
Red-Black Relaxed Plan Heuristics

Michael Katz and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{katz, hoffmann}@cs.uni-saarland.de

Carmel Domshlak
Technion

Haifa, Israel
dcarmel@ie.technion.ac.il

Abstract

Despite its success, the delete relaxation has significant pit-
falls. Recent work has devised the red-black planning frame-
work, where red variables take the relaxed semantics (accu-
mulating their values), while black variables take the regular
semantics. Provided the red variables are chosen so that red-
black plan generation is tractable, one can generate such a
plan for every search state, and take its length as the heuristic
distance estimate. Previous results were not suitable for this
purpose because they identified tractable fragments for red-
black plan existence, as opposed to red-black plan generation.
We identify a new fragment of red-black planning, that fixes
this issue. We devise machinery to efficiently generate red-
black plans, and to automatically select the red variables. Ex-
periments show that the resulting heuristics can significantly
improve over standard delete relaxation heuristics.

Introduction
In the delete relaxation, that we will also refer to as the
monotonic relaxation here, state variables accumulate their
values, rather than switching between them. This relaxation
has turned out useful for a variety of purposes, in particular
for satisficing planning (not giving an optimality guarantee),
which we focus on here. The generation of (non-optimal)
plans in monotonic planning is polynomial-time (Bylan-
der 1994), enabling its use for the generation of (non-
admissible) heuristic functions. Such relaxed plan heuristics
have been of paramount importance for the success of sat-
isficing planning during the last decade, e. g., for the HSP,
FF, and LAMA planning systems (Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Richter and Westphal 2010).

This success notwithstanding, the delete relaxation has
pitfalls in many important classes of planning domains.
(An obvious example is planning with non-replenishable re-
sources, whose consumption is completely ignored within
the relaxation.) It has thus been an active area of research to
design heuristics taking some deletes into account, e. g. (Fox
and Long 2001; Gerevini, Saetti, and Serina 2003; Helmert
2004; Helmert and Geffner 2008; Keyder and Geffner 2008;
Baier and Botea 2009; Cai, Hoffmann, and Helmert 2009;
Haslum 2012; Keyder, Hoffmann, and Haslum 2012; Katz,
Hoffmann, and Domshlak 2013). We build on Katz et al.’s

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(2013) work, that introduced red-black planning, in which a
subset of “red” state variables takes on the monotonic, value-
accumulating semantics, while the other “black” variables
retain the regular semantics. Katz et al.’s work is theoretical.
We add the necessary ingredients to make it practical.

For red-black planning to be useful as the basis of a
heuristic function, where a red-black plan will be gener-
ated in every search state, red-black plan generation must be
tractable. Katz et al. identify two tractable fragments. In one
of them, runtime is polynomial but to a very high degree; we
do not consider this fragment here. The other fragment im-
poses a restriction on the causal graph induced by the black
variables, and requires the red-black task to be reversible:
from any reachable state, we must be able to revert all black
variables to their initial values. This tractability result is
not directly applicable to practice because (A) tractability
is shown for plan existence rather than plan generation, and
(B) testing red-black reversibility is co-NP-hard.

We identify a refined fragment that fixes both (A) and (B).
We impose the same causal graph restriction, but replace re-
versibility with a stronger notion of invertibility, where all
black variables are invertible in that every value change can
be undone under conditions we know will be true. This suf-
ficient criterion is easily testable, fixing (B). Any delete re-
laxed plan can with polynomial overhead be turned into a
red-black plan, fixing (A).1 Implementing this in Fast Down-
ward, with some minor refinements and simple techniques
for choosing the red variables, we obtain heuristics that can
significantly improve on the standard delete relaxation.

Preliminaries
A finite-domain representation (FDR) planning task is a
tuple Π = 〈V,A, I,G〉. V is a set of state variables, where
each v ∈ V is associated with a finite domain D(v). A
complete assignment to V is called a state. I is the initial
state, and the goal G is a partial assignment to V . A is a
finite set of actions. Each action a is a pair 〈pre(a), eff(a)〉
of partial assignments to V called precondition and effect,

1The idea of repairing a relaxed plan is related to previous
works on generating macros from relaxed plans (Vidal 2004;
Baier and Botea 2009). From that perspective, our techniques re-
place greedy incomplete approximations of real planning with a
complete solver for a suitably defined relaxation thereof.

Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence

489

R

F BA

O

(a) (b)
Figure 1: An example (a), and its causal graph (b).

respectively. We identify (partial) assignments with sets of
facts, i. e., variable-value pairs (v, d). If a has a precondition
on v but does not change it, we say that a is prevailed by v;
the set of all such preconditions is denoted prevail(a).

For a partial assignment p, V(p) ⊆ V denotes the subset
of state variables instantiated by p. For V ′ ⊆ V(p), p[V ′]
denotes the value of V ′ in p. Action a is applicable in state
s iff s[V(pre(a))] = pre(a), i. e., iff s[v] = pre(a)[v] for
all v ∈ V(pre(a)). Applying a in s changes the value of
v ∈ V(eff(a)) to eff(a)[v]; the resulting state is denoted by
sJaK. By sJ〈a1, . . . , ak〉K we denote the state obtained from
sequential application of a1, . . . , ak starting at s. An action
sequence is a plan if IJ〈a1, . . . , ak〉K[V(G)] = G.

Figure 1 (a) shows the illustrative example given by Katz
et al., that we also adopt here. The example is akin to the
GRID benchmark, and is encoded in FDR using the follow-
ing state variables: R, the robot position in {1, . . . , 7}; A,
the key A position in {R, 1, . . . , 7}; B, the key B position
in {R, 1, . . . , 7}; F in {0, 1} saying whether the robot hand
is free; O in {0, 1} saying whether the lock is open. We can
move the robot from i to i + 1, or vice versa, if the lock is
open or {i, i+ 1} ∩ {4} = ∅. We can take a key if the hand
is free, drop a key we are holding, or open the lock if the
robot is at 3 or 5 and holds key A. The goal requires key B
to be at 1. An optimal plan moves to 2, takes key A, moves
to 3, opens the lock, moves to 7, drops key A and takes key
B, moves back to 1 and drops key B.

A monotonic finite-domain representation (MFDR)
planning task is a tuple Π = 〈V,A, I,G〉 exactly as for
FDR tasks, but the semantics is different. An MFDR state
s is a function that assigns each v ∈ V a non-empty subset
s[v] ⊆ D(v) of its domain. An MFDR action a is appli-
cable in state s iff pre(a)[v] ∈ s[v] for all v ∈ V(pre(a)),
and applying it in s changes the value of v ∈ V(eff(a)) to
s[v]∪{eff(a)[v]}. An action sequence 〈a1, . . . , ak〉 is a plan
if G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

Plans for MFDR tasks can be generated in polynomial
time (this follows directly from Bylander’s (1994) results).
A key ingredient of many planning systems is to exploit this
property for deriving heuristic estimates, via the notion of
monotonic, or delete, relaxation. The monotonic relax-
ation of an FDR task Π = 〈V,A, I,G〉 is the MFDR task
Π+ = Π. The optimal delete relaxation heuristic h+(Π)
is the length of a shortest possible plan for Π+. For arbitrary
states s, h+(s) is defined via the MFDR task 〈V,A, s,G〉. If
π+ is a plan for Π+, then π+ is a relaxed plan for Π.

A relaxed plan for the example takes key A, opens the
lock, moves to 7, takes key B (without first dropping key
A), and drops key B at 1 (without first moving back there).
We get h+(Π) = 10 whereas the real plan needs 17 steps.

We will use two standard structures to identify special
cases of planning. The causal graph CGΠ of a task Π
is a digraph with vertices V . An arc (v, v′) is in CGΠ

iff v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪ V(pre(a))]×V(eff(a)). The domain
transition graph DTGΠ(v) of a variable v ∈ V is a labeled
digraph with vertices D(v). The graph has an arc (d, d′) in-
duced by action a iff eff(a)[v] = d′, and either pre(a)[v] = d
or v 6∈ V(pre(a)). The arc is labeled with its outside condi-
tion pre(a)[V \ {v}] and its outside effect eff(a)[V \ {v}].

Consider again the example. Figure 1 (b) shows the causal
graph: R is a prerequisite for changing every other variable.
Each key is interdependent with F because taking/dropping
them affects both. Key A influences O, which influences R.
DTGΠ(R) has arcs (i, i + 1) and (i + 1, i), all with empty
outside effect, and with empty outside condition except if
{i, i + 1} ∩ {4} 6= ∅ in which case the outside condition is
{(O, 1)}. DTGΠ(F) has an arc (1, 0) for every take(x, y)
action where x ∈ {1, . . . , 7} and y ∈ {A,B}, with out-
side condition {(R, x), (y, x)} and outside effect {(y,R)},
as well as an arc (0, 1) for every drop(x, y) action, with out-
side condition {(R, x), (y,R)} and outside effect {(y, x)}.

Red-Black Relaxation
Katz et al. view FDR and MFDR as cases in which all state
variables adopt value-switching and value-accumulating se-
mantics, respectively. They interpolate between these two
extremes by what they call red-black planning. In what fol-
lows, we review their definition, and summarize their results.

A red-black (RB) planning task is a tuple Π =
〈V B, V R, A, I,G〉where V B is a set of black state variables,
V R is a set of red state variables, and everything else is ex-
actly as for FDR and MFDR tasks. A state s assigns each
v ∈ V B ∪ V R a non-empty subset s[v] ⊆ D(v), where
|s[v]| = 1 for all v ∈ V B. An RB action a is applica-
ble in state s iff pre(a)[v] ∈ s[v] for all v ∈ V(pre(a)).
Applying a in s changes the value of v ∈ VB(eff(a)) to
{eff(a)[v]}, and changes the value of v ∈ VR(eff(a)) to
s[v]∪{eff(a)[v]}. An action sequence 〈a1, . . . , ak〉 is a plan
if G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

In the example, if variables R,A,B,O are red and F is
black, then (in difference to the relaxed plan) the robot needs
to drop keyA before taking keyB. IfR is black as well, then
the robot needs to move back to 1 before dropping key B,
rendering the red-black plan a real plan.

RB obviously generalizes both FDR and MFDR. Given an
FDR planning task Π = 〈V,A, I,G〉 and a subset V R ⊆ V
of its variables, the red-black relaxation of Π relative to
V R is the RB task Π∗+V R = 〈V \V R, V R, A, I,G〉. A plan for
Π∗+V R is a red-black relaxed plan for Π, and the length of a
shortest possible red-black relaxed plan is denoted h∗+V R(Π).
For arbitrary states s, h∗+V R(s) is defined via the RB task
〈V \ V R, V R, A, s,G〉. It is easy to see that h∗+V R is consis-
tent and dominates h+, and if V R = ∅ then h∗+V R is perfect.
Computing h∗+V R is hard, and Katz et al. propose to use upper-
approximation by satisficing red-black planning, in analogy
to the successful strategies for relaxed planning. For this to
be practical, satisficing red-black planning must be tractable.

Katz et al. identify two tractable fragments. One of these
requires a fixed number of black variables, with fixed do-
main size. Runtime is exponential in the product of the do-

490

main sizes (e. g., exponential in 25 if we have 5 binary black
variables). This exponent is constant, but much too large to
be practical as a procedure to be run in every search state.
We thus focus on the other fragment, defined as follows.

The causal graph and domain transition graphs for an RB
task Π are defined exactly as for FDR. By the black causal
graph CGB

Π of Π, denote the sub-graph of CGΠ induced by
the black variables. For a digraph G, denote by scc-size(G)
the size of the largest strongly connected component. For
a set of digraphs G, say that scc-size(G) is bounded if
there exists a constant k such that scc-size(G) ≤ k for all
G ∈ G. By RB-PlanExist(G) and RB-PlanGen(G), denote
the plan existence and plan generation problems restricted to
RB tasks whose black causal graphs are elements of G (this
imposes no restriction whatsoever on the red variables). Say
that Π is reversible if, for every state s reachable from I ,
there exists an action sequence π so that sJπK[V B] = I[V B].

Katz et al. prove that, if scc-size(G) is bounded, then RB-
PlanExist(G) for reversible RB is polynomial-time solvable.
Since fixed-size sets of variables can be replaced with poly-
nomial overhead by single variables, it suffices to show this
result for acyclic black causal graphs. As Katz et al. show,
red-black plan existence in that setting is equivalent to re-
laxed plan existence. This tractability result is not directly
applicable to practice, for two reasons:
(A) Tractability is shown for plan existence, rather than plan

generation as required in order to compute a heuristic
function. It is an open problem whether plan generation
is tractable, too; Katz et al. conjecture it is not.

(B) As Katz et al. show, testing red-black reversibility is
co-NP-hard. So even if plan generation were poly-
nomial, we would have no efficient way of knowing
whether or not we are inside the tractable fragment.

We fix both (A) and (B) by employing a sufficient criterion
for reversibility, thus moving to a strictly smaller fragment
of RB planning. Throughout the remainder of the paper, we
assume that the black causal graph is acyclic (i. e., a DAG).

Invertibility
The basic idea behind our sufficient criterion is to entail re-
versibility by the ability to “undo” every action application.
That is, in principle, not a new idea – similar approaches
have been known under the name invertible actions for a
long time (e. g., (Koehler and Hoffmann 2000)). For ev-
ery action a, one postulates the existence of a correspond-
ing inverse action a′. That action must be applicable be-
hind a, ensured in FDR by pre(a′) ⊆ prevail(a) ∪ eff(a);
and it must undo a exactly, ensured in FDR by V(eff(a′)) =
V(eff(a)) ⊆ V(pre(a)) and eff(a′) = pre(a)[V(eff(a))]. For
any reachable state s, we can then revert to the initial state I
simply by inverting the path that lead from I to s.

As we now show, our setting allows a much less restrictive
definition. What’s more, the definition is per-variable, iden-
tifying a subset VI ⊆ V of variables (the invertible ones) that
can be painted black in principle. This enables efficient red-
black relaxation design: Identify the set VI , paint all other
variables red, keep painting more variables red until there
are no more cycles in the black causal graph.

Once we have selected the red variables, every action will
affect at most one black variable (otherwise, there would be
cycles between the black effect variables). Since red vari-
ables accumulate their values anyway, the only effect we
need to invert is the black one. This corresponds to inverting
a single arc (d, d′) in a domain transition graph. Further-
more, both the outside condition φ and the outside effect ψ
of (d, d′) will remain true and can be used as conditions for
the inverse arc: For (u, e) ∈ ψ, this is because umust be red.
For (u, e) ∈ φ, if u is red there is nothing to show, and if u is
black then (u, e) must be a prevail condition because all the
outside effects are red. We obtain the following definition.

An arc (d, d′) is relaxed side effects invertible, RSE-
invertible for short, if there exists an arc (d′, d) with outside
condition φ′ ⊆ φ∪ψ where φ andψ are the outside condition
respectively outside effect of (d, d′).2 A variable v is RSE-
invertible if all arcs in DTGΠ(v) are RSE-invertible, and an
RB task is RSE-invertible if all its black variables are. This
can be tested in polynomial time. Furthermore:

Theorem 1 Any RSE-invertible RB task with acyclic black
causal graph is reversible.

We show that every action application can be undone, i. e.,
given state s and action a applicable to s, from sJ〈a〉K we
can reach a state s′ so that s′[V B] = s[V B]. If all variables
affected by a are red, s′ := sJ〈a〉K does the job. Otherwise, a
affects exactly one black variable v. Let (d, d′) be the arc in
DTGΠ(v) taken by a in s, let (d′, d) be the inverse arc, and
let a′ be the action that induces (d′, d). Then a′ is applicable
in sJ〈a〉K: Using the notations from above, pre(a′) ⊆ φ′ ∪
{(v, d′)}, where φ′ ⊆ φ ∪ ψ. As discussed above, both φ
and ψ are true in sJ〈a〉K. Clearly, s′ := sJ〈a, a′〉K has the
required property. This concludes the proof of Theorem 1.

In the example, variables R and F are RSE-invertible.
For R, arcs (i, i + 1) and (i + 1, i) where {i, i + 1} ∩
{4} = ∅ have empty outside conditions so are trivially RSE-
invertible; the other arcs all have outside condition {(O, 1)}
so are RSE-invertible, too. For F , arcs (1, 0) induced by
take(x, y) are inverted by arcs (0, 1) induced by drop(x, y):
φ′ ={(R, x), (y,R)} is contained in φ = {(R, x), (y, x)}∪
ψ = {(y,R)}; similarly vice versa.3

The outside condition of DTGΠ(R) arcs (4, 3) and (4, 5)
is non-standard in the sense that this condition is not ex-
plicitly specified in the IPC version of the GRID domain:
instead, the condition is an invariant based on the implicit
assumption that the robot is initially in an open position.
We have chosen this example to illustrate that, like previous
similar notions, RSE-invertibility can be subject to model-
ing details. It would be an option to use invariance analy-
sis (e. g., (Gerevini and Schubert 1998; Fox and Long 1998;

2This generalizes the earlier definition for actions: v being the
black effect variable of a and assuming for simplicity that every
effect variable is constrained by a precondition, the requirement is
pre(a′) ⊆ pre(a) ∪ eff(a) and eff(a′)[v] = pre(a)[v].

3Hoffmann (2011) defines a more restricted notion of invertibil-
ity (in a different context), requiring φ′ ⊆ φ rather than φ′ ⊆ φ∪ψ.
Note that, according to this definition, F is not invertible.

491

Rintanen 2000; Helmert 2009)) to detect implicit precondi-
tions, but we have not done so for the moment.

Tractable Red-Black Plan Generation
Theorem 1 and Katz et al.’s Theorem 9 immediately imply:

Corollary 1 Any RSE-invertible RB task Π with acyclic
black causal graph is solvable if and only if Π+ is.

In other words, existence of a relaxed plan implies exis-
tence of a red-black plan. But how to find that plan? Recall
that Katz et al. conjecture there is no polynomial-time “how
to” when relying on reversibility. Matters lighten up when
relying on RSE-invertibility instead:4

Theorem 2 Plan generation for RSE-invertible RB with
acyclic black causal graphs is polynomial-time.

We show that a relaxed plan can with polynomial over-
head be turned into a red-black plan. Figure 2 provides
pseudo-code; we use its notations in what follows. The idea
is to insert plan fragments achieving the black precondition
of the next action, when needed. Likewise for the goal.

Consider an iteration i of the main loop. Any red pre-
conditions of ai are true in the current state IJπK because
π includes the relaxed plan actions a1, . . . , ai−1 processed
so far. Unsatisfied black preconditions g are tackled by
ACHIEVE(π, g), solving an FDR task ΠB with goal g. As-
sume for the moment that this works correctly, i. e., the re-
turned action sequence πB is red-black applicable in the cur-
rent state IJπK of our RB task Π. ΠB ignores the red vari-
ables, but effects on these cannot hurt anyway, so ai is appli-
cable in IJπ ◦ πBK. Iterating the argument shows the claim.

We next prove that (i) ΠB is well-defined, that (ii) all its
domain transition graphs are strongly connected, and that
(iii) any plan πB for ΠB is, in our RB task Π, applicable in
the current state IJπK. This suffices because plan generation
for FDR with acyclic causal graphs and strongly connected
DTGs is tractable: Every such task is solvable, and a plan
in a succinct representation can be generated in polynomial
time. This follows from Theorem 23 of Chen and Gimenez
(2008) with Observation 7 of Helmert (2006). (The succinct
representation uses recursive macros for value pairs within
DTGs; it is needed as plans may be exponentially long.)

For (i), we need to show that all variable values occur-
ing in ΠB are indeed members of the respective variable
domains. This is obvious for IB and AB. It holds for GB

because by construction these are facts made true by the re-
laxed plan actions a1, . . . , ai−1 already processed.

For (ii), observe that all values in DTGΠB(v) are, by con-
struction, reached from I[v] by a sequence of arcs (d, d′) in-
duced by actions in π. So it suffices to prove that every such
arc has a corresponding arc (d′, d) in DTGΠB(v). Say v ∈
V B, and (d, d′) is an arc in DTGΠB(v) induced by aB where
a ∈ π. Because (d, d′) is RSE-invertible in Π, there exists
an action a′ ∈ A inducing an arc (d′, d) in DTGΠ(v) whose
outside condition is contained in pre(a) ∪ eff(a). Since, ob-
viously, pre(a) ∪ eff(a) ⊆ F , we get pre(a′) ⊆ F . Since

4This result does not hold for the weaker requirement of
bounded-size strongly connected components, as replacing fixed-
size sets of variables by single variables may lose invertibility.

Algorithm : UNRELAX(Π, π+)
main
// Π = 〈V B, V R, A, I,G〉 and π+ = 〈a1, . . . , an〉
π ← 〈a1〉
for i = 2 to n

do


if pre(ai)[V

B] 6⊆ IJπK

then
{
πB ← ACHIEVE(pre(ai)[V

B])
π ← π ◦ πB

π ← π ◦ 〈ai〉
if G[V B] 6⊆ IJπK

then
{
πB ← ACHIEVE(G[V B])
π ← π ◦ πB

procedure ACHIEVE(π, g)
F ← I ∪

⋃
a∈π eff(a)

for v ∈ V B

do DB(v)← {d | d ∈ D(v), (v, d) ∈ F}
IB ← IJπK[V B]
GB ← g
AB ← {aB | a ∈ A, aB = 〈pre(a)[V B], eff(a)[V B]〉,

pre(a) ⊆ F, eff(a)[V B] ⊆ F}
ΠB ← 〈V B, AB, IB, GB〉
〈a′B1 , . . . , a′Bk 〉 ← an FDR plan for ΠB

return 〈a′1, . . . , a′k〉
Figure 2: Algorithm used in the proof of Theorem 2.

a′ can have only one black effect, eff(a′)[V B] = {(v, d)}
which is contained in F . Thus a′B ∈ AB, and (d′, d) is an
arc in DTGΠB(v) as desired.

Finally, (iii) holds because, with pre(a) ⊆ F for all ac-
tions where aB ∈ AB, the red preconditions of all these a
are true in the current state IJπK. So applicability of πB in
IJπK, in Π, depends on the black variables only, all of which
are contained in ΠB. This concludes the proof of Theorem 2.

To illustrate, consider again our running example. For
V B = {R,F}, the example is in our tractable fragment (Fig-
ure 1 (b); R and F are RSE-invertible). Say the relaxed plan
π+ is: move(1, 2), take(2, A), move(2, 3), open(3, 4, A),
move(3, 4), move(4, 5), move(5, 6), move(6, 7), take(7, B),
drop(1, B). In UNRELAX(Π, π+), there will be no
calls to ACHIEVE(π, g) until ai=take(7, B), for which
ACHIEVE(π, g) constructs Π′ with goal {(R, 7), (F, 1)},
yielding π′ = 〈drop(7, A)〉 which is added to π. The
next iteration calls ACHIEVE(π, g) for the precondition of
drop(1, B), yielding π′ moving R back to 1. The algorithm
then stops with π being a real plan and yielding the perfect
heuristic 17.

The UNRELAX algorithm we just presented is feasible in
theory. But solving one of the planning tasks ΠB roughly
corresponds to a call of the causal graph heuristic (Helmert
2006), and there will typically be many such calls for every
red-black plan. So, will the benefit outweigh the computa-
tional overhead in practice? We leave that question open for
now, concentrating instead on a much simpler RB fragment:

Corollary 2 Plan generation for RSE-invertible RB where
the black causal graphs contain no arcs is polynomial-time.

To reach this fragment, “empty” black causal graphs, we
keep painting variables red until at least one of the incident
vertices of every causal graph arc is red. During UNRE-

492

LAX, solving ΠB then consists in finding, for each black v
whose value d is not the required one d′, a path in DTGΠ(v)
from d to d′ all of whose (red) outside conditions are al-
ready true. Our implementation does so using Dijkstra’s al-
gorithm. (Note that red-black plans are polynomial-length
here.)

It may appear disappointing to focus on empty black
causal graphs, given the much more powerful DAG case
identified by Theorem 2. Note, however, that the “empty”
case is far from trivial: The black variables do not interact
directly, but do interact via the red variables.5 Furthermore,
as we shall see, even that case poses major challenges, that
need to be addressed before proceeding to more complex
constructions: The approach is prone to over-estimation.

Implementation
Over-estimation is incurred by following the decisions of a
relaxed plan. Say the relaxed plan in our example starts with
move(1, 2), move(2, 3), take(2, A), open(3, 4, A). Then we
need to insert moves from 3 to 2 in front of take(2, A), and
another move back from 2 to 3 in front of open(3, 4, A).
Similar phenomena occur massively in domains like LOGIS-
TICS, where a relaxed plan may schedule all moves before
the loads/unloads: We will uselessly turn the relaxed moves
into an actual path, then do the same moves all over again
when the loads/unloads come around. To ameliorate this, we
employ a simple relaxed plan reordering step before calling
UNRELAX. We forward, i. e., move as close as possible to
the start of the relaxed plan, all actions without black ef-
fects.6 The rationale is that these actions will not interfere
with the remainder of the relaxed plan. We denote this tech-
nique with F for “forward” and omit the “F” when not using
it. F does help to reduce over-estimation, but does not get rid
of it. Over-estimation remains the most important weakness
of our heuristic; we get back to this later.

A simple optimization is to test, in every call to the heuris-
tic, whether the red-black plan generated is actually a real
plan, and if so, stop the search. We denote this technique
with S for “stop” and omit the “S” when not using it.

Finally, we need a technique to choose the red variables.
As earlier hinted, we start by painting red all variables that
are not RSE-invertible. Further, we paint red all causal graph
leaves because that does not affect the heuristic. From the
remaining variable set, we then iteratively pick a variable v
to be painted red next, until there are no more arcs between
black variables. Our techniques differ in how they choose v:
• A: Select v with the maximal number of incident arcs to

black variables; break ties by smaller domain size.
• C: Select v with the minimal number of conflicts, i. e.,

relaxed plan actions with a precondition on v that will be
violated when executing the relaxed plan with black v.
• C-: Like C but with the maximal number of conflicts.

5To prove Corollary 2 separately, the same observations (i-iii)
are required. The only aspect that trivializes is solving ΠB.

6To avoid having to check relaxed plan validity every time we
want to move a in front of a′, we just check whether a′ achieves a
precondition of a, and if so, stop moving a.

The intuition behind A is to minimize the number (and the
domain sizes) of red variables. The intuition behind C is for
the least important variables to be red. C- is a sanity test
painting the most important variables red.

Experiments
The experiments were run on Intel(R) Xeon(R) CPU X5690
machines, with time (memory) limits of 30 minutes (2 GB).
We ran all STRIPS benchmarks from the IPC; for space
reasons, we present results only for IPC 2002 through to
IPC 2011. Since the 2008 domains were run also in 2011,
we omit the 2008 benchmarks to avoid a bias on these do-
mains. Our implementation deals with additive action costs,
but for the sake of simplicity we consider uniform costs here
(i. e., we ignore action costs where specified). Furthermore,
since our techniques do not do anything if there are no RSE-
invertible variables, we omit instances in which that is the
case (and thus the whole domain for Airport, Freecell, Park-
ing, Pathways-noneg, and Openstacks domains).

Our main objective in this work is to improve on the re-
laxed plan heuristic, so we compare performance against
that heuristic. Precisely, we compare against this heuris-
tic’s implementation in Fast Downward. We run a configu-
ration of Fast Downward commonly used with inadmissible
heuristics, namely greedy best-first search with lazy evalua-
tion and a second open list for states resulting from preferred
operators (Helmert 2006). To enhance comparability, we did
not modify the preferred operators, i. e., all our red-black re-
laxed plan heuristics simply take these from the relaxed plan.

We also compare to the method proposed by Keyder et
al. (2012), that shares with our work the ability to interpo-
late between monotonic and real planning. Precisely, we use
two variants of this heuristic, that we refer to as Keyd’12
and Keyd’13. Keyd’12 is the overall best-performing con-
figuration from the experiments as published at ICAPS’12.
Keyd’13 is the overall best-performing configuration from a
more recent experiment run by Keyder et al., across all IPC
benchmarks (unpublished; private communication).

We ran 12 variants of our own heuristic, switching F and
S on/off, and running one of A, C, or C-. Table 1 provides
an overview pointing out the main observations.

Coverage, and overall coverage especially, is a very crude
criterion, but it serves to make basic summary observations.
What we see in Table 1 is that our best configuration AFS
outperforms both FF and Keyder et al. by a reasonable mar-
gin. We see that the F technique helps a bit, and that S is
crucial for coverage on these benchmarks (although not for
FF, because relaxed plans rarely are real plans). The suc-
cess of F can be traced to improved heuristic accuracy (data
omitted). The success of S is mainly due to Visitall, where
the red-black plan for the initial state always solves the orig-
inal planning task, so this domain is solved without search
(the same happens, by the way, in the Logistics and Miconic
domains not shown in the table).7

7We note that (reported e. g. by Keyder et al.) the FF heuristic
covers Visitall when given much more memory. Covering it with-
out search is, of course, better for any memory limit.

493

Coverage Time FF/OWN Evaluations FF/OWN H-time OWN/FF
A C C- AFS CFS AFS CFS AF

Keyd’12 Keyd’13 FF FF S FS S F FS FS med med min med max min med max med max

Barman 20/20 4 18 19 19 20 19 20 20 20 7.56 122.86 0.80 8.40 433.04 1.44 134.80 513.57 1.24 1.56
Depot 22/22 21 21 18 18 19 19 18 19 19 0.91 0.93 0.15 1.03 46.50 0.15 1.03 46.50 1.06 3.73
Driverlog 20/20 20 20 20 20 20 20 20 20 20 1.00 1.00 0.28 0.96 16.00 0.23 1.02 10.51 1.08 2.96
Elevators 20/20 19 18 20 20 20 20 20 8 20 0.92 0.08 0.54 1.00 5.84 0.02 0.11 0.67 1.09 1.39
Floortile 20/20 20 20 5 5 5 6 5 5 5 0.51 0.46 0.54 0.89 237.06 0.54 0.89 237.06 1.83 7.10
Nomystery 20/20 6 6 10 10 6 5 6 6 6 0.88 0.88 0.01 0.66 2.19 0.01 0.66 2.19 1.03 1.62
Parcprinter 13/20 3 1 13 13 13 9 13 13 13 1.00 1.00 0.01 1.08 1708.22 0.01 1.08 1708.22 1.01 12.84
Pegsol 20/20 19 20 20 20 20 20 20 20 20 1.00 1.00 0.14 1.02 7.35 0.10 1.00 21.83 1.00 3.22
Pipes-notank 40/50 33 33 33 33 33 33 33 33 33 0.91 1.00 0.79 1.02 16.62 0.75 1.03 17.31 1.08 3.36
Pipes-tank 40/50 29 29 29 29 29 31 29 29 29 0.91 0.70 0.14 1.01 70.85 0.13 1.00 70.85 1.33 2.71
Psr-small 50/50 50 50 50 50 50 50 50 50 50 1.00 1.00 1.00 1.03 1.29 1.00 1.03 1.29 1.00 5.20
Rovers 40/40 40 40 40 40 40 40 40 40 40 1.00 1.00 0.45 1.19 11.00 0.58 1.27 11.00 1.15 2.08
Satellite 36/36 34 34 36 36 36 36 35 36 36 1.00 1.00 0.61 1.13 3405.50 0.61 1.20 3405.50 1.25 2.01
Scanalyzer 14/20 14 14 14 14 14 14 14 14 14 0.89 1.00 0.33 1.04 2.08 0.06 1.15 10.14 1.12 2.39
Sokoban 20/20 17 16 19 19 19 19 19 18 19 0.59 0.25 0.10 1.01 109.44 0.01 1.12 109.44 1.92 5.28
Tidybot 20/20 15 12 15 15 13 13 13 17 14 0.69 0.87 1.01 1.05 1.73 0.19 1.08 2.49 1.66 2.44
Tpp 30/30 30 30 30 30 29 29 29 29 29 1.00 1.00 0.05 0.78 29.00 0.05 0.78 29.00 1.04 1.93
Transport 20/20 11 11 10 10 10 10 10 8 9 1.25 1.49 0.36 1.22 9.85 0.21 0.64 2.81 1.12 1.91
Trucks 30/30 14 14 18 18 20 19 20 19 18 1.00 0.54 0.02 1.01 38.56 0.02 0.63 92.54 1.13 6.43
Visitall 20/20 20 20 3 3 20 20 4 20 20 14.40 14.40 15533 18813 409538 15533 18813 409538 2.79 3.12
Woodworking 20/20 20 20 20 20 20 20 20 20 20 0.65 0.66 0.92 1.00 6.00 0.92 1.00 6.00 0.92 1.00
Zenotravel 20/20 20 20 20 20 20 20 20 20 20 1.00 1.00 0.54 1.29 6.11 0.54 1.29 6.11 1.14 1.63∑

555/588 459 467 462 462 476 472 458 464 474

Table 1: Selected results on IPC 2002–IPC 2011 STRIPS benchmarks with at least one RSE-invertible variable, omitting IPC
2008 to avoid domain duplication, and ignoring action costs. # is the number of such instances/overall per domain. Keyd’12
and Keyd’13 are heuristics by Keyder et al. (2012), FF is Fast Downward’s relaxed plan heuristic, and A, C, C-, F, and S refer to
our implementation options. Time is total runtime, Evaluations is the number of calls to the heuristic, and H-time is the average
runtime taken by such a call. Data for these measures are shown in terms of per-task ratios against FF as indicated. We show
features (median, min, max) of that ratio’s per-domain distribution on the instances solved by both planners involved.

C- performs better than C. This is interesting because in
C- the “most important” variables are red, suggesting that
our heuristic becomes better as we make less use of its
power. We get back to this below. Note though that the
disadvantage of CFS is primarily due to Elevators, without
which it would tie in with AFS for first place. Thus the re-
mainder of the table focuses on these two configurations.

A quick glance at the runtime data shows that there are not
one, but two, domains where our techniques dramatically
beat FF. The median runtime speed-up for AFS in Barman
is 122.86. Apart from these two domains, the differences in
median runtime are small (most notable exception: AFS in
Elevators) and the advantage is more often on FF’s side.

It turns out to be crucial to have a look beyond median
performance, which we do for search space size (Evalua-
tions in Table 1). In 14 domains for AFS, and in 15 domains
for CFS, the maximum search space reduction is by 1–3 or-
ders of magnitude! This still is true of 9 (10) domains for AF
(CF). The median (and the geometric mean) does not show
this because, in all but Barman and Visitall, the reduction is
outweighed by equally large search space increases in other
instances of the domain.

The heuristic runtime data in Table 1 simply shows that
the slow-down typically is small.

Discussion
The red-black relaxed plan heuristics we propose outper-
form the relaxed plan heuristic consistently in two domains,
and outperform it sometimes in many domains. On the neg-
ative side, in these latter domains they equally often deterio-
rate performance, and sometimes selecting the “wrong” red

variables (C-) works better. Both negative observations ap-
pear to have one common reason: unstable heuristic values
caused by over-estimation due to arbitrary choices made in
the relaxed plans used as input to the UNRELAX algorithm.

In ELEVATORS, e. g., C paints the lift position variables
black, which seems the right choice because these have to
move back and forth in a plan (C- tends to paint passen-
ger variables black). But the relaxed plan will typically use
actions of the form move(c,X) where c is the current lift posi-
tion and X are floors that need to be visited. Given this input,
whenever the lift needs to go from Y to X, UNRELAX uses
not move(Y,X) but move(Y,c) followed by move(c,X). Fur-
ther, even when reordering the relaxed plan using F, board-
ing/leaving actions are not reliably moved up front, causing
UNRELAX to uselessly move elevators back and forth with-
out taking care of any passengers. If lift capacity variables
are black, every time a passenger boards/leaves, UNRELAX
may uselessly board/leave other passengers because relaxed
plans are free to choose whichever capacity values. The lat-
ter two issues are especially problematic as their impact on
red-black plan length is highly dependent on arbitrary per-
state choices, with an unpredictable effect on search. It is
this per-state arbitrariness that likely leads to the observed
dramatic search space size variance in many domains.

In conclusion, red-black relaxed plan heuristics have great
potential to reduce search, but we need more stable ways to
compute them. One could minimize conflicts in the input re-
laxed plans (Baier and Botea 2009). Research is needed into
red-black planning methods that rely less on relaxed plans,
or that do not rely on these at all. We are confident this
journey will ultimately lead to a quantum leap in satisficing

494

heuristic search planning.

Acknowledgments
Carmel Domshlak’s work was partially supported by ISF
grant 1045/12 and the Technion-Microsoft E-Commerce Re-
search Center.

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS 2009). AAAI Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.
Cai, D.; Hoffmann, J.; and Helmert, M. 2009. Enhancing the
context-enhanced additive heuristic with precedence con-
straints. In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis,
I., eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS 2009), 50–57.
AAAI Press.
Chen, H., and Giménez, O. 2008. Causal graphs and struc-
turally restricted planning. In Rintanen, J.; Nebel, B.; Beck,
J. C.; and Hansen, E., eds., Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2008), 36–43. AAAI Press.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.
Fox, M., and Long, D. 2001. Stan4: A hybrid planning
strategy based on subproblem abstraction. The AI Magazine
22(3):81–84.
Gerevini, A., and Schubert, L. 1998. Inferring state-
constraints for domain independent planning. In Mostow, J.,
and Rich, C., eds., Proceedings of the 15th National Confer-
ence of the American Association for Artificial Intelligence
(AAAI-98), 905–912. Madison, WI, USA: MIT Press.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012), 74–82. AAAI Press.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS 2008), 140–147. AAAI Press.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Koenig, S.; Zilberstein, S.; and Koehler,
J., eds., Proceedings of the 14th International Conference on

Automated Planning and Scheduling (ICAPS-04), 161–170.
Whistler, Canada: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. 173:503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2011. Analyzing search topology without run-
ning any search: On the connection between causal graphs
and h+. Journal of Artificial Intelligence Research 41:155–
229.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013. Who said
we need to relax All variables? In Borrajo, D.; Fratini, S.;
Kambhampati, S.; and Oddi, A., eds., Proceedings of the
23rd International Conference on Automated Planning and
Scheduling (ICAPS 2013). AAAI Press. Forthcoming.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Ghallab, M., ed., Proceedings
of the 18th European Conference on Artificial Intelligence
(ECAI-08), 588–592. Patras, Greece: Wiley.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012). AAAI Press.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven plan-
ning algorithm. Journal of Artificial Intelligence Research
12:338–386.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. In Kautz, H. A., and Porter, B., eds., Proceedings
of the 17th National Conference of the American Association
for Artificial Intelligence (AAAI-00), 806–811. Austin, TX,
USA: AAAI Press.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Koenig, S.; Zilberstein, S.; and Koehler, J.,
eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS-04), 150–160.
Whistler, Canada: Morgan Kaufmann.

495

