The between-levels difference was not statistically
commonly, ITS were used as the principal means of instructiorsignificant under a random-effects model. However, the
(k = 35), provided feedback to students € 86), and modeled between-levels variance was statistically significant under a
student misconception& & 58). Under a random-effects model, fixed-effect modelQg(5) = 32.38,p < .001. Post hoc analyses
two types of ITS, constraint-based modeling and expectation anébund that studies which used ITS for separate, in-class activ-
misconception tailoring, did not produce significant effects. How-ities and homework had significantly higher weighted mean
ever, ITS with model tracing, Bayesian network modeling andeffect sizes than those which used ITS for other purposes such
other types of student modeling produced statistically significantas principal instruction.
effect sizes. Although ITS with Bayesian network modeling pro- Table 2 shows that, under both fixed and random-effects
duced a higher weighted mean effect sige<( .54) than model models, the use of ITS was associated with statistically signif-
tracing @ = .35), constraint-based modeling € .24), and ex- icant effect sizes whether or not they provided feedback to
pectation and misconception tailoring & .34), the between- students. Under both the fixed- and random-effects models,
levels difference was not statistically significant under a random-overlap in confidence intervals indicates that effect sizes were
effects model. However, statistically significant differences werenot moderated by whether or not the ITS provided feedback.
detected under a fixed-effect mod@z(5) = 36.37,p < .001,and Table 2 also shows that the use of ITS produced moderate,
post hoc analyses found ITS which used Bayesian network modstatistically significant effect sizes regardless of whether the
eling had a significantly higher weighted mean effect size thanTS modeled misconceptions or not. The between-levels differ-
those which used model tracing and constraint-based modeling.ence was not statistically significant under both the fixed and
Table 2 also shows that ITS were effective in all the instruc-random-effects models.
tional roles in which they were evaluated. Adopting the cate-

gories used by Steenbergen-Hu and Cooper (2014), the instruResear ch Question 3: Do the Effects Associated With
tional roles of ITS were coded as: principal instruction (the ITS ITS Vary With Characteristics of the Students,

was the principal means of instruction); integrated Class_'nStrUCOutcomeA ents, and R ch Setting?
tion (the ITS was an integral part of regular classroom instruc-

tion); separate in-class activities (the ITS was used for separate To answer the third research question, Tables 3, 4, and 5 show
laboratory or other exercises that took place during class time)iesults of moderator analyses based on student and study charac-
supplementary after-class instruction, and homework (the ITSeristics, outcome assessments and research settings, respectively.
was used as part of homework assignments). Across all thes@pecifically, Table 3 shows the effects of using ITS across differ-
categories, the use of ITS was associated with statisticallyent grade levels, subject domains, and levels of prior knowledge.
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Weighted Mean Effect Sizes for Outcome Constructs, Test Format, Knowledge Type, and Measuring Tool

Random-effects model

Fixed-effect model

Effect size 95% ClI Effect size 95% CI
Moderator variables N k g+ SE Lower Upper Qg p g+ SE Lower Upper Qg p
Outcome constructs 112 .77 3.56 .31
Retention 3,922 33 0.35 0.07 0.22 0.48 0.35 0.03 0.28 041
Transfer 1,683 18 0.44 0.09 0.27 0.62 0.43 0.05 0.33 0.52
Mixed retention and transfer 6,371 32 0:430.08 0.28 0.58 0.33 0.03 0.28 0.38
Not reported 2,345 24 0.42 0.06 0.31 054 0.39 0.04 0.30 047
Test formats 8.79 .07 108.17 <.001
Multiple choice 1,777 18 0.26 0.05 0.16 0.36 0.26 0.05 0.16 0.36
Short answer 1,170 11 0.25 0.06 0.13 0.36 0.25 0.06 0.13 0.36
Mixed items 1,701 10 0.06 0.05-0.03 0.16 0.06 0.05 —0.03 0.16
Other 972 10 0.91 0.07 0.77 1.05 0.91 0.07 0.77 1.05
Not reported 8,701 58 0.40 0.02 0.35 0.44 0.40 0.02 035 044
Knowledge type 1.18 .76 30.33 <.001
Procedural 6,143 46 0.39 0.05 0.28 0.49 0.36 0.03 0.31 042
Declarative 4,318 31 0.37 0.07 0.23 051 0.26 0.03 0.20 0.32
Mixed procedural and declarative 777 6 0.650.29 0.08 1.21 0.70 0.08 0.55 0.86
Not reported 3,083 24 0.43 0.06 032 054 0.40 0.04 0.33 0.48
Test source 0.71 .87 14.92 <.001
Researcher developed 7,279 62 0.410.05 0.32 0.50 0.40 0.02 0.36 0.45
Standardized 4,597 19 0.42 0.10 0.21 0.62 0.27 0.03 0.21 0.33
Both 1,095 5 048 0.07 0.33 0.59 0.46 0.07 0.33 0.59
Not reported 1,350 21 0.38 0.07 0.24 0.52 0.34 0.06 0.23 045

Note CI = confidence interval.
“p < .05.

Studies with students from kindergarten through grade 5 werg@roduced moderate statistically significant mean effect sizes at all
grouped together undelementary schoolStudies with students grade levels under both the fixed and random-effects models.
from grades 6 through 8 were categorizedraddle schoolvhile Table 3 further shows that the between-levels difference was not
grades 9 through 12 were categorized hagh school Studies  statistically significant under a random-effects model but statisti-
conducted with university and college students were categorized aslly significant under a fixed-effect mode&Dg(5) = 25.74,p <

postsecondaryThree studies cut across these grade bands and01. Post hoc analyses found studies which used ITS with stu-
were separately categorized agxed grades The use of ITS dents in middle school and postsecondary had significantly higher

Table 5
Weighted Mean Effect Sizes for Contextual Features

Random-effects model Fixed-effect model

Effect size 95% ClI Effect size 95% CI
Moderator variables N k ot+ SE  Lower Upper Qg p g+ SE  Lower Upper Qg p
Setting 3.30 .07 4.29 .04
Laboratory 1,596 26 0.29 0.07 0.15 0.43 0.26 0.05 0.16 0.36
Classroom 12,725 81 0.44 0.04 0.36 0.52 0.37 0.02 0.33 0.41
Continent 359 31 12.80 .01
North America 11,065 75 0.38 0.04 0.29 0.46 0.33 0.02 0.29 0.37
Europe 1,083 18 0.51 0.10 0.32 0.71 0.55 0.06 0.43 0.67
Asia 962 6 0.67 0.20 0.28 1.06 0.42 0.07 0.29 0.55
Oceania 1,211 8 0.36 0.07 0.22 0.51 0.38 0.06 0.27 0.50
Treatment duration 1.43 .49 4.67 .10
One hour or less 587 9 0.30 0.16 —0.01 0.62 0.18 0.09 0.02 0.35
Greater than one hour 7,589 59 (.39 0.05 0.30 0.48 0.35 0.02 0.30 0.40
Not reported 6,145 39 0.47 0.07 0.34 0.60 0.38 0.03 0.33 0.43
Study duration 3.78 .15 32.36 <.001
One month or less 2,044 32 0334 0.07 0.22 0.47 0.31 0.05 0.22 0.40
Greater than one month 9,577 53  0.38 0.05 0.29 0.47 0.31 0.02 0.27 0.35
Not reported 2,700 22 057 0.10 0.37 0.76 0.57 0.04 0.49 0.66

Note CI = confidence interval.
“p < .05.
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Table 6
Weighted Mean Effect Sizes for Different Methodological Features
Random-effects model Fixed-effect model
Effect size 95% CI Effect size 95% ClI
Moderator variables N k g+ SE Lower Upper Qg p g+ SE Lower Upper Qg p
Random assignment 7.39 .06 65.58 <.001
Yes 5588 34 0.31 0.06 0.19 043 0.22 0.03 0.16 0.27
No—prior difference controlled 3,075 23 0:380.07 0.25 0.50 0.35 0.04 0.27 0.42
No—prior difference not controlled 4,724 34 0754 0.06 0.42 0.67 0.55 0.03 0.49 0.61
Not reported 934 16 0.37 0.11 0.15 0.58 0.30 0.07 0.17 0.43
Source 2.36 .50 19.73 <.001
Journal 7,171 72 0.44 0.04 0.36 0.53 0.42 0.02 0.37 0.47
Conference proceeding 4,045 23 0.330.08 0.18 0.49 0.29 0.03 0.23 0.36
Dissertation/thesis 1,419 5 0.27 0.15-0.02 0.57 0.19 0.05 0.08 0.30
Technical report 1,686 7 0.46 0.18 0.11 0.81 0.39 0.05 0.29 0.49
Attrition of participants 4.08 .13 30.29 <.001
None 3,191 36 0.39 0.07 0.24 0.53 0.26 0.04 0.19 0.33
Some 4,075 23 0.29 0.09 0.11 047 0.27 0.03 0.20 0.33
Not reported 7,055 48 0.48 0.04 0.40 0.56 0.46 0.03 041 0.51

Note CI = confidence interval.
*p < .05.

weighted mean effect sizes than those which used ITS in elemerknowledge type was coded as procedural, declarative and mixed
tary and high schools. procedural and declarative while test source was coded as
Table 3 also shows that ITS were associated with positiveresearcher-developed, standardized or both. Under both the fixed-
moderate to large effect sizes across different subject domainand random effects models, the use of ITS was associated with
Notably, under a random-effects model, the use of ITS produced atatistically significant mean effect sizes regardless of the learning
large effect size in learning humanitieg € .63). For domains outcome. The between-levels variance was not statistically signif-
such as biology and physiologyg & .59), computer science & icant under both models.
.51), physicsg = .38), and mathematics and accountigg=.35), ITS produced statistically significant effect sizes across all test
ITS produced moderate effect sizes. For chemistry as well asormats, except for mixed item formats. The between-levels vari-
literacy and language learning, the use of ITS produced small andnce was not statistically significant under the random-effects
moderate mean effect sizeg € .16 andg = .34, respectively). model. However, the between-levels variance was statistically
The between-levels variance was not statistically significant undesignificant under a fixed-effect modedg(4) = 108.17,p < .001.
a random-effects model but was significant under a fixed-effecfTable 4 also shows that ITS are effective for learning all knowl-
model,Qg(7) = 50.67,p < .001, indicating significant differences edge types. The between-levels variance was not statistically sig-
across subject domains. Post hoc analyses found studies whictificant under a random-effects model but was significant under a
used ITS in humanities and social sciences had a significantlyixed-effect model,Qg(3) = 30.33,p < .001, indicating signifi
higher weighted mean effect size than those which used it matheant differences between knowledge types. Post hoc analyses
ematics and accounting, physics, computer science, language afalind studies that used ITS to acquire mixed procedural and
literacy, and chemistry. declarative knowledge had a significantly higher weighted mean
Many of the participants had low prior domain knowledge= effect size than those that used ITS to acquire only procedural, or
32). Under the random-effects model, all the categories of prioonly declarative knowledge. Finally, Table 4 shows that moderate,
domain knowledge were associated with statistically significantstatistically significant effect sizes were obtained with researcher-
effect sizes except high prior domain knowledge. However, thedeveloped tests, standardized tests, and tests that were both
results revealed no significant differences between students witresearcher-developed and standardized under both the fixed and
low, medium, and high prior domain knowledge. However, therandom-effects model. However, the between-levels variance was
certainty of this interpretation is limited by at least three factors:only statistically significant under the fixed-effect mod@k(3) =
(a) the large number of studies that did not report the prior domairi4.92, p < .001. Post hoc analyses found that researcher-
knowledge of participantsk(= 34); (b) the small number of developed tests had a significantly higher weighted mean effect
studies having participants with high prior knowledge=2); and  size than standardized tests.
(c) the significant heterogeneity of the effect size distributions. Table 5 shows the results of analyses of contextual moderator
Table 4 shows the mean effect sizes for different outcomevariables: the setting where the research was conducted (laboratory
assessments, test formats, knowledge types and test source. Tdre classroom), the continents where study was conducted, the
learning outcomes were coded as retention, transfer, and mixeeatment duration, and the entire study duration. We coded “class-
retention and transfer, and the test formats were coded as objectiveom” studies as those which had learning activities that were
format (e.g., multiple choice items), short answer, and mixedreported as part of an academic course of study or were conducted
format (e.g., combinations of multiple choice and short answer)in a classroom under the supervision of an instructor. Conversely,
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when learning activities were conducted solely for the purpose oHowever, dissertation studies did not produce a statistically sig-
research and learning was not assessed for academic credit, théicant effect size. The between-levels variance was not statisti-
setting was coded as “laboratory.” Approximate median splits oncally significant under random-effects model. However, it was
duration of treatment (split at one hour) and duration of study (splitstatistically significantQg(3) = 19.73,p < .001, under a fixed-

at one month) were used to create two categories for each of thesdfect model showing that studies published in journals had a
variables. Table 5 shows that most of the studies were conductemioderate mean effect size that was significantly different from
in the classroomi = 81). Both the classroom and laboratory studies in conference proceedings and dissertations or theses.
studies produced moderate statistically significant effect sizeskinally, under both the fixed- and random-effects models, studies
under both the fixed and random-effects models. The betweenwithout attrition of participants and those with some attrition
levels variance was not statistically significant under the randomproduced moderate, statistically significant effect sizes.

effects model but marginally significant under the fixed-effect

mo.del, showing that clgssroom-based studies _produced a highg{re These Results Valid?

weighted mean effect size than laboratory studies.

The majority of the studies were conducted in North America To determine whether the results reported in this meta-analysis
(k = 75). The effectiveness of ITS was evident regardless of thecan be regarded as valid we investigated the potential impact of
region where studies were conducted. Under the random-effectgublication bias. Publication bias is a plausible threat to the valid-
model, the use of ITS was associated with moderate weightedly of meta-analyses because statistically significant results are
mean effect sizes in North Americg & .38), Europed = .51),  more likely to be published and accessible for inclusion in meta-
and Oceaniag = .36). The effect size in Asia was largey € .67). analyses than non-statistically significant results which may either
The between-levels variance was only statistically significant unsot be reported or reported in less accessible outlets (Orwin, 1983;
der the fixed-effect modelQg(3) = 12.80,p = .01. Post hoc Rosenthal, 1979). This is often called the “file-drawer” effect.
analyses found that the weighted mean effect size associated wiffurther analysis of publication bias is particularly crucial in this
studies conducted in Europe was larger than for studies conductedeta-analysis considering that the between-levels variance of
in North America. source of publication was statistically significant under a fixed-

We observed a pattern showing higher mean effect sizes foeffect model showing that studies published in journals had a
longer treatment and study durations. Results from a randommoderate mean effect size that was significantly different from
effects model showed that treatments which were less than dgtudies in conference proceedings and dissertations or theses (see
equal to one hour in length produced a statistically significantTable 6).
mean effect sizeg(= .30), as did those greater than one hapi( Two statistical tests were computed with Comprehensive Meta-
.39). However, neither the fixed- nor random-effects modelAnalysis to further examine the potential for publication bias.
showed statistically significant, between-levels variance. UndeFirst, a “Classic Fail-Safél” test was computed to determine the
the random-effects model, studies conducted for a month or lessumber of null effect studies needed to raisefiivalue associated
and those conducted for over a month were also associated withith the average effect above an arbitrary alpha level (setat
statistically significant, weighted mean effect sizgs<{ .34 and  .05). This test revealed that 871 additional studies would be
g = .38). These results should be interpreted with caution becausequired to invalidate the overall effect found in this meta-analysis.
of the large number of studies that did not report the treatment an@rwin’s Fail-SafeN, a more stringent publication bias test, re-

study durations. vealed that 656 missing null studies would be required to bring the
mean effect size found in this meta-analysis to a trivial level of .05.
Research Question 4: Do the Effects Associated With Taken together, these tests show that, with 107 analyzed studies,
ITS Vary With the Methodological Features of the the numberl of nyll studies reqqirgd to invalidate the over{all .effect
Resear ch? size found in this meta-analysis is larger than tlke+510 limit

suggested by Rosenthal (1995). Hence, although there is potential
Table 6 shows how effect sizes varied with the methodologicalffor publication bias in this meta-analysis, the results of these two
features of studies included in this meta-analysis. The studies wert@sts suggest that publication bias does not pose a significant threat
categorized according to research design, source of publication arid the validity of the findings reported in this meta-analysis.
attrition. Under both fixed- and random-effects models, learning
with ITS produced moderate, statistically significant effect sizes Discussion
regardless of research design. The between-levels variance was
statistically significant only under the fixed-effect mod@(3) =
65.68,p < .001. Post hoc analyses found that a larger mean effe
size was associated with quasi-experimental designs in which prior The overall result of our meta-analysis is that ITS outperformed,
differences were not controlled. Again, we call for caution in in aggregate, the other modes of instruction to which it was
interpreting this result because of the high number of studies thatompared in evaluative studies. Moderator analysis found that
did not explicitly report research designs. using ITS was associated with significantly higher achievement
Studies published in journals often have higher methodologicabutcomes than using each of the other modes of instruction except
quality than those presented at conferences or as dissertatiorsmall-group human tutoring and individual human tutoring, and
Table 6 also shows that, under a random-effects model, meathe difference in learning outcomes between ITS and these two
effect sizes were statistically significant for studies published informs of human tutoring was not statistically significant. ITS was
journals, conference proceedings, as well as technical reportglso associated with greater achievement regardless of whether it

C§ummary of the Results
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was used as the principal means of instruction, as an integral pamter-disciplinary field such as ITS can be attributed to the lack of
of classroom instruction, to support in-class activities such as shared understanding of methodological standards among re-
laboratory exercises, for supplementary after-class instruction, osearchers and editors, and the dissemination of ITS evaluation
as part of assigned homework. In analyzing 18 other moderatoresearch in a remarkably eclectic body of journals includasges
variables related to characteristics of the ITS, students, researéh Accounting EducationThinking Skills and Creativity and
setting, outcome assessments, and research methods, we foundMethods of Information in Medicinélhis challenge, inherent to
substantive, significant differences among levels of the moderatorterdisciplinary research reporting, is reflected in the statement of

under a random-effects model. scope and standards of tHeternational Journal of Atrtificial
Intelligence in Educationwhich remarks
Comparison With Previous Quantitative Reviews if a paper presents a behavioural study of students using some system
to support claims about improved learning, then it must conform to the

In broad terms, our results agree with prior reviews by VanLehn standards developed in behavioural science On the other hand, it
(2011), who investigated the relative effectiveness of ITS in STEM is not reasonable to expect that authors will meet all the standards of

subjects, and Steenbergen-Hu and Cooper (2014), who investi- 5 gisciplines outside their main focuslnternational Journal of
gated its use in all college-level subjects. Our mean effect size for  arificial Intelligence in Educationn.d., para. 5)
postsecondary educatiog & .43) was only slightly greater than
the mean effect sizey(= .37) reported by Steenbergen-Hu and We advocate that journal editors specify their requirements for
Cooper (2014). However, our mean effect sizes for levels of K—12reporting research design, sample size, attrition, score reliabilities,
education were all markedly greater than those reported in theneans and standard deviations for quantitative educational re-
meta-analysis of ITS effects in K-12 mathematics by search and also publish articles that inform their readership on how
Steenbergen-Hu and Cooper (2013). In discussing the contrastirgpntemporary methodological practices such as “the new statis-
results of their meta-analyses on the use of ITS by K—12 mathetics” (Cumming, 2012) relate to their discipline.
matics students and college students, Steenbergen-Hu and CoopeiOne difficulty we encountered in conducting this meta-analysis
(2014) speculated that “ITS may function better for more maturewas the lack of common terminology for describing and reporting
students who have sufficient prior knowledge, self-regulationthe designs of individual ITS as well as inconsistent practices in
skills, learning motivation, and experiences with computers” (p.selecting which ITS features should be described in an evaluation
342). Our analysis, which directly compared ITS effect sizes ateport. For example, some researchers reported that their ITS used
four levels of schooling found no evidence for that hypothesis. model tracing but not did indicate whether misconceptions were
Our comparison of ITS with one-to-one human tutoring pro- modeled, whether knowledge tracing was used, and whether the
duced a non-significant mean effect sige=f —.11) similar to the  ITS adaptively selected problems. Often, the method used for
effect sizes reported by VanLehn (2011) and Steenbergen-Hu argfudent modeling was not described in relation to other ITS and
Cooper (2014) for human tutoring as a control condition. Unlikeimportant features of the system’s design and behavior were not
the previous reviews, our meta-analysis coded small-group humat¢ported. We speculate that developing a taxonomy of ITS design
tutoring as a separate category of control treatment for which wéhat could underpin a reporting standard would accelerate ad-
found a nonsignificant mean effect size gf = .05 under a vances in ITS research. Certainly, more precise reporting of ITS
random-effects model. design that draws from a common conceptual framework and
Unlike Steenbergen-Hu and Cooper (2014), we separated frorierminology would greatly assist meta-analysts to pick apart de-
the main analysis studies with no-treatment control conditionssign features and compare their effects on learning outcomes.
Whereas we foundy = 1.23 relative to no-treatment controls,
Steenbergen-Hu and Cooper foupd= .90, and VanLehn (2011)  -4n Evaluation Research Contribute to a Theory of
found .40 and .76 for differing levels of interaction granularity. ITS Design?
Although these discrepancies could be cause for concern, the ’
important fact which serves as a reality check on the ITS evalua- Each of the studies we examined evaluated a single ITS con-
tion enterprise is that in every review the mean effect sizes whiclsisting of a complex set of inter-related features, many of which
compare ITS to no-treatment controls are greater or equal to thevere necessarily unreported by or even unknown to the primary
largest mean effect sizes which compare ITS to an alternate forrauthors. In most cases the evaluations were performed to bear on
of instruction. the decision of whether to deploy the ITS or as a holistic evalua-
tion of a software engineering project. Rarely were the studies we
analyzed conceived as research into a theoretical question about
the relationship between ITS and learning outcomes. Nevertheless,
We found considerable room for improvement in how funda-a meta-analysis of evaluation studies can categorize the primary
mental features of the primary research were reported. Basistudies according to theoretically significant features and observe
statistics such as means and standard deviations were not reportedationships between the features and learning outcomes that were
in about a third of the studies, and reliabilities of outcome mea-ot considered in the primary work. Although none of the primary
sures were reported in only a few cases. In many studies, reportingtudies we analyzed compared a version of their ITS that modeled
was also insufficient for methodological features such as attritionstudent misconceptions with another version that did not, we were
whether participants were randomly assigned to treatments, formatble to code for misconception modeling as a moderator variable
and provenance of achievement tests, and duration of treatmerdand assess its influence on effect size. As it turned out, none of the
The challenge in raising the quality of research reporting in anlTS characteristics we coded including type of ITS, misconception

Quality of Reporting
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modeling and feedback, were found to reliably influence effectstudent misconceptions suggests the need for comparative research
size under a random-effects model (although a fixed-effect modebn the conditions under which misconception modeling adds value
found that one type of ITS, Bayesian network modeling, had ato individualized instruction.
significantly greater influence on effect size). It is notable that This meta-analysis and previous reviews by Steenbergen-Hu
when we reread the studies in which the ITS did not provideand Cooper (2013, 2014) examined evaluation research in which
response feedback we found that in each case the primary adaptitlee use of ITS was compared to a variety of other modes of
feature was individualized task selection, an observation that sugnstruction. While reviews of this type are useful in marking
gests individualized task selection may offer benefits comparablgeneral progress in the capabilities of ITS, a more powerful use of
to the well-established, positive effects of feedback on learningneta-analysis to drive those capabilities forward may be to review
(Hattie & Timperley, 2007). comparisons between ITS. This strategy would be especially in-
Most of the research we analyzed reported independent anfibrmative when analyzing studies that compare two or more ver-
dependent variables, but not intervening process variables (i.esions of the same ITS such that each version represents a theoret-
measures observed during the learning process) that might help toally informed design variation. VanLehn (2011) adopted
explain observed effects or lack thereof. Although recent work inelements of this strategy to investigate the effects of interaction
educational data mining indicates that process variables are gaigranularity on learning outcomes, and full meta-analyses compar-
ing a more prominent position in the study of ITS (Winne & Baker, ing different versions of the same systems could be used to
2013), such variables are rarely reported in empirical evaluationgvestigate many other potentially effective ITS features such as
of ITS effectiveness. When a process variable was reported in thanimated pedagogical agents (Baker et al., 2006), misconception
studies we analyzed, it was often only meaningful in the context oimodeling (Myneni, Narayanan, Rebello, Rouinfar, & Pumtam-
the particular learning task of the study that reported it. As abekar, 2013) and metacognitive prompts (Wu & Looi, 2012). We
consequence, when we determine that ITS outperformed othdselieve that such strategic application of meta-analysis to the end
methods of computer-based instruction there is little we can do iproducts of ITS research, development, and evaluation can inform
a meta-analysis to account for the effect at the level of computerand advance the design science of ITS.
student interaction. Similarly, if we seek an explanation for how
Bayesian network modeling might outperform other ITS designs, References
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