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Abstract—In this paper, we present the design, implementation,
and evaluation of an end-to-end camera planning system called
Darshak. Darshak automatically constructs cinematic narrative
discourse of a given story in a 3-D virtual environment. It utilizes a
hierarchical partial-order causal link (POCL) planning algorithm
to generate narrative plans that contain story events and camera
directives for filming them. Dramatic situation patterns, com-
monly used by writers of fictional narratives, are formalized as
communicative plan operators that provide a basis for structuring
the cinematic content of the story’s visualization. The dramatic
patterns are realized through abstract communicative operators
that represent operations on a viewer’s beliefs about the story and
its telling. Camera shot compositions and transitions are defined
in this plan-based framework as execution primitives. Darshak’s
performance is evaluated through a novel user study based on
techniques used to evaluate existing cognitive models of narrative
comprehension. Initial study reveals significant effect of the choice
of visualization strategies on measured viewer comprehension. It
further shows significant effect of Darshak’s choice of visualiza-
tion strategy on comprehension.

Index Terms—Discourse generation, machinima generation,
planning.

T HE automatic generation and communication of narrative
are long-standing research areas within artificial intelli-

gence [1]–[4]. To date, much of the research on story genera-
tion has focused either on computational models of plot and the
construction of story events or on the communication of a given
plot through the textual medium. Problems central to the tex-
tual communication of a narrative have much in common with
challenges found in the generation of other genres of natural
language discourse, including the critical issues of content de-
termination (what propositions should appear in the text) and
ordering (how should the propositions describing a story be or-
dered so as to present a coherent story to a reader).

Text-based storytelling systems (e.g., [4]) typically build
upon computational models of discourse generation in order
to produce coherent narratives. While these approaches have
been successful within the text medium, less attention has been
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focused on techniques for the creation of effective cinematic
discourse—the creation of narrative told using a virtual camera
operating within a 3-D environment. As we know from our
experiences as film watchers, cinema is a powerful and effective
medium for communicating narratives.

This paper presents computational techniques for automat-
ically constructing camera shot sequences for telling a story.
This is one element of cinematic visual discourse, i.e., commu-
nication of stories through a sequence of intentionally crafted
camera shots, and is implemented in a system called Darshak.1

This is accomplished by representing cinematic conventions
as plan operators and developing a planning algorithm that
constructs visual discourse plans containing cinematic actions.
Camera shots are represented as primitive operators whose
execution manipulates the beliefs of viewers about the story
world.

The discourse planning algorithm constructs a schedule of
camera shots for a given story and a set of communicative goals.
Saliency, coherency, and temporal consistency are identified as
the three desired properties of the algorithm. Saliency is guaran-
teed by inclusion of explicit binding constraints on the camera
operators relating their execution to story world entities. Tem-
poral consistency is obtained through an explicit representa-
tion of temporal variables and a temporal consistency algorithm,
added as an extension to a conventional discourse planning algo-
rithm. Coherency is indirectly evaluated through cognitive met-
rics of question answering.

Evaluation of intelligent camera control systems is a chal-
lenging problem [5], primarily because there are several dimen-
sions across which camera systems can be evaluated. Most cur-
rent camera systems are evaluated based on their performance
in terms of speed of calculating camera positions. While it is
difficult to evaluate stylistic capabilities of such systems, it is
possible to evaluate their efficacy in communicating the under-
lying narrative content. For this, an experiment was designed
for comparing the effectiveness of different visualization strate-
gies in communicating a story. This design is based on estab-
lished cognitive models of story understanding [6] that have
been successfully used to evaluate plan-based computational
models of narrative [7]. Initial experiments establish that vi-
sualization strategy significantly affects viewer comprehension,
and intentionally generated visualizations by the system result
in improved comprehension over naive approaches. Empirical
evaluation of such a subjective metric as comprehension is chal-
lenging due to the following reasons. 1) Viewers rarely share a
common definition of coherence. They cannot be asked directly
to give judgement on coherence. 2) Viewers differ in their per-

1Darshak is a Sanskrit word meaning viewer.
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ceived coherence and the values reported by them cannot be di-
rectly mapped to a uniform scale. 3) Coherence is a property of
both the cinematic discourse and the story plan itself.

In the remainder of this paper, we first present related work
on narratology and intelligent camera control. Then, we dis-
cuss and motivate the central problem addressed by Darshak.
We follow this discussion with the details of the planning algo-
rithm and a detailed example of cinematic generation. Finally,
we present an empirical evaluation of the system.

I. RELATED WORK

The work described here employs a bipartite representation of
narrative proposed by Chatman [11]. In Chatman’s model, a nar-
rative can be viewed as composed of two interrelated parts: the
story and the discourse. The story describes the fictional world
with all its content, characters, actions, events, and settings. The
discourse contains medium-specific communicative content re-
sponsible for the telling of the narrative, for instance, a selec-
tion of a subset of events from the fabula, an ordering over these
events for recounting, and linguistic communicative actions to
tell the story. In this paper, our focus is on representation and
reasoning about elements at the discourse level, specifically nar-
rative discourse that is communicated visually through the use
of cinematic conventions by moving a virtual camera in a 3-D
environment rendered within a game engine.

One central problem in the automatic generation of cinematic
narrative discourse is the selection of viewpoints in 3-D space
that follows cinematic conventions and communicates the ele-
ments of the narrative unfolding in the 3-D environment. Pre-
vious work on intelligent camera control has focused mainly on
the frame-by-frame graphical placement of the camera to sat-
isfy given cinematic constraints [12]–[14]. Less attention has
been paid to informing the placement of the camera over time
based on the context of the story events [9], [15]. Evaluation of
these camera systems has either been on runtime performance
of algorithms [5], or user modeling based on specific interaction
models in interactive scenarios [16]. The problem of automati-
cally controlling the camera in 3-D environments has received
significant attention from the research community [17]. Earliest
approaches [18]–[20] focused on the mapping between the de-
grees of freedom (DOF) for input devices to 3-D camera move-
ment.

Generalized approaches have modeled camera control as
a constraint satisfaction or optimization problem. These ap-
proaches require the designer to define a set of required frame
properties which are then modeled either as an objective func-
tion to be maximized by the solver or as a set of constraints
that the camera configuration must satisfy. Optimization-based
systems, like CAMPLAN [21], seek to find the best camera
configuration for the given requirements. However, their
computational cost is often prohibitive. On the other hand,
constraint fulfilling systems [22] are much more efficient but
may not return any result if there is no configuration respecting
all the frame requirements.

Bares [23] addressed the issue by identifying conflicting con-
straints and producing multiple camera configurations corre-
sponding to the minimum number of nonconflicting subsets.

Bourne [24] extended Bares’ solution by adding a weight prop-
erty to each constraint to define a relaxation priority. A third set
of generalized approaches [25]–[27] combines constraint satis-
faction to select feasible 3-D volumes, optimizing search within
selected volumes.

The low-level camera control system that is implemented as
part of the Darshak system is based on Bares’ ConstraintCam
[12]. ConstraintCam is a real-time camera planner for com-
plex 3-D virtual environments. It creates camera shots which
satisfy user-specified goals in the form of geometric compo-
sition constraints. The system uses a modified constraint sat-
isfaction problem (CSP) representation with camera position

, view , field of view (FOV) and up vector
defined as the variables. The measure of satisfac-

tion of a constraint is calculated as a fractional value between
0 and 1. The total satisfaction measure for a given solution is
computed using the weighted sum of the satisfaction values of
all the constraints.

With advances in narrative-oriented graphical world and their
increasing use in training simulations and other pedagogically
oriented applications, research initially considered the question
of how to place the camera within a 3-D world. This question
was addressed by the Virtual Cinematographer [28] system by
formalizing idioms—stereotypical ways to film shots that were
identified by cinematographers based on their filmmaking expe-
riences. Other efforts used agent-based approaches, for instance,
modeling the camera as an invisible creature [29] inside a 3-D
world that responded to the emotion of the scene and its char-
acters to select an appropriate camera shot.

More recent approaches to camera control (e.g., [8] and [9]),
such as the one described in this paper, have started investigating
the motivation behind why the camera is being used in a partic-
ular manner. Such approaches, mainly oriented towards narra-
tive generation systems, consider the underlying context of the
narrative to generate planned action sequences for the camera.
They take into account the rhetorical coherence of these planned
action sequences and the communicative intentions of the cin-
ematographer during their construction. The challenges faced
by these systems are similar to problems addressed by work
on natural language discourse generation involving the selec-
tion of appropriate linguistic communicative actions in a textual
discourse. In this community, theories of text discourse struc-
tures [30], [31] have been successfully used as the basis for
the generation of coherent natural language discourse [32]–[34].
Integrating these theories with research on camera control has
led to implementation of multimodal systems [35] that use the
same underlying rhetorical structures to generate discourse in
the form of natural language as well as directives for the camera.

II. CINEMATIC NARRATIVE DISCOURSE GENERATION

Cinematic discourse in the Darshak system is generated by
a hierarchical partial-order causal link (POCL) planner whose
abstract actions represent cinematic patterns and whose primi-
tive actions correspond to individual camera shots. As shown in
Fig. 1, the system takes as input an operator library, a story plan,
and a set of communicative goals. The operator library contains
a collection of action operators that represent camera placement
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Fig. 1. Darshak architecture overview.

actions, transitions, abstract cinematic idioms, and narrative pat-
terns. Camera placement and transition actions, represented as
primitive operators, affect the focus of attention of the viewer
and have preconditions that encode continuity rules in cine-
matography. Operators representing abstract cinematic idioms
and narrative patterns affect the beliefs of the viewers and en-
code recipes for sequencing primitive or abstract operators. A
description of the story to be filmed is input as a plan data struc-
ture that contains the description of the initial state of the story
world, a set of goals achieved by the story characters’ actions,
and a totally ordered sequence of the story characters’ actions
and the causal relationships between them. The input story plan
is added to the knowledge base for the discourse planner in a
declarative form using first-order predicates that describe the el-
ements of the data structure. The communicative goals given to
the system describe a set of belief states to be established in the
mind of the viewer.

The cinematic discourse planning algorithm performs both
causal planning and temporal scheduling. To build a discourse
plan, it selects camera operators from the operator library and
adds them to the plan in order to satisfy specific communicative
goals or preconditions of other communicative actions already
in the plan. The algorithm binds variables in the camera opera-
tors, like start time and end time, relating the camera actions to
corresponding actions in the story plan.

The output of the planning algorithm is a plan data structure
containing a temporally ordered hierarchical structure of camera
operators with all operator variables bound. The resulting plan is
merged with the story plan and is sent to an execution manager
running on the Unreal Tournament game engine.

A. Criteria for Effective Cinematic Narrative Discourse

Within the context of this work, cinematic narrative dis-
course is a recounting of events occurring in a 3-D graphical
story world using a virtual camera. In our current work, we
focus on specific elements considered by cinematographers to

be central to a cinematic’s effectiveness. In order to produce
a system that generates effective cinematics, we define three
properties of the narrative, viz., saliency, coherence, and tem-
poral consistency, and have designed a cinematic discourse
generation algorithm to produce cinematics that demonstrate
these properties. While these properties have not been explicitly
addressed in previous approaches to the automatic generation
of story visualizations, we claim that they are central to the
comprehension of cinematic narrative. Consequently, Dar-
shak’s design works to ensure that they are demonstrated in the
cinematics it produces.

Selection of salient elements: Salient elements in a cinematic
discourse are elements from the story (e.g., events, characters,
objects, the relationships between them) that are relevant to in-
ferences needed for comprehension. Choices made by a narra-
tive generation system that determine which elements from the
story are to be included in its telling directly affect salience and
thus comprehension.

Plot coherence: Plot coherence can be described as the per-
ception by the audience that the main events of a narrative are
causally relevant to the story’s outcome. [3]. In our work, plot
coherence relates specifically to the perceived understanding of
the causal relationships between events that a viewer constructs
during narrative comprehension.

Temporal consistency: In this work, temporal consistency
refers to consistency in the timing of the movement and posi-
tioning of the camera in relation to the events that are being
filmed in the virtual world. Temporal consistency is closely
linked to the established conventions of cinematography
readily identified by viewers. Any inconsistencies in the timing
or placement of a camera affect the communicative meaning of
the shot as perceived by the audience.

B. Representation of Narrative Discourse
in a Planning Formalism

As mentioned above, we adopt Chatman’s [11] bipartite rep-
resentation of narrative in our work. In this model, a narrative
can be described as having a story—a set of causally related
events, and a discourse—the telling of story elements through a
specific medium. The frames, shots, and scenes described above
operate at the discourse level but are dependent on the story for
their content, drawn from the events, characters, settings, and
objects appearing in them. Further, the organization of narrative
discourse is shaped by information about relationships between
different story world elements as well as the communicative in-
tentions of the author/director.

The use of a hierarchical planning-based approach to cine-
matic discourse generation has several strengths. First, the capa-
bility of planning systems to reason about complex temporal and
causal relationships between constituent actions in a plan allows
them to compose cinematic plans that reflect both the compli-
cated intentional relationships between cinematic segments and
the causal and temporal relationships between camera actions
and the underlying story actions they are responsible for filming.
Second, the representation of abstraction over actions within hi-
erarchical planners allows a system builder to readily represent
both the hierarchical structure of a cinematic discourse as well
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as the patterns of cinematic action that are commonly used by
cinematographers to film scenes.

While a planning approach offers these representational
strengths, classical planning representations alone do not
capture many of the essential elements of narrative discourse.
For example, one assumption made in traditional planning is
that actions execute instantaneously and assert their effects
immediately. Another assumption often made is that any effect
asserted by an action holds unless another action explicitly
changes it. These assumptions are not always appropriate for
the characterization of cinematic discourse. For instance, the
effects of some camera actions hold only during the duration of
the actions’ execution, whether subsequent actions explicitly
reverse those effects. To address these issues, Darshak’s op-
erator representation is annotated with temporal variables that
are related to and constrained by events happening in the story
world. We describe the elements of our representation in more
detail below.

Typical POCL plan operators (e.g., those of UCPOP [36]) are
defined using a collection of 1) constant symbols that identify
objects in the domain, 2) variable symbols that range over the
set of all objects in the domain, 3) constraints or filter condi-
tions that describe invariant conditions in the world under which
a given operator is applicable, 4) preconditions that identify
changeable conditions in the world needed to hold immediately
prior to an action in order for the action to successful execute,
and 5) a set of effects that identify the exact ways that an ac-
tion’s successful execution changes the world. Darshak extends
this representation in the following ways.

• Variable symbols are of two types, viz., object variables
that range over the set of all constant symbols, and tem-
poral variables that appear as elements in the specification
of temporal constraints (described below).

• Temporal constraints are explicit specifications of the
timing relationships between the times named by temporal
variables (for instance, between execution times of camera
and story actions). Relationships between conditions that
describe temporal constraints are restricted to two types:
precedence (indicated using the symbol) and equality
(indicated using the symbol). This restriction enables
us to represent temporal constraints efficiently via a graph
with directed edges representing explicit relationships.

• Temporally indexed conditions are of the form

(1)

where is a predicate with arguments through that
holds for time such that .

1) Declarative Story Representation: The story provided to
Darshak as input is given itself in the form of a POCL-style plan
data structure and contains domain predicates, instantiated ac-
tions (plan steps), causal links between actions, ordering con-
straints on those actions, and goals of the story. This plan data
structure is translated into a first-order representation of its el-
ements and added to the camera planner’s knowledge base as
domain information for the camera planning problem. Table I
shows the representation of a fragment of a story as input to the
camera planning algorithm.

TABLE I
STORY PLAN DESCRIPTION GIVEN AS AN INPUT TO THE CAMERA PLANNER

TABLE II
LOOKAT OPERATOR AND CORRESPONDING SHOT

This story plan representation is used in the definitions of
camera operators to describe their applicability conditions, con-
straining the selection of camera actions for use when filming
different story elements. In the following sections, we describe
our formalization of communicative operators used by Darshak
across three hierarchical layers, viz., primitive shots, episodes/
abstract film idioms, and dramatic patterns. A library of commu-
nicative operators composed from these three layers is an addi-
tional input to the camera planning algorithm (Fig. 1).

2) Primitive Shots: A primitive shot in Darshak defines the
characteristics of an action to be carried out directly by the phys-
ical camera. For instance, the shot in Table II is a closeup of a
character shown from the front. The operator that describes the
shot is shown in Table II.

Fortunately for our representational needs, cinematographers
typically make use of a relatively small number of primitive
camera shots [37]. From a cinematographer’s perspective, prim-
itive shot specifications describe the composition of the scene
with respect to the underlying geometric context. The main goal
of a cinematographer when choosing a primitive shot is to com-
pose the shot such that the viewer focuses on a certain aspect
of the scene that is being framed. Through a sequence of co-
herent focus shifts, scenes are built that communicate the story.
Represented as plan operators, primitive shot definitions cap-
ture certain coherence and shot-composition rules. For example,
in order to avoid disorienting the viewer, one of the precondi-
tions of a tracking shot—a shot where the camera moves relative
to the movement of the view target—is that the actor or object
that the operator is tracking should be in focus before movement
starts. Adding a precondition (infocus ?f)@[Tstart) to a tracking
camera shot operator ensures that a jump to tracking camera will
not occur if it involves a focus shift from another object or from
a different shot composition.

Composition and focus of primitive shots contributes to the
overall dramatic presentation of the story. Van Sijll [39] lists
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100 camera shot conventions that are used to convey various
dramatic elements in movies. Each shot’s dramatic value is de-
scribed with respect to its screenplay and blocking. Darshak’s
representation of operators captures a subset of these dramatic
effects of camera actions. Nine primitive operators and several
variations of these operators are implemented in the system. For
instance, three variants of the LookAt operator are: LookAt-
Close, LookAt-Medium, and LookAt-LongShot that view an
actor or object from progressively farther distances with appro-
priate cinematic framing for each distance.

3) Episodes/Abstract Scenes: Film idioms lend them-
selves to a hierarchical representation, with subparts that are
themselves characterizations of idioms and a reduction that ter-
minates in the types of primitive shots described above. While
primitive shot types determine viewer’s focus, abstract shot
types represent the effect of focus and focus shifts on the mental
states of the viewer. Individual shots like the ones described
in Section II-B2 have a denotative meaning associated with
them that focus the viewer’s attention on elements in the frame.
Abstract shot types also encode relationships between primitive
operators and provide a mechanism for expressing established
idioms as specific recipes or decompositions. Abstract plan
operators, such as those used in a typical hierarchical task net-
work (HTN)-style planning [40], are used in Darshak to capture
such communicative phenomena by explicitly representing
the different ways in which sequences of more primitive shots
can convey discourse-level information about the story being
filmed.

4) Dramatic Patterns in Narrative: As described earlier,
there are established patterns of effective storytelling that have
been documented by narrative theorists. These patterns im-
plicitly manipulate focus of attention in effective ways. These
narrative patterns are also operationalized as plan operators
in Darshak. This representation allows the operator designer
to specify constraints on salient elements according to their
preferences.

There are two features of narrative patterns that facilitate their
formalization into a computational model. First, the patterns
are described using parameters and collections of properties
of those parameters. For instance, in the pattern Deliverance
(Table III), there are three participants, each with distinct roles
(i.e., sinner, punisher). Participants are referred to in this oper-
ator schematically via parameters, as the definition refers not
to specific individuals but to role fillers that can be mapped to
characters across many stories. These parameters and their char-
acteristics guide the story director to establish certain character-
istics of each character he or she introduces. The restrictions on
parameters also constrain choice of character actions that can
be filmed in order to explicitly achieve the communicative goals
of the dramatic pattern. Another important feature of narrative
patterns is that there are clearly documented variations of each
pattern and their communicative effect. So, while the pattern
definition is general, variations in realization are also described.

Using these two features, it is possible to describe narrative
patterns as hierarchical plan operators. The parameters of the
pattern are captured using the parameters of the operator. The
role of each parameter within the context of the story is rep-
resented by constraints on the parameters of the operator. The

TABLE III
OPERATOR DEFINITION OF DELIVERANCE PATTERN

variations of each pattern can be expressed in terms of collec-
tions of alternative decomposition operators, all decomposing
the same abstract action but each with varying sets of applica-
bility constraints.

The set of dramatic patterns that form the basis of Darshak’s
operator representation were identified by Polti based on
exhaustive analysis of a large corpus of popular stories [41],
ranging in genre from Greek mythology to late 19th century
literature. These patterns were initially identified and individ-
ually described in much detail. Subsequent to their definition,
however, there has not been an attempt to describe the relation-
ships between these patterns. In our work, patterns identified by
Polti are extended with the addition of relationships between
patterns using constructs from plan operators (specifically,
preconditions and ordering constraints on the patterns). These
relationships are expressed as causal links, ordering links, and
decomposition links within a recipe (that is, a specification
of the means by which the abstract action’s effects are to
be achieved by a particular subplan). The main rationale for
choosing Polti’s patterns as the basis for our formalism is be-
cause these patterns lend themselves to direct formalization as
plan operators with character roles represented in constrained
parameterized scenes. The computational techniques described
in this paper are independent of the underlying theory so long
as the theory provides a basis for representing actors, actions,
causality, temporality, and constraints on these elements of the
story.

To better illustrate the formalization of dramatic patterns,
consider the operator representation of the pattern Deliverance
shown in Table III. Deliverance, as described by Polti, occurs
when an unfortunate individual or group commanded by a
threatener is rescued by an unexpected rescuer. This pattern is
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common in stories with a protagonist who rises above his or
her capabilities to perform a heroic rescue. The parameters for
deliverance are: the unfortunate, the threatener, and the rescuer.
The communicative recipe for Deliverance involves making the
user believe that 1) there is a threatener who is controlling the
unfortunate, 2) the unfortunate does not have hope of escaping,
and 3) an unexpected rescuer executes an action that leads to
the threatener being overpowered and the unfortunate rescued.

In order to communicate deliverance effectively, a director
first needs to satisfy certain preconditions regarding the beliefs
of the viewer. One such precondition is that the viewer should
believe that the protagonist cannot be expected to succeed in res-
cuing the unfortunate. This can be achieved using other patterns,
for instance, ones that prompt the viewer when to expect the res-
cuer to fail by showing examples of his or her earlier failed at-
tempts. The operator representation of Deliverance is shown in
Table III.

C. DPOCL-T Algorithm for Generating Cinematic Discourse

In addition to their use in generating plans for physical ac-
tivity (e.g., robot task planning), planning algorithms have been
successfully used in the generation of effective textual discourse
[34] as well as for story generation [43]. As described in the
previous section, the representation of narrative discourse op-
erators in Darshak encodes a rich formal representation of the
causal structure of the plan. Each dependency between goals,
preconditions, and effects is carefully delineated during the plan
construction process. The system searches through the space of
all possible plans during the construction process and thus can
characterize the plan it produces relative to the broader context
of other potential solutions to its planning problems.

To build Darshak, we extended our earlier work [42] on the
DPOCL hierarchical planning algorithm to create decompo-
sitional POCL planning algorithm with temporal constraints
(DPOCL-T). DPOCL-T forms the core planning algorithm used
in Darshak.2 The following section provides formal definitions
of the constituent parts that make up a DPOCL-T planning
problem.

1) Action Representation: DPOCL-T supports durative ac-
tions with temporal constraints on temporal variables. Actions
are defined using a set of action schemata consisting of an ac-
tion type specification, a set of free object variables, a set of
temporal variables, a set of temporally indexed preconditions of
the action, a set of temporally indexed effects, a set of binding
constraints on the variables of the action, and a set of temporal
constraints on the temporal variables of the action.

This action representation differs from previous approaches
to discourse planning in its explicit representation of temporal
variables and constraints on these variables. The set of temporal
variables implicitly contains two distinguished symbols that de-
note the start and the end of the action instantiated from the
schema in which they occur.

Actions that are directly executable by a camera are called
primitive. Actions that represent abstractions of more primitive
actions are called abstract actions. Abstract actions have zero
or more decomposition schemata; each decomposition scheme

2Space limitations prevent us from providing a full discussion of the DPOCL
planning algorithm. For more details, see [42].

for a given abstract action describes a distinct recipe or subplan
for achieving the abstract action’s communicative goals.

D. Domain, Problem, and Plan

A planning problem in DPOCL-T specifies a starting world
state, a partial description of desired goal state, and a set of op-
erators that are available for execution in the world. Since con-
ditions are temporally indexed, the initial state of the camera
problem not only specifies the state of the world at the begin-
ning of execution but also indicates the story actions and events
that occur in the future (that is, during the temporal extent of
the camera plan). As a result, DPOCL-T is able to exploit this
knowledge to generate camera plans that carefully coordinate
their actions with those of the unfolding story. DPOCL-T plans
are similar to those built by DPOCL except for the manner in
which temporal ordering is specified. In DPOCL, the relative or-
dering of steps is expressed through explicit pairwise ordering
links defining a partial order on step execution. In DPOCL-T, the
ordering is implicitly expressed by the temporally constrained
variables of the steps.

E. DPOCL-T Algorithm

Given a problem definition as described in the previous sec-
tion, the planning algorithm generates a space of possible plans
whose execution starting in the problem’s initial state would
satisfy the goals specified in the problem’s goal state. The
DPOCL-T algorithm generates plans using a refinement search
through this space. The algorithm is provided in Fig. 2. At the
top level, DPOCL-T creates a graph of partial plans. At each
iteration, the system picks a node from the fringe of the graph
and generates a set of child nodes from it based on the plan
it represents. Plans at these child nodes represent single-step
refinements of the plan at their parent node. Plan refinement
involves either causal planning, where steps’ preconditions are
established by the addition of new preceding steps in the plan,
or episodic decomposition, where subplans for abstract actions
are added to the plan. The final step of each iteration involves
checks to resolve any causal or temporal inconsistencies that
have been added to the child plans during plan refinement. Iter-
ation halts when a child plan is created that has no flaws (that
is, that has no conflicts, no preconditions that are not causally
established and no abstract steps without specified subplans).

1) Causal Planning: In conventional planning algorithms,
an action is added to a plan being constructed just when one
of the action’s effects establishes an unestablished precondition
of another step in the plan. To mark this causal relationship, a
data structure called a causal link is added to the plan, linking
the two steps and that condition that holds between their relative
execution times.

In DPOCL-T, causal planning also requires enforcing tem-
poral constraints on the intervals in which the relevant precon-
ditions and effects hold. When Darshak establishes a causal
link between two steps and , additional constraints are
also added to the plan. Suppose that (ending its execution
at time ) establishes condition needed by a precondition of

at time . When the causal link between and is added,
Darshak also updates its constraint list to include the constraint

. Further, because must now be guaranteed to hold
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Fig. 2. Sketch of the camera planning algorithm.

between and , Darshak checks at each subsequent iteration
that this constraint holds. In this case, we adopt terminology
used by [44] and call the interval a protection interval on
the condition .

2) Decompositional Planning: Decomposition schemata in
DPOCL-T are similar to their counterparts in DPOCL, both
in their content and in their manner of use. The sole point of
difference is in the schemata’s representation of temporal con-
straints—rather than include a set of explicit pairwise orderings
between steps within a decomposition schema, DPOCL-T spec-
ifies partial orderings via constraints on the time variables de-
termining the decomposition’s constituent steps’ execution.

3) Management of Temporal Constraints: As new steps
are added to a plan being built, the effects of these steps may
threaten the execution of other steps in the plan. That is, their
effects might undo conditions established earlier in the plan and
needed by the preconditions of some steps later in the plan. In
DPOCL-T, a global list of temporal constraints is maintained as
a directed graph of all the time variables involved in the plan’s
current steps. Whenever the planner adds a step, all the steps’
time variables are added to the directed graph and the graph
is completed with the steps’ new constraints representing the
edges of the graph. Another step’s precondition is threatened
by a newly added step just when the effect of the new step
changes the needed condition within its protection interval.

Fig. 3. Simplified pictorial representation of the example story plan input to
the planner that is shown in Table IV. Boxes represent story actions, red dotted
lines indicate ordering links, and solid black arrows denote causal links. Several
causal links are labeled with conditions responsible for relationship between
actions. The discourse plan for this story is shown in Table IV.

Such threats are detected by identifying a cycle in the temporal
constraints graph.

The Darshak algorithm produces plans offline from given
stories and we are concerned with the quality of generated plans
rather than fast execution of the algorithm. The exponential
explosion of the plan space is mitigated by careful design of
operators with variable binding and temporal constraints. For
complex domains, the hierarchical representation of operators
makes this approach scalable. There is a significant authorial
burden in writing domain specifications that can be eased
through storyboarding interfaces.

III. AN EXAMPLE OF CINEMATIC DISCOURSE

GENERATION IN DARSHAK

The DPOCL-T algorithm is illustrated by the following story
about a thief, Lazarus Lane, who goes to a town in Lincoln
County, NV, to steal the tax money that is stored in the local
bank. In the story, Lane successfully steals the money after win-
ning Sheriff Bob’s favor and being appointed as the deputy. The
entire input story is shown in Table IV. The initial state for the
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Fig. 4. Fully realized discourse plan for the example story. The story plan steps are shown on the right. The discourse plan actions are shown hierarchically from
left to right. Right most actions are primitive actions and actions to the left are abstract actions. Primitive camera actions film the story world actions that they
are adjacent to in the figure. Dotted red lines show the temporal sequence of actions from top to bottom and black arrows depict causal links between story world
actions.

TABLE IV
EXAMPLE STORY

discourse planning problem contains sentences about the story
actions. The goal state contains the lone goal for the discourse
planner, (BEL V (HAS TAXMONEY LANE)). It is assumed that the
viewer has no prior beliefs about the story world. The discourse
generated by the planner communicates to the viewer how Lane
successfully steals the tax money from Lincoln county.

Initially, the goal of the planning problem is estab-
lished by instantiating a new discourse action in the

plan: SHOW-ROBBERY(LANE, TAXMONEY, BANK). This
action is chosen because it has an effect (BEL V (HAS

LANE TAXMONEY)). From the planner’s perspective, the
SHOW-ROBBERY action is causally motivated by the open
condition of the goal state. The abstract action selected by the
planner represents one of the narrative patterns that can be
used to achieve the goal of telling the viewer the story of a
character obtaining an object through a sequence of actions in
the story world.3 Given this choice, the planner instantiates the
action and adds it to the discourse plan, and updates the open
conditions list with the preconditions of the SHOW-ROBBERY

action.
The abstract action is then decomposed in the next

planning step into constituent actions. In this example,
the SHOW-ROBBERY action is expanded to three sub-
actions: SHOW-ROBBERY-ACTION, SHOW-THREAT, and
SHOW-RESOLUTION. The discourse actions are bound to story
actions through the instantiation of constraints on the operators.
The SHOW-ROBBERY-ACTION, in this case, has constraints that
bind the story step that this action films. The step in the story

3At this point, the planner could have chosen any of the other patterns with
the effect (BEL V (HAS ?CHARACTER ?OBJECT)) that would have also satisfied
the story world’s constraints.
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plan that indicates successful robbery is Step 13, where the
teller gives Lane the tax money from the vault. This action
has the effect (HAS LANE TAXMONEY). The corresponding
constraint on the SHOW-ROBBERY-ACTION operator is (EFFECT

?S (HAS ?CHAR ?OBJ)) which binds ?S to STEP13, ?CHAR to
LANE, and ?OBJ to TAXMONEY. In this way, constraints on the
discourse operators are checked by queries into the knowledge
base describing story plan; as a result, correct bindings for the
story world steps are added to the plan structure. Once the step
is correctly bound, the start and end temporal variables for the
SHOW-ROBBERY-ACTION are bound to (START STEP13) and
(END STEP13), respectively, and the temporal constraint graph
is updated with these new variables. The planning process
continues with expansion of abstract actions and addition of
new actions to satisfy open conditions.4 Fig. 4 illustrates a
complete camera plan.

During the addition of temporal constraints to the discourse
plan, the planner maintains a simple temporal graph [45] of all
the steps’ time variables and checks for consistency of the graph
after the addition of each action. Each temporal variable has a
protection interval during which it satisfies all the constraints
imposed on it by the camera operators. As actions are added
to the plan, the temporal consistency checking algorithm con-
stantly updates this protection interval and checks for invalid
intervals to prune illegal temporal orderings for the actions.

Once a complete discourse plan is created, Darshak’s output
is sent to an execution component that runs the plans within a
3-D game engine. This execution management is carried out
within the Zocalo framework [46]. The system is built upon
the Zocalo service-oriented architecture developed as a research
testbed for interactive storytelling. Zocalo consists of a server
running the hierarchical POCL planner—Darshak—through a
web-service called Fletcher [46]. The execution of planned sto-
ries and camera sequences occurs on a game engine (Unreal
Tournament 2004) through a lightweight scheduler that com-
municates with the web service. Sample output of Darshak on
the game engine is shown in Fig. 5.

IV. EMPIRICAL EVALUATION

To evaluate the effects of different visualization strategies,
three visualizations of the same story were prepared: one with
a fixed camera position within the setting, one with an over-
the-shoulder camera following the protagonist, and one with a
camera plan automatically generated by Darshak. The purpose
for running these experiments was twofold: first, to investigate
whether visualization strategies do indeed affect comprehen-
sion; and second, to evaluate the quality of visualization gen-
erated by Darshak using a representation of camera shots as
communicative actions. The objective of the experiments was
to determine whether visualizations generated by Darshak are
coherent (as measured by viewers’ perceptions of the attributes
of the underlying stories).

Our experimental approach was to first map the stories being
shown to subjects into a representation previously developed
and validated as a cognitive model of narrative. We then probed

4As part of the planning process, the planner creates an entire space of pos-
sible plans that might solve its planning problem. The example here traces a
single path through the construction process leading to the correct solution.

Fig. 5. Snapshots of Darshak’s output for the example story rendered on the
game engine.

subjects’ understanding of the narrative that was presented in a
cinematic to determine how closely their understanding aligned
with the cognitive model’s predictions about a viewer’s mental
model. As the underlying story elements in this system were de-
fined as plan data structures themselves, the experimental design
was based on previous work [7] relating these data structures to
the mental models that users form during comprehension. To do
this, a mapping is defined from plan data structures onto a subset
of the conceptual graph structures adopted from the QUEST
model, developed by Graesser et al. [6]. In the QUEST model
[6], stories are represented as conceptual graph structures con-
taining concept nodes and connective arcs. Together with a spe-
cific arc search procedure, QUEST was originally used to pro-
vide a cognitive model of question answering in the context of
stories (supported question types include why, how, when, en-
ablement, and consequence questions). In our work, we make
use only of the graph structures, referred to here as QUEST
knowledge structures (QKSs). They describe the reader’s con-
ception of narrative events and their relationships. The composi-
tion of nodes and arcs in a QKS structure reflects the purpose of
the elements they signify in the narrative. For instance, if nodes
A and B are two events in a story such that A causes or enables
B, then A and B are represented by nodes in the QKS graph and
are connected by a Consequence type of arc.

Techniques used by Graesser et al. to validate the QUEST
model were based on goodness-of-answer (GOA) ratings for
question–answer pairs about a story shown to readers. Subjects
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were provided with a question about the story and an answer to
the question, then asked to rate how appropriate they thought the
provided answer was given the story that they had read. GOA
ratings obtained from their subjects were compared to ratings
predicted by the arc search procedures from QUEST model. Re-
sults from their experiments clearly showed a correlation be-
tween the model and the cognitive model developed by readers
to characterize stories.

The algorithm for converting a POCL plan data structure to
the corresponding QKS structure is adopted from Christian and
Young [7]. In this experiment, first the story, represented as a
plan data structure, is converted to a corresponding QKS struc-
ture. Predictor variables proposed in the QUEST model are used
to calculate predictions for the GOA ratings—the measure of
goodness of answer for a question–answer pair related to the
events in the story. These GOA ratings are compared against
data collected from participants who watch a video of the story
filmed using different visualization strategies. The three predic-
tors that are correlated to the GOA ratings are arc search, con-
straint satisfaction, and structural distance. Correspondence be-
tween GOA ratings indicated by these predictor variables and
by human subjects would be taken as an indication that the cin-
ematic used to tell the story had been effective at communicating
its underlying narrative structure.

A. Method

1) Design: To create story visualizations, we used two
stories (S1 and S2) and three visualization strategies for each
story (V1-fixed camera, V2-over-the-shoulder camera angle,
and V3-Darshak driven camera), creating six treatments.
Treatments were identified by labels with story label as prefix
followed by the label of the visualization. For instance, S2V1
treatment would refer to a visualization of the second story
(S2) with fixed camera angle strategy (V1). Participants were
randomly assigned to one of six groups (G1 to G6). Thirty
participants, primarily undergraduate and graduate students
from the Computer Science Department, North Carolina State
University (Raleigh, NC), participated in the experiment. Each
participant was first shown a video and then asked to rate ques-
tion–answer pairs of three forms: how, why, and what enabled.
The process was repeated for each subject with a second video.

A Youden squares design was used to distribute subject
groups among our six treatments. This design was chosen in
order to account for the inherent coherence in the fabula and
to account for the effects of watching several videos in order.
Assuming a continuous response variable, the experimental de-
sign, known as a Youden square, combines Latin squares with
balanced, incomplete block designs (BIBD). The Latin square
design is used to block on two sources of variation in complete
blocks. Youden squares are used to block on two sources of
variation—in this case, story and group—but cannot set up the
complete blocks for Latin squares designs. Each row (story)
is a complete block for the visualizations, and the columns
(groups) form a BIBD. Since both group and visualization
appear only once for each story, tests involving the effects of
visualization are orthogonal for those testing the effects of the
story type; the Youden square design isolates the effect of the
visual perspective from the story effect.

TABLE V
2 � 3 YOUDEN SQUARES DESIGN FOR THE EXPERIMENT. G1 THROUGH G6
REPRESENT SIX GROUPS OF PARTICIPANTS WITH FIVE MEMBERS IN EACH

GROUP. THEY ARE ARRANGED SO THAT EACH STORY AND VISUALIZATION

PAIR HAS A COMMON GROUP FOR OTHER VISUALIZATIONS

Each story used in the experiment had 70 QKS nodes. Of the
70 QKS nodes, ten questions were generated from randomly se-
lected QKS elements and converted to one of the three ques-
tion types supported by QUEST: how, why, and what enabled.
For each of the ten questions, approximately 15 answer nodes
were selected from nodes that were within a structural distance
of three nodes in the QKS graph generated from the story data
structure. These numbers were chosen to have similar magni-
tude to Christian and Young’s previous experiments, for better
comparison.

2) Procedure: Each participant went through three stages
during the experiment. The entire experiment was carried out in
a single session for each participant. Total time for a single par-
ticipant was between 30 and 45 min. Initially, each participant
was briefed on the experimental procedure and was asked to
sign the consent form. They were then asked to read the instruc-
tions for participating in the study. After briefing, they watched
a video of one story with a particular visualization according
to the group assignment (Table V). For each video, users pro-
vided GOA ratings for the question–answer pairs related to the
story in the video. Participants were asked to rate the pairs along
a four point scale: good, somewhat good, somewhat bad, bad.
This procedure is consistent with earlier experiments [6], [7].
Next, they watched a second video with a different story and vi-
sualization followed by a questionnaire about the second story.
The videos were shown in different orders to common groups
in order to account for discrepancies arising from the order in
which participants were shown the two videos.

B. Results and Discussion

The mean overall GOA ratings recorded for the two stories
are shown in Table VI along with the standard deviations. These
distributions of GOA scores do not present any problem for mul-
tiple regression analyses as the means do not show ceiling or
floor effects. The standard deviations are high enough to rule
out the potential problem of there being a restricted range of
ratings. The GOA numbers shown in Table VI indicate on pre-
liminary observation that the GOA ratings for V1 (master shot)
and V3 (Darhsak) are significantly correlated with V2 (over-the-
shoulder shots). The standard deviations for V3 are lower than
the other treatments in both stories. This indicates that partici-
pants converge better on rating questions in Darshak-generated
visualizations.

An interesting observation for V2 is that in story 2 the mean
GOA ratings are significantly lower than the other two treat-
ments with a significantly high standard deviation. These num-
bers support the intuition that participants form their own in-
terpretation of events in the story while looking at shots that
are over-the-shoulder leading to the wide disparity in ratings in
going from story 1 to story 2. While mean ratings provide an
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TABLE VI
MEAN GOA RATINGS AND STANDARD DEVIATIONS FROM THE EXPERIMENT

Fig. 6. GOA ratings for story 1 across the three visualization strategies (S1 and
S2 are stories, V1-master shot,V2-over-the-shoulder shot, and V3-Darshak are
visualization strategies).

overall idea of the participant’s responses, GOA ratings for in-
dividual questions across different visualizations provide more
insight into the differences across visualizations. Fig. 6 sum-
marizes mean GOA ratings for individual questions related to
story 1 for the three visualization treatments. Question numbers
1, 8, and 10 are particularly interesting as there is a big vari-
ation in the GOA ratings for the master shot visualization and
the other two treatments, which have quite similar ratings. The
question–answer pairs in discussion here are presented below.

1. Question: Why did Lane challenge Vinny?
Answer: Because he wanted to kill Vinny.

8. Question: Why did Lane challenge Vinny?
Answer: Because Lane wanted to steal tax money.

10. Question: Why did Lane meet Sheriff Bob?
Answer: Becaue Lane needed a job.

In Q1 and Q10, the ratings for V1 are significantly lower. This
could be explained by examining the relationships between the
question–answer nodes. In all three cases, the question–answer
nodes are two or more arcs away in distance along the causal
chain of events. In case of the arc-search and structural distance
predictors from QUEST these are good answers as they do lie
on a causal chain of events leading to the question. The neces-
sity and sufficiency constraints in the constraint satisfaction pre-
dictor reduce the strength of the answer. In Q1, for example, it is
not necessary for Lane to challenge Vinny. He could just shoot
him right away. In this case, viewers who were familiar with the
gunfight setting chose to label the challenge as being an impor-
tant step in killing Vinny as, for them, it forms an integral part of
the gunfight sequence. In the master-shot visualization, the gun-
fight sequence was not even recognized as a gunfight by most

Fig. 7. GOA ratings for story 2 across the three visualization strategies (S1 and
S2 are stories, V1-master shot,V2-over-the-shoulder shot, and V3-Darshak are
visualization strategies).

participants (information obtained from postexperiment inter-
view). This analysis indicates that additional consideration of
the “why” type of questions on other nodes is needed to de-
termine the effects of visualization strategies on GOA ratings
related to perceived causal connections between events in the
story.

Fig. 7 shows the average ratings for each question for the
second story. The interesting responses are the ones that have a
significant variation in mean ratings across different visualiza-
tions. In this story, unlike the data for story 1, the differences be-
tween ratings were relatively smaller. The interesting observa-
tions, however, were the ones where one of the treatments rated
the answer as a “bad” answer (rating ) and the other treat-
ments rated the answer as a “good” answer (rating ).

Postexperiment interviews were carried out after participants
completed the rating forms for both stories. During these inter-
views, the participants were asked to give subjective answers to
questions about the quality of the story and videos. The main
purpose of these questions was to get additional information
about metrics that were not considered in previous approaches
but may play a role in analysis of GOA ratings. The data col-
lected from this survey provide insight into a possible extension
of the cognitive model of story understanding that take into ac-
count features of discourse that are not currently represented.
Based on the subjective data, a majority of the subjects pre-
ferred system-generated videos to the other two videos. Most
users reported that visualization did affect their engagement in
the story. System-generated visualizations were rated as being
more engaging. Users preferred camera movements over static
camera shots as they perceived the scene to be more dynamic
and interesting. While these qualitative responses are hard to
measure statistically, they do point to uniformity among exper-
iment participants regarding their preference for system-gener-
ated visualizations over other visualization strategies.

There are several caveats to the evaluation strategy based
on cognitive models of story comprehension. The results of
the study only address the cognitive aspect of story perception
and do not directly measure specific discourse effects and
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aesthetic quality of produced output. Further work is needed
within a richer story domain with opportunity to exploit sub-
tleties of visual communication to fully evaluate the potential
of Darshak’s ability of generating aesthetic sequences. The
current focus for Darshak, however, is on generating coherent
sequences. A sound evaluation of coherence presented in this
paper establishes Darshak’s success for this focus.

V. CONCLUSION

The work described in this paper contributes to several dif-
ferent areas of research. First, Darshak’s representation of shots
and shot sequences moves beyond previous methods that fo-
cused on geometric constraints. Darshak’s representation of film
idioms provides higher level reasoning and extends constraint-
based techniques by defining a relationship between low-level
geometric constraints and abstract cinematic idioms. Darshak
builds on prior approaches to modular constraint-based camera
control by adding a richer representation of modules through
their association with planning operators and uses that plan-
based representation to reason about the effects of cinematic ac-
tions on the cognitive model of a viewer.

Second, Darshak’s focus on camera control as narrative dis-
course demonstrates that visual communicative actions can be
effectively represented through communicative plan operators
and utilized for deliberate planning for cinematic storytelling.
Darshak extends previous work on discourse planning by intro-
ducing cinematic idioms and camera shots as communicative
operators. Further, Darshak builds on discourse planning ap-
proaches by introducing explicit representation of and reasoning
about the temporal relationships between discourse actions and
story actions—a feature critical for cinematic discourse gener-
ation.

Finally, we have introduced a novel evaluation method that is
useful for determining the efficacy of approaches to automatic
storytelling in a cinematic medium, especially relative to the
cognitive models of story created by users during story com-
prehension. Prior work on evaluating cognitive models of narra-
tive comprehension focused solely on the textual medium. Some
work on evaluating computational models of narrative did focus
on cinematics but did not take into account the range of visual
communicative strategies produced in Darshak’s experiments.
Darshak’s evaluation addresses both issues by using the Youden
squares experimental design to explicitly measure communica-
tive effects of various visualization strategies on the same under-
lying story. This study shows that GOA ratings obtained from
participants viewing different visualizations of the same stories
support our hypothesis that different visualization strategies in-
deed affect comprehension. Further, significant correlation be-
tween GOA ratings predicted by the QUEST predictors and two
of the three visualization strategies provides support for the con-
clusion that stories communicated through automated discourse
generated by Darshak are readily comprehensible to viewers.
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