
Scenario Generation For

Emergency Rescue Training Games
Kenneth Hullett Michael Mateas

Expressive Intelligence Studio
University of California, Santa Cruz

Santa Cruz, CA 95064
{khullett, michaelm}@soe.ucsc.edu

ABSTRACT

Procedural methods have long been used for generation of art
assets, but procedural generation of scenarios has lagged behind.
In particular, training games for emergency rescue workers would
benefit from procedural scenario generation guided by
pedagogical goals. In such a game, users could select what skills
they wish to train for, and the system would generate a unique
level containing the elements necessary to train those skills. In
this paper, we present a system that uses HTN planning to
generate collapsed structure training scenarios that are both
internally consistent and allow the user to train for the desired
goals.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence]: Applications and Expert Systems -

Games I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods – Representations (procedural and rule-

based) K.8 [Personal Computing]: Games

General Terms

Algorithms, Design

Keywords

Procedural Level Generation, Serious Games, Qualitative
Reasoning

1. INTRODUCTION
In the US, one rescue worker is lost for every two victims rescued
in collapsed structure situations; following Sept. 11, 2001, this
ratio fell to 1:11. Limited physical facilities are available for
training rescue workers in collapsed structure rescue techniques.
Furthermore, emergency response teams are composed of
volunteers who respond only when their team is activated. They
may be geographically dispersed and have day jobs in other fields.
Training games could improve emergency rescue worker

1 Private communication, Robert Dolci, Director of NASA Ames

DART

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICFDG 2009, April 26–30, 2009, Orlando, FL, USA.
Copyright 2009 ACM 978-1-60558-437-9…$5.00.

preparedness by increasing training opportunities.

The Disaster Assistance and Rescue Team (DART) at NASA
Ames Research Center has expressed interest in developing a
training game for collapse structure rescue training. They host a
unique annual training class on collapsed structure rescue
techniques that is attended by rescue workers from around the
world. The workers train on essential skills such as: evaluating
hazards by observing the cracks and deformations in a structure,
techniques for breaching collapsed structures, determining the
appropriate type of shore to use and how to construct it, and
identifying areas where victims could be trapped and how to
extract them safely.

This training class is only held once a year and has a limited
enrollment of 40 students, so a training game that rescue workers
could play on their own PC in their leisure time would allow
greater dissemination of collapsed structure rescue techniques.
Students planning to attend the class could get a preview of what
they will be learning, allowing trainers to focus more on hands-on
physical training. Former students could review what they’ve
learned, and students who are unable to attend the class could get
training they otherwise would not.

While hand-authored scenarios are useful for training, they lack
replayability. Once a user has played a scenario it is no longer
useful for training. It follow that in order to provide the most
effective training possible, a training game should include
dynamically2 generated scenarios. Such a system should generate
interesting, playable scenarios with a high degree of internal
consistency. Furthermore, the system should generate scenarios
that provide training to satisfy given pedagogical goals. The
trainees should be able to specify which skills they want to train,
and the system should generate a unique scenario that contains the
appropriate challenges.

In this paper we describe a generation system that applies the
established technique of hierarchical task network (HTN)
planning to the domain. Input to the system is an abstract
representation of an intact structure and a set of training goals.
The planner’s domain model is simple naïve physics knowledge;
deformation operators transform the intact structure to a collapsed
structure containing the elements necessary to train for the
selected pedagogical goals while maintaining a believable
consistency between the various damaged sections of the scenario.

2 In this paper, we follow the game industry convention of using

the term “procedural” to refer to content that is dynamically
constructed through computational methods, rather than hand-
authored by human beings

99

2. RELATED WORK

2.1 Procedural Methods
Procedural methods have been used in computer graphics for

decades. The earliest examples involve the use of L-Systems to

model plants [11]. Later approaches built on this, developing

context-sensitive grammars for the modeling of buildings [7] and

cities [4]. These techniques have been incorporated into

commercial products used by game developers [10, 16].

Some efforts have been made to develop procedural methods for

generating game levels, particularly for 2D game worlds. Most of

the existing examples have relied heavily on randomness. The

earliest example is Rogue and its various clones (the so-called

Roguelikes). Each time the player moves to a new section of the

dungeon, the game randomly generates a unique level. Rooms of

random size are generated, populated randomly with treasures and

monsters, and connected by hallways [13]. While unique, the

unconstrained randomness limits the ability to guarantee that

generated levels contain specific properties.

In the late 1990s Blizzard used a similar approach to create levels

in Diablo and Diablo II. Similar to Rogue, everything from the

layout of the levels to the placement of monsters and treasures

was random. There was some scaling for difficulty as the game

progressed and different art assets were used to give different

game areas unique visual styles. While commercially successful,

these games did not represent a great leap forward in procedural

level generation.

The approaches used in the Roguelikes and Diablo series are not

adaptable to the emergency rescue training domain. The demand

for believable physical consistency means we cannot generate

scenarios by randomly placing features. For wexample, in a

believable collapsed structure, heavily damaged sections should

not be adjacent to undamaged sections. Elements like fire or

flooding should spread from sources in a realistic manner.

Generation of 3D levels adds greater challenges to those already

present in the 2D examples. Roden et all proposed techniques for

generating 3D game levels [12]. Their system consisted of

placing pre-designed set-pieces randomly and connecting them

with passages. This is an extension of the established 2D

techniques into 3D, with additional constraints of vertical spacing

being satisfied. However, no commercial game has employed

generated 3D levels.

Even though the proposed emergency rescue training game would

use a 3D environment, this technique is not adaptable to our

needs. Again there is a lack of internal consistency in the

generated levels. The constraints we are considering go beyond

the vertical spacing of elements. While a set-piece approach

could potentially be used, it would be necessary to make sure that

incompatible set pieces were not placed near each other, and

connections were consistent. With a reasonably large library of

set-pieces, the combinatorial number of possible interactions

could be intractable.

Nitsche et all developed Charbitat, which featured a game world

that adapted to the player [9]. Like previous work, their system

employed a high degree of randomness and placement of pre-

designed segments. Their game world is tile based, and a new

area is created when the player first moves to a previously

unvisited tile. The game generates both the landscape and places

objects in it. The terrain generation is random but constrained at

the border with existing tiles so that features match. Objects to be

placed on the tile are selected randomly from a set of pre-made

objects. Objects are categorized by size, and the selection is

constrained to match the desired distribution of one or no large

objects, some medium objects, and several small objects.

This approach works well for the outdoor environment of

Charbitat, but would not work for the indoor environments of

collapsed structure scenarios. Also, while generated tiles could be

internally consistent, there is no constraint for consistency across

multiple tiles.

All previous approaches to procedural level generation have

depended on randomness, though they differ in the degree to

which they are constrained. None of the existing approaches

could produce the level of internal physical consistency and

believability we would desire for an emergency rescue training

game.

2.2 Serious Games
The field of serious games has been described as “the use of

electronic games technologies and methodologies for primary

purposes other than entertainment” [15]. This includes

educational games, advertising games, and military simulations,

among others.

Emergency rescue training would seem like a natural application

for serious games, but only a handful of examples exist. Schurr et

all developed DEFACTO as a training tool for incident

commanders for large scale disasters [14]. DEFACTO focuses

only on the high-level management of rescue operations, rather

than the details of rescue operations. The training game we

envision would involve rescue operation management, but would

be more focused on individual rescue workers and the hazards

they face in doing their jobs.

Hazmat: Hotzone is a project developed at the Entertainment

Technology Center at Carnegie-Mellon University. This has more

of an individual focus than DEFACTO, allowing firefighters to

train on hazardous materials scenarios in a multiplayer, 3D game

environment. This is closer to what we envision, but is specific to

the domain of hazardous material handling. The system we

propose is general enough that it could be extended to a wide

variety of emergency rescue domains.

A commercial application in this area is Flame-Sim, a training

game for firefighters [1]. Like Hazmat: Hotzone, it allows

multiple trainees to work together in a networked 3D game

environment. The only available scenario type at this time is

single-family residences.

These examples all rely on hand-designed scenarios. Hazmat:

Hotzone and Flame-Sim both come with scenario editing tools

that allow users to create custom scenarios. While the scenario

editors streamline the process, the scenario generation system we

propose would generate a unique scenario every time with

minimal user input.

3. SCENARIO GENERATION METHOD

3.1 Qualitative Modeling
Our approach is essentially an application of qualitative physical

reasoning. In qualitative modeling, systems engage in symbolic,

qualitative reasoning about physical systems [2, 5]. Instead of

100

using a system of differential equations to model the relationships

between variables in a physical system, a qualitative modeling

approach employs a common sense understanding of the

relationships between different, discretized quantities in different

regions of the system. For example, if modeling a system of

pipes, a qualitative approach would model relationships such as

“if pressure increases in pipe 7, pressure decreases in pipe 3.”

Our scenario generator employs a qualitative model of the damage

effects of an earthquake (including indirect effects such as fire or

trapping of victims), implemented in an HTN planner, to generate

plausible collapsed structure rescue scenarios given pedagogical

goals. The planner reasons about how the different parts of a

structure will interact during a collapse situation. For example,

the planner models that ceilings are supported by walls, so when a

wall receives a critical amount of damage, the ceiling is likely to

collapse.

3.2 HTN Planning
For the implementation of our system we use the HTN planner

Simple Hierarchical Ordered Planner (SHOP) developed by the

University of Maryland’s Automated Planning group [8]. Given a

starting state and a goal state, the planner finds a sequence of

operators that achieve the goal state. This is achieved by

decomposing the tasks into subtasks, which may in turn be

decomposed further until primitive tasks are reached. The human

author is responsible for the knowledge engineering work

required to specify both methods (tasks) and operators.

We apply HTN planning to our qualitative reasoning-based

scenario generation problem using the following conventions:

• The initial state is a description of the uncollapsed

structure.

• The goal state is a list of structural features implied by

the pedagogical goals selected by the user.

• The methods encode knowledge on what subgoals to

pursue to achieve structural goals. For example, a

method may model that, if you want a ceiling collapsed,

a good way to do that is to critically damage the

supporting walls. Damaging the supporting walls would

now become subgoals.

• Operators implement the assertion and retraction of

structural features and subgoals.

Typically HTN planning is fully deterministic, but to increase

variation, we have included a random element in the propagation

of damage. We took advantage of a SHOP feature that allows

users to call external methods. We wrote a function that generates

random numbers and use it to vary the amount of damage applied

to structural elements as the damage is propagated throughout the

structure.

3.3 Domain
This system is developed specifically for collapsed structure

rescue scenarios. The major skills users would be interested in

training for are breaching walls, placing shores, and rescuing

victims. A typical scenario would involve the following steps:

1. The structure would be analyzed to determine the most

likely location that surviving victims might be located.

2. External walls may be shored if needed to prevent

further collapse while rescue workers are in the

structure.

3. Walls may be breached to reach the building interior if

doors are blocked or unusable.

4. Once inside the structure, ceilings and internal walls

may need to be shored before proceeding.

5. Internal walls may need to be breached to reach trapped

victims.

6. Once the victim is reached, they must be extracted

safely.

The scenarios generated by the system should vary on the

locations and status of victims, the amount and location of

damage to the structure, the degree of collapse, and the parts of

the structure affected by fire, if any.

The domain model describes buildings along with the structural

state of individual building elements. Table 1 lists the predicates

used in the domain model, as well as their arguments, while

Figure 1 provides a concrete example of a domain representation.

Table 1. Domain Elements

Type Characteristics

Wall Strength, Damage, Elements contained

Room Bordering walls, Elements contained

Ceiling Strength, Damage, Supporting walls

Victim Status

Fire Source Damage

Door Status

3.4 Methods
Methods are used to decompose tasks into other methods, and

eventually primitive operations. Methods have preconditions that

that must be satisfied in order to be executed. Since these

preconditions may contain variables with many possible bindings,

the system can generate multiple plans. Figure 3 shows an

example method.

(wall w1 0.5 0.0)
(victim v1 injured)
(room r1 v1)
(borders r1 (w1 w17 w18 w19 w20))
(fire-source g2 0.0)
(contains w20 g2)

Figure 1: Example domain code

101

Figure 3 shows 2 methods. The first, damage-walls, applies a

given amount of damage to a list of walls. It has no

preconditions. It does three things: First, it calls a primitive

operator to directly change the damage level of the wall. It then

calls the propagate-damage method on the wall being processed.

Finally it calls itself recursively with the remaining portion of the

list.

The propagate-damage method spreads the damage done to a wall

to the elements that depend on it. If the damage level is greater

that the specified amount, it calls 2 methods: one that will

determine if the ceiling supported by the wall should collapse, and

one that determines if a fire source (i.e., gas line) contained in the

wall should start a fire.

3.5 Operators
In the SHOP planning system, operators are the primitive-level

tasks and the only ones that can make changes to the state. Like

STRIPS-style operators, SHOP operators can make new assertions

or remove existing ones. An operator consists of 3 parts: a

precondition, a list of assertions to remove, and a list of assertions

to add.

Figure 4 shows 2 example operators. The first changes the

damage level of a wall to a specified level. It has a precondition

that a wall exists with the given name. Stating this precondition

also has the effect of binding the variables ‘?strength’ and

‘?damage’. The second part removes the existing assertion, while

the third re-asserts the wall with the new damage level.

The second example causes fires to start in the rooms adjoining a

wall. This operator would be called by method that has already

determined that the given wall contains a fire source that is

sufficiently damaged to start a fire, so the operator does not need

to check any preconditions. The operator checks all rooms

adjacent to the wall and if any currently does not contain fire it

asserts a fire condition.

3.6 Goals
The system takes the input set of goals and finds an appropriate

propagation of damage to satisfy them in the scenario. The

method “add-new-goals” processes the existing goals and asserts

new goals to create the desired condition in a specific location.

Figure 2 shows a fragment of the add-new-goals method that

handles the case of satisfying the goal for a room to contain fire.

The code fragment in figure 2 codifies the following logic: The

goal to start a fire in a room is satisfiable if a fire-source (i.e., a

gas line) exists in one of the surrounding walls. If that case fails,

the planner will select a room with an adjoining wall and assert a

goal to start a fire in that room. If this eventually succeeds, the

operator to start a fire will propagate the damage through the

structure, satisfying the original goal.

There are multiple ways to satisfy these goals, creating variability

in the plans generated. In the first case, the planner could select

from any fire source if there are multiple ones in the walls

surrounding a room. If the planner falls to the second case, the

fire could be started in any adjacent room that does contain a fire

source.

There are 9 goals currently implemented in the system, though

some are subgoals of others. The high level goals are:

1. Fire, either in a particular room or if no room is

specified, anywhere in the structure

2. A victim is inaccessible. This can be specified multiple

times to increase the number of inaccessible victims

Figure 2: Goal processing code

(:method (add-new-goals)
;; precondition for case 1
((goal (room ?room fire)) (borders ?room

?walls) (contains ?wall ?fire-source) (fire-
source ?fire-source ?damage) (call Member
?wall ?walls))

;; actions to take in case 1
((!!remove (goal (room ?room fire)))

(!!assert (goal (fire-source ?fire-source
1.0))) (add-new-goals))

;; precondition for case 2
((goal (room ?room fire)) (borders ?room

?walls) (call Member ?wall ?walls) (borders
?room2 ?walls2) (call Member ?wall ?walls2))

;; actions to take in case 2
((!!remove (goal (room ?room fire)))

(!!assert (goal (room ?room2 fire))) (add-
new-goals))

(:method (damage-walls ?magnitude (?wall
. ?walls))

()

 ((damage-wall ?wall ?magnitude)
(propagate-damage ?wall) (damage-walls
?magnitude ?walls)))

(:method (propagate-damage ?wall)

((wall ?wall ?strength ?damage)
(call >= ?damage 0.7))

 ((collapse-ceiling ?wall)
(ignite-fire-source ?wall) (damage-
adjacent-walls ?wall)))

Figure 3: Example methods

Figure 4: Example operators

(:operator (!op-damage-wall ?magnitude
?wall)

 ((wall ?wall ?strength ?damage))

 ((wall ?wall ?strength ?damage))

 ((wall ?wall ?strength
?magnitude)))

(:operator (!op-start-fire ?wall)

 ()

 ((forall (?room) ((borders ?room
?walls) (call Member ?wall ?walls) (room
?room nil)) ((room ?room nil))))

 ((forall (?room) ((borders ?room
?walls) (call Member ?wall ?walls))
((room ?room fire)))))

102

3. A room is blocked, and therefore only accessible by

breaching a wall

4. A ceiling has completely or partially collapsed.

5. An earthquake of a given magnitude has occurred.

4. RESULTS
We tested the scenario generator with three examples: a small,

medium, and large structure. We attempted to generate all

possible scenarios for each example, but the large number of

possible variations caused the system to run out of memory before

generating all possible plans. Even with the Java heap size

increased to 1GB, we would run out of memory on the medium

and large examples. We were still able to generate a large number

of variants by limiting the number of plans we asked SHOP to

generate. Table 2 shows a breakdown of the size of each example

and the results.

We also developed a GUI tool for creating and visualizing

scenarios. For this we used the python programming language

and the wxWidgets library. The tool allows users to draw walls

and rooms and set up other scenario elements. When the planner

output is loaded into the viewer, the damage levels are visualized

by the amount of stippling on the lines.

Table 2. Example descriptions

Type Size
of

Goals

of

Plans

Average

Plan

Length

Small
7 Walls, 2 Rooms,

2 Other
2 324 ~30

Medium
12 Walls, 4 Rooms,

3 Other
3 >2500 ~60

Large
30 Walls, 7 Rooms,

11 Other
5 >600 ~100

Figure 5 shows the initial state of the small example, while figure

7 shows a fragment of the same information as a SHOP plan. The

domain consists of 7 walls that form 2 rooms. The goals are for a

fire in room 1 and for the ceiling to collapse. Figure 8 shows

fragments of the final state resulting from one of the plans,

fragments of which are shown in figure 9. To satisfy the goal of

starting a fire, the system determines that the wall containing the

fire source must be damaged, and in order to do so an earthquake

of a certain magnitude must be applied to the structure. The

damage from this earthquake is then propagated throughout the

structure, resulting in a ceiling collapse that satisfies the second

goal.

Given the same goals and initial state, there is limited potential for

scenario variation given the size of the small example. But even

with this small size, SHOP generates 324 plans for this example.

Many of these plans result in the same scenario but perform the

operations in a different order. Others differ in the amount of

damage applied to parts of the structure.

Figure 6: Small example, final state

Figure 5: Small example, initial state

(wall w5 0.5 0.7)

(wall w6 0.5 0.5)

…

(ceiling c1 0.5 1.0)

(fire-source g1 1.0)

(wall w1 0.5 0.0)

(wallcoords w1 (50 50 50 350))

…

(room r1 v1)

(borders r1 (w1 w2 w3 w4))

(ceiling c1 0.5 0.0)

(supports c1 (w1 w2 w4 w5 w6 w7))

…

(fire-source g1 0.0)

(victim v1 injured)

(contains w1 d1)

(door d1 outside)

(achieve-goals ((room r1 fire) (ceiling
c1 0.5 1.0)))

Figure 7: Small example domain fragments

Figure 8: Small example output fragments

103

For the medium example we show 2 alternate scenarios, Figures

11 and 12. The scenarios differ in terms of which walls are

damaged and the amount of damage. The goal of a fire in room 1

is satisfied in both cases by a high degree of damage to wall 3.

The system achieves this by initiating an earthquake which

damages the main supporting walls 1, 2, 5, 6, 8, 9, 11, and 12.

The damage is propagated to the internal walls 3, 4, 7, and 10. In

both variants wall 3 is damaged enough to initiate a gas leak, and

thus start a fire. The second goal of trapping the victim in room 2

is satisfied by initiating a ceiling collapse, thus both versions also

show a high degree of damage to wall 7. The scenarios vary in

the amount of damage done to the other interior walls.

In the large example, shown in figures 13 & 14, the system ran

out of memory after generating around 600 variants, many fewer

than in the medium example. Because the domain in this case is

much larger, each plan is significantly larger. On average, the

plans generated in the large example contained about 100 steps,

compared to the 60 steps in the medium example. Given the

difference in plan sizes it is reasonable that the medium example

generated about 2500 plans before running out of memory,

compared to 600 for the large example.

Figure 12: Medium example, alternate final state

Figure 14: Large example, final state

Figure 13: Large example, initial state

Figure 10: Medium example, initial state

[1] (!!assert (goal (room r1 fire)))

[2] (!!assert (goal (ceiling c1 0.5 1.0)))

…

[8] (!!assert (goal (earthquake 0.7 (w1 w2 w3 w4))))

…

[10] (!op-damage-wall 0.7 w1)

[11] (!op-collapse-ceiling c1)

[12] (!op-damage-wall 0.7 w2)

…

[17] (!op-ignite-fire-source g1)

[18] (!op-start-fire w3)

Figure 11: Medium example, final state

Figure 9: Small example plan fragments

104

5. DISCUSSION
The utility of a procedural scenario generation system can be

evaluated by 2 measures. First, it should generate a large number

of different scenarios, thus showing that the generator is superior

to hand made scenarios. Secondly, the variation in the generated

scenarios should be superior to the results one would get through

random generation. As Rogue and Diablo showed, it is always

possible to create a large number of levels by randomly

combining elements, but the resulting levels lack internal

consistency.

Our results show that our system can generate a large number of

different plans. However, some plans result in the same scenario

by performing the same steps in a different order. We do know

that there is significant variation just because the amount of

damage propagated is random. Furthermore, as the size of a

scenario grows, the combinatorial number of possible variations

grows. The relatively limited medium example contains about 20

elements and generated over 2000 possible variations. From this

we can postulate that a scenario with 100 or more elements could

potentially generate 10,000 or more different scenarios if given

enough time and memory to do so.

We can also create significantly more variation in a scenario by

changing the specified goals. We can vary the number of victims

or the degree of collapse to create more scenarios from an input

structure. With 5 goal types, most of which can be used multiple

times in a scenario, there is a large number of possible goals that

can be specified for a given input structure. In conjunction with

the combinatorially large number of possible scenarios within

each set of goals, the number of possible scenarios that can be

generated is vast.

To show that this approach is better than the random approaches

used in industry, consider the thought experiment of generating

collapsed structure scenarios using random generation techniques.

A random level generator consists of a library of various types of

human designed elements, with a probability distribution for each

type of element (e.g. rooms, monsters, and treasures in

Roguelikes) that describes the likelihood of drawing a particular

element from the library for that type. The level generator

proceeds by selecting elements based on its distribution in some

specified order. For example, if there were only two element types

– rooms and objects – the generator would first select a number of

rooms from the room distribution, then select 0 or more objects

for each room from the object distribution.

For the collapsed structure domain, we could have a library of set

pieces, each of which would be a small playable section of a

scenario, e.g., a room with a trapped victim. A random scenario

generator would select some of these set pieces and attempt to

connect them together to make a scenario. There is no guarantee

that the scenario as a whole would be consistent, much less that

adjacent set pieces would match. An area containing a fire could

be placed next to an area without fire, or highly collapsed sections

could be connected by a section with little damage.

The fact that our system models physical constraints such as

propagation of damages means that it can produce more

believable results than unconstrained selection of elements from a

distribution. Thus, our generated scenarios are internally

consistent; key elements are changed to satisfy the goals, and the

resulting damage is propagated throughout the structure in a

believable way.

6. FUTURE WORK
To reach its full potential, the domain needs to be expanded to

handle more structural elements. Handling multiple-story

buildings would require codifying more chains of causality as

collapses propagate from floor to floor. Also, the system could

work at a higher level of fidelity, acting on smaller units than

walls and rooms. For example, locations within rooms should be

considered for victim placement and ceiling collapses, creating

scenarios where rescue workers have to remove debris in a room

in order to access the victim.

This system could also be expanded to handle a wider variety of

scenario types. Besides structures collapsed due to earthquakes, it

could consider other types of collapse, such as those resulting

from bomb blasts or hurricanes. More types of scenario elements

could be added such as hazardous materials or flooding.

6.1 Making a Game
Obvious follow-on work to this project is connecting the planner

to a playable game. Such a game could allow the user to play as a

rescue worker, breaching walls, shoring up damaged parts of the

structure, and locating and rescuing trapped victims. It could also

allow the user to play as an operations commander, allocating

personnel and resources amongst multiple ongoing rescue

operations following a disaster.

Transferring the abstract representation to a 3D game world is a

difficult problem. While it’s trivial to build a 3D model of a

structure in a modeling package like 3D Studio Max, it’s difficult

to realize the resulting partially collapsed structure. While

technologies exist to allow real-time destruction of game objects,

they are based on either particle systems or a pre-generated

deformation. No technology exists that can perform arbitrary

procedural deformations of a model.

One proposed method is to build a 3D model of the structure

divided up into modular sections. Each section would have

variant models for each of several levels of destruction. Based on

the output of the scenario generator, the appropriate variant of

each section is added to the model. As long as the sections and

their variants are designed to fit together in any combination, the

resulting structure will appear consistent. However, to create the

potential for an interesting level of variation, the modular sections

would have to be very small.

6.2 Procedurally Modeled Buildings
Our system relies on receiving a representation of an intact

structure as input. We only show 3 examples, but users who

desire even greater variation could create any number of input

structures. To further increase variation in the system,

procedurally generated structures could be used as input.

Müller et al have developed techniques for generating unique

buildings through context sensitive grammars. While their work

is primarily concerned with cosmetic elements, it could be

adapted to generate usable input structures. The resulting models

would have to be converted to our abstract representation and

marked up with the necessary domain knowledge.

Such a system would provide a user with a completely unique

scenario each time. The user could specify the type of structure

desired as well as the goals desired for the scenario. The structure

itself would be generated procedurally, and then be transformed

105

into a partially collapsed structure containing the elements

necessary to train on the desired goals.

7. CONCLUSION

In this paper we have described an architecture for the procedural

generation of scenarios for emergency rescue training games. We

use HTN planning to generate consistent, believable scenarios

based on a set of given training goals. The system outputs a large

number of variants for each set of inputs, and can generate even

more variation by changing the given training goals. The output

from this scenario generator could be used as input to a training

game to educate rescue workers about collapsed structure rescue

techniques.

8. ACKNOWLEDGMENTS

Our thanks to NASA Ames DART, Garage Games, University of

Maryland Automated Planning group, UARC, and CITRIS.

9. REFERENCES

[1] FLAME-SIM. http://www.flame-sim.com/features/.

Accessed 12/19/2008

[2] Forbus, K., 1996. Qualitative reasoning, CRC Handbook of

Computer Science.

[3] Gamasutra – Postmortem: Blizzard’s Diablo II.

http://www.gamasutra.com/view/feature/3124/postmortem_b

lizzards_diablo_ii.php. Accessed 12/19/2008

[4] Greuter, S., Parker, J., Stewart, N., and Leach, G. 2003.

Real-time procedural generation of `pseudo infinite' cities. In

Proceedings of the 1st international Conference on Computer

Graphics and interactive Techniques in Australasia and

South East Asia (Melbourne, Australia, February 11 - 14,

2003). GRAPHITE '03. ACM, New York, NY, 87-ff.

[5] Hayes, P. J. 1990. The second naive physics manifesto. In

Readings in Qualitative Reasoning About Physical Systems,

D. S. Weld and J. d. Kleer, Eds. Morgan Kaufmann

Publishers, San Francisco, CA, 46-63.

[6] Hazmat: Hotzone.

http://www.etc.cmu.edu/projects/hazmat_2005/. Accessed

12/19/2008

[7] Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool,

L. 2006. Procedural modeling of buildings. In ACM

SIGGRAPH 2006 Papers (Boston, Massachusetts, July 30 -

August 03, 2006). SIGGRAPH '06. ACM, New York, NY,

614-623.

[8] Nau, D. S., Cao, Y., Lotem, A., and Muñoz-Avila, H. 1999.

SHOP: Simple Hierarchical Ordered Planner. In Proceedings

of the Sixteenth international Joint Conference on Artificial

intelligence (July 31 - August 06, 1999). T. Dean, Ed.

Morgan Kaufmann Publishers, San Francisco, CA, 968-975.

[9] Nitsche, Ashmore, Hankinson, Fitzpatrick, Kelly, and

Margenau, 'Designing Procedural Game Spaces: A Case

Study', in Proceedings of FuturePlay 2006 (London, Ontario

October 10-12, 2006)

[10] Procedural Inc. – 3D Modeling Software for Urban

Environments. http://www.procedural.com/. Accessed

12/19/2008

[11] Prusinkiewicz, P., Lindenmayer, A., Hanan, J. S., et al. The

Algorithmic Beauty of Plants. Springer, New York, 1990

[12] Roden and Parberry, 'Procedural Level Generation', in Game

Programming Gems 5, Charles River Media, pp. 579-588,

March 2005.

[13] RogueBasin.

http://roguebasin.roguelikedevelopment.org/index.php?title=

Main_Page. Accessed 12/19/2008

[14] Schurr, N., Patil, P., Pighin, F., and Tambe, M. 2006. Using

multiagent teams to improve the training of incident

commanders. In Proceedings of the Fifth international Joint

Conference on Autonomous Agents and Multiagent Systems

(Hakodate, Japan, May 08 - 12, 2006). AAMAS '06. ACM,

New York, NY, 1490-1497.

[15] Serious Games Institute – About Us.

http://www.seriousgamesinstitute.co.uk/about.aspx?item=2.

Accessed 12/19/2008

[16] SpeedTree IDV, Inc. http://www.speedtree.com/. Accessed

12/19/2008

106

