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ABSTRACT 

Procedural methods have long been used for generation of art 
assets, but procedural generation of scenarios has lagged behind.  
In particular, training games for emergency rescue workers would 
benefit from procedural scenario generation guided by 
pedagogical goals.  In such a game, users could select what skills 
they wish to train for, and the system would generate a unique 
level containing the elements necessary to train those skills.  In 
this paper, we present a system that uses HTN planning to 
generate collapsed structure training scenarios that are both 
internally consistent and allow the user to train for the desired 
goals. 

Categories and Subject Descriptors 

I.2.1 [Artificial Intelligence]: Applications and Expert Systems - 

Games I.2.4 [Artificial Intelligence]: Knowledge Representation 
Formalisms and Methods – Representations (procedural and rule-

based) K.8 [Personal Computing]: Games 

General Terms 

Algorithms, Design 

Keywords 

Procedural Level Generation, Serious Games, Qualitative 
Reasoning 

1. INTRODUCTION 
In the US, one rescue worker is lost for every two victims rescued 
in collapsed structure situations; following Sept. 11, 2001, this 
ratio fell to 1:11.  Limited physical facilities are available for 
training rescue workers in collapsed structure rescue techniques.  
Furthermore, emergency response teams are composed of 
volunteers who respond only when their team is activated.  They 
may be geographically dispersed and have day jobs in other fields.  
Training games could improve emergency rescue worker 
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preparedness by increasing training opportunities. 

The Disaster Assistance and Rescue Team (DART) at NASA 
Ames Research Center has expressed interest in developing a 
training game for collapse structure rescue training.  They host a 
unique annual training class on collapsed structure rescue 
techniques that is attended by rescue workers from around the 
world.  The workers train on essential skills such as: evaluating 
hazards by observing the cracks and deformations in a structure, 
techniques for breaching collapsed structures, determining the 
appropriate type of shore to use and how to construct it, and 
identifying areas where victims could be trapped and how to 
extract them safely. 

This training class is only held once a year and has a limited 
enrollment of 40 students, so a training game that rescue workers 
could play on their own PC in their leisure time would allow 
greater dissemination of collapsed structure rescue techniques.  
Students planning to attend the class could get a preview of what 
they will be learning, allowing trainers to focus more on hands-on 
physical training.  Former students could review what they’ve 
learned, and students who are unable to attend the class could get 
training they otherwise would not. 

While hand-authored scenarios are useful for training, they lack 
replayability.  Once a user has played a scenario it is no longer 
useful for training.  It follow that in order to provide the most 
effective training possible, a training game should include 
dynamically2 generated scenarios.  Such a system should generate 
interesting, playable scenarios with a high degree of internal 
consistency.  Furthermore, the system should generate scenarios 
that provide training to satisfy given pedagogical goals.  The 
trainees should be able to specify which skills they want to train, 
and the system should generate a unique scenario that contains the 
appropriate challenges. 

In this paper we describe a generation system that applies the 
established technique of hierarchical task network (HTN) 
planning to the domain.  Input to the system is an abstract 
representation of an intact structure and a set of training goals.  
The planner’s domain model is simple naïve physics knowledge; 
deformation operators transform the intact structure to a collapsed 
structure containing the elements necessary to train for the 
selected pedagogical goals while maintaining a believable 
consistency between the various damaged sections of the scenario. 

                                                                 
2 In this paper, we follow the game industry convention of using 

the term “procedural” to refer to content that is dynamically 
constructed through computational methods, rather than hand-
authored by human beings 
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2. RELATED WORK 

2.1 Procedural Methods 
Procedural methods have been used in computer graphics for 

decades.  The earliest examples involve the use of L-Systems to 

model plants [11].  Later approaches built on this, developing 

context-sensitive grammars for the modeling of buildings [7] and 

cities [4].  These techniques have been incorporated into 

commercial products used by game developers [10, 16]. 

Some efforts have been made to develop procedural methods for 

generating game levels, particularly for 2D game worlds.  Most of 

the existing examples have relied heavily on randomness.  The 

earliest example is Rogue and its various clones (the so-called 

Roguelikes).  Each time the player moves to a new section of the 

dungeon, the game randomly generates a unique level.  Rooms of 

random size are generated, populated randomly with treasures and 

monsters, and connected by hallways [13].  While unique, the 

unconstrained randomness limits the ability to guarantee that 

generated levels contain specific properties. 

In the late 1990s Blizzard used a similar approach to create levels 

in Diablo and Diablo II.  Similar to Rogue, everything from the 

layout of the levels to the placement of monsters and treasures 

was random.  There was some scaling for difficulty as the game 

progressed and different art assets were used to give different 

game areas unique visual styles.  While commercially successful, 

these games did not represent a great leap forward in procedural 

level generation. 

The approaches used in the Roguelikes and Diablo series are not 

adaptable to the emergency rescue training domain.  The demand 

for believable physical consistency means we cannot generate 

scenarios by randomly placing features.  For wexample, in a 

believable collapsed structure, heavily damaged sections should 

not be adjacent to undamaged sections.  Elements like fire or 

flooding should spread from sources in a realistic manner. 

Generation of 3D levels adds greater challenges to those already 

present in the 2D examples.  Roden et all proposed techniques for 

generating 3D game levels [12].  Their system consisted of 

placing pre-designed set-pieces randomly and connecting them 

with passages.  This is an extension of the established 2D 

techniques into 3D, with additional constraints of vertical spacing 

being satisfied.  However, no commercial game has employed 

generated 3D levels.   

Even though the proposed emergency rescue training game would 

use a 3D environment, this technique is not adaptable to our 

needs.  Again there is a lack of internal consistency in the 

generated levels.  The constraints we are considering go beyond 

the vertical spacing of elements.  While a set-piece approach 

could potentially be used, it would be necessary to make sure that 

incompatible set pieces were not placed near each other, and 

connections were consistent.  With a reasonably large library of 

set-pieces, the combinatorial number of possible interactions 

could be intractable. 

Nitsche et all developed Charbitat, which featured a game world 

that adapted to the player [9].  Like previous work, their system 

employed a high degree of randomness and placement of pre-

designed segments.  Their game world is tile based, and a new 

area is created when the player first moves to a previously 

unvisited tile.  The game generates both the landscape and places 

objects in it.  The terrain generation is random but constrained at 

the border with existing tiles so that features match.  Objects to be 

placed on the tile are selected randomly from a set of pre-made 

objects.  Objects are categorized by size, and the selection is 

constrained to match the desired distribution of one or no large 

objects, some medium objects, and several small objects.   

This approach works well for the outdoor environment of 

Charbitat, but would not work for the indoor environments of 

collapsed structure scenarios.  Also, while generated tiles could be 

internally consistent, there is no constraint for consistency across 

multiple tiles. 

All previous approaches to procedural level generation have 

depended on randomness, though they differ in the degree to 

which they are constrained.  None of the existing approaches 

could produce the level of internal physical consistency and 

believability we would desire for an emergency rescue training 

game. 

2.2 Serious Games 
The field of serious games has been described as “the use of 

electronic games technologies and methodologies for primary 

purposes other than entertainment” [15].  This includes 

educational games, advertising games, and military simulations, 

among others.   

Emergency rescue training would seem like a natural application 

for serious games, but only a handful of examples exist.  Schurr et 

all developed DEFACTO as a training tool for incident 

commanders for large scale disasters [14].  DEFACTO focuses 

only on the high-level management of rescue operations, rather 

than the details of rescue operations.  The training game we 

envision would involve rescue operation management, but would 

be more focused on individual rescue workers and the hazards 

they face in doing their jobs. 

Hazmat: Hotzone is a project developed at the Entertainment 

Technology Center at Carnegie-Mellon University.  This has more 

of an individual focus than DEFACTO, allowing firefighters to 

train on hazardous materials scenarios in a multiplayer, 3D game 

environment.  This is closer to what we envision, but is specific to 

the domain of hazardous material handling.  The system we 

propose is general enough that it could be extended to a wide 

variety of emergency rescue domains. 

A commercial application in this area is Flame-Sim, a training 

game for firefighters [1].  Like Hazmat: Hotzone, it allows 

multiple trainees to work together in a networked 3D game 

environment.  The only available scenario type at this time is 

single-family residences.   

These examples all rely on hand-designed scenarios.  Hazmat: 

Hotzone and Flame-Sim both come with scenario editing tools 

that allow users to create custom scenarios.  While the scenario 

editors streamline the process, the scenario generation system we 

propose would generate a unique scenario every time with 

minimal user input. 

3. SCENARIO GENERATION METHOD 

3.1 Qualitative Modeling 
Our approach is essentially an application of qualitative physical 

reasoning.  In qualitative modeling, systems engage in symbolic, 

qualitative reasoning about physical systems [2, 5].  Instead of 

100



using a system of differential equations to model the relationships 

between variables in a physical system, a qualitative modeling 

approach employs a common sense understanding of the 

relationships between different, discretized quantities in different 

regions of the system.  For example, if modeling a system of 

pipes, a qualitative approach would model relationships such as 

“if pressure increases in pipe 7, pressure decreases in pipe 3.” 

Our scenario generator employs a qualitative model of the damage 

effects of an earthquake (including indirect effects such as fire or 

trapping of victims), implemented in an HTN planner, to generate 

plausible collapsed structure rescue scenarios given pedagogical 

goals.  The planner reasons about how the different parts of a 

structure will interact during a collapse situation.  For example, 

the planner models that ceilings are supported by walls, so when a 

wall receives a critical amount of damage, the ceiling is likely to 

collapse.   

3.2 HTN Planning 
For the implementation of our system we use the HTN planner 

Simple Hierarchical Ordered Planner (SHOP) developed by the 

University of Maryland’s Automated Planning group [8].  Given a 

starting state and a goal state, the planner finds a sequence of 

operators that achieve the goal state.  This is achieved by 

decomposing the tasks into subtasks, which may in turn be 

decomposed further until primitive tasks are reached.  The human 

author is responsible for the knowledge engineering work 

required to specify both methods (tasks) and operators. 

We apply HTN planning to our qualitative reasoning-based 

scenario generation problem using the following conventions: 

• The initial state is a description of the uncollapsed 

structure. 

• The goal state is a list of structural features implied by 

the pedagogical goals selected by the user.  

• The methods encode knowledge on what subgoals to 

pursue to achieve structural goals. For example, a 

method may model that, if you want a ceiling collapsed, 

a good way to do that is to critically damage the 

supporting walls. Damaging the supporting walls would 

now become subgoals.  

• Operators implement the assertion and retraction of 

structural features and subgoals.  

Typically HTN planning is fully deterministic, but to increase 

variation, we have included a random element in the propagation 

of damage.  We took advantage of a SHOP feature that allows 

users to call external methods.  We wrote a function that generates 

random numbers and use it to vary the amount of damage applied 

to structural elements as the damage is propagated throughout the 

structure. 

3.3 Domain 
This system is developed specifically for collapsed structure 

rescue scenarios.  The major skills users would be interested in 

training for are breaching walls, placing shores, and rescuing 

victims.  A typical scenario would involve the following steps: 

1. The structure would be analyzed to determine the most 

likely location that surviving victims might be located. 

2. External walls may be shored if needed to prevent 

further collapse while rescue workers are in the 

structure. 

3. Walls may be breached to reach the building interior if 

doors are blocked or unusable. 

4. Once inside the structure, ceilings and internal walls 

may need to be shored before proceeding. 

5. Internal walls may need to be breached to reach trapped 

victims. 

6. Once the victim is reached, they must be extracted 

safely. 

The scenarios generated by the system should vary on the 

locations and status of victims, the amount and location of 

damage to the structure, the degree of collapse, and the parts of 

the structure affected by fire, if any. 

The domain model describes buildings along with the structural 

state of individual building elements.  Table 1 lists the predicates 

used in the domain model, as well as their arguments, while 

Figure 1 provides a concrete example of a domain representation. 

 

Table 1. Domain Elements 

Type Characteristics 

Wall Strength, Damage, Elements contained 

Room Bordering walls, Elements contained 

Ceiling Strength, Damage, Supporting walls 

Victim Status 

Fire Source Damage 

Door Status 

 

 

 

3.4 Methods 
Methods are used to decompose tasks into other methods, and 

eventually primitive operations.  Methods have preconditions that 

that must be satisfied in order to be executed.  Since these 

preconditions may contain variables with many possible bindings, 

the system can generate multiple plans.  Figure 3 shows an 

example method. 

(wall w1 0.5 0.0) 
(victim v1 injured) 
(room r1 v1) 
(borders r1 (w1 w17 w18 w19 w20)) 
(fire-source g2 0.0) 
(contains w20 g2) 

Figure 1: Example domain code 
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Figure 3 shows 2 methods.  The first, damage-walls, applies a 

given amount of damage to a list of walls.  It has no 

preconditions.  It does three things: First, it calls a primitive 

operator to directly change the damage level of the wall.  It then 

calls the propagate-damage method on the wall being processed.  

Finally it calls itself recursively with the remaining portion of the 

list.  

The propagate-damage method spreads the damage done to a wall 

to the elements that depend on it.  If the damage level is greater 

that the specified amount, it calls 2 methods: one that will 

determine if the ceiling supported by the wall should collapse, and 

one that determines if a fire source (i.e., gas line) contained in the 

wall should start a fire. 

3.5 Operators 
In the SHOP planning system, operators are the primitive-level 

tasks and the only ones that can make changes to the state.  Like 

STRIPS-style operators, SHOP operators can make new assertions 

or remove existing ones.  An operator consists of 3 parts: a 

precondition, a list of assertions to remove, and a list of assertions 

to add. 

Figure 4 shows 2 example operators.  The first changes the 

damage level of a wall to a specified level.  It has a precondition 

that a wall exists with the given name.  Stating this precondition 

also has the effect of binding the variables ‘?strength’ and 

‘?damage’.  The second part removes the existing assertion, while 

the third re-asserts the wall with the new damage level. 

The second example causes fires to start in the rooms adjoining a 

wall.  This operator would be called by method that has already 

determined that the given wall contains a fire source that is 

sufficiently damaged to start a fire, so the operator does not need 

to check any preconditions.  The operator checks all rooms 

adjacent to the wall and if any currently does not contain fire it 

asserts a fire condition. 

3.6 Goals 
The system takes the input set of goals and finds an appropriate 

propagation of damage to satisfy them in the scenario.  The 

method “add-new-goals” processes the existing goals and asserts 

new goals to create the desired condition in a specific location.  

Figure 2 shows a fragment of the add-new-goals method that 

handles the case of satisfying the goal for a room to contain fire. 

The code fragment in figure 2 codifies the following logic: The 

goal to start a fire in a room is satisfiable if a fire-source (i.e., a 

gas line) exists in one of the surrounding walls.  If that case fails, 

the planner will select a room with an adjoining wall and assert a 

goal to start a fire in that room.  If this eventually succeeds, the 

operator to start a fire will propagate the damage through the 

structure, satisfying the original goal. 

 
 

There are multiple ways to satisfy these goals, creating variability 

in the plans generated.  In the first case, the planner could select 

from any fire source if there are multiple ones in the walls 

surrounding a room.  If the planner falls to the second case, the 

fire could be started in any adjacent room that does contain a fire 

source. 

There are 9 goals currently implemented in the system, though 

some are subgoals of others.  The high level goals are: 

1. Fire, either in a particular room or if no room is 

specified, anywhere in the structure 

2. A victim is inaccessible.  This can be specified multiple 

times to increase the number of inaccessible victims 

Figure 2: Goal processing code 

(:method (add-new-goals) 
;; precondition for case 1 
((goal (room ?room fire)) (borders ?room 

?walls) (contains ?wall ?fire-source) (fire-
source ?fire-source ?damage) (call Member 
?wall ?walls)) 

;; actions to take in case 1 
((!!remove (goal (room ?room fire))) 

(!!assert (goal (fire-source ?fire-source 
1.0))) (add-new-goals)) 

 
;; precondition for case 2 
((goal (room ?room fire)) (borders ?room 

?walls) (call Member ?wall ?walls) (borders 
?room2 ?walls2) (call Member ?wall ?walls2)) 

;; actions to take in case 2 
((!!remove (goal (room ?room fire))) 

(!!assert (goal (room ?room2 fire))) (add-
new-goals)) 

(:method (damage-walls ?magnitude (?wall 
. ?walls)) 

() 

 ((damage-wall ?wall ?magnitude) 
(propagate-damage ?wall) (damage-walls 
?magnitude ?walls))) 

 

(:method (propagate-damage ?wall) 

((wall ?wall ?strength ?damage) 
(call >= ?damage 0.7)) 

 ((collapse-ceiling ?wall) 
(ignite-fire-source ?wall) (damage-
adjacent-walls ?wall))) 

Figure 3: Example methods 

Figure 4: Example operators 

(:operator (!op-damage-wall ?magnitude 
?wall) 

 ((wall ?wall ?strength ?damage)) 

 ((wall ?wall ?strength ?damage)) 

 ((wall ?wall ?strength 
?magnitude))) 

  

(:operator (!op-start-fire ?wall) 

 () 

 ((forall (?room) ((borders ?room 
?walls) (call Member ?wall ?walls) (room 
?room nil)) ((room ?room nil)))) 

 ((forall (?room) ((borders ?room 
?walls) (call Member ?wall ?walls)) 
((room ?room fire))))) 
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3. A room is blocked, and therefore only accessible by 

breaching a wall 

4. A ceiling has completely or partially collapsed. 

5. An earthquake of a given magnitude has occurred. 

4. RESULTS 
We tested the scenario generator with three examples: a small, 

medium, and large structure.  We attempted to generate all 

possible scenarios for each example, but the large number of 

possible variations caused the system to run out of memory before 

generating all possible plans.  Even with the Java heap size 

increased to 1GB, we would run out of memory on the medium 

and large examples.  We were still able to generate a large number 

of variants by limiting the number of plans we asked SHOP to 

generate.  Table 2 shows a breakdown of the size of each example 

and the results. 

We also developed a GUI tool for creating and visualizing 

scenarios.  For this we used the python programming language 

and the wxWidgets library.  The tool allows users to draw walls 

and rooms and set up other scenario elements.  When the planner 

output is loaded into the viewer, the damage levels are visualized 

by the amount of stippling on the lines. 

Table 2. Example descriptions 

Type Size 
# of 

Goals 

# of 

Plans 

Average 

Plan 

Length 

Small 
7 Walls, 2 Rooms,   

2 Other 
2 324 ~30 

Medium 
12 Walls, 4 Rooms, 

3 Other 
3 >2500 ~60 

Large 
30 Walls, 7 Rooms, 

11 Other 
5 >600 ~100 

 

Figure 5 shows the initial state of the small example, while figure 

7 shows a fragment of the same information as a SHOP plan.  The 

domain consists of 7 walls that form 2 rooms.  The goals are for a 

fire in room 1 and for the ceiling to collapse.  Figure 8 shows 

fragments of the final state resulting from one of the plans, 

fragments of which are shown in figure 9.  To satisfy the goal of 

starting a fire, the system determines that the wall containing the 

fire source must be damaged, and in order to do so an earthquake 

of a certain magnitude must be applied to the structure.  The 

damage from this earthquake is then propagated throughout the 

structure, resulting in a ceiling collapse that satisfies the second 

goal. 

Given the same goals and initial state, there is limited potential for 

scenario variation given the size of the small example. But even 

with this small size, SHOP generates 324 plans for this example.  

Many of these plans result in the same scenario but perform the 

operations in a different order.  Others differ in the amount of 

damage applied to parts of the structure.  

 

 

 

 

  

 

 

Figure 6: Small example, final state 

Figure 5: Small example, initial state 

(wall w5 0.5 0.7) 

(wall w6 0.5 0.5) 

… 

(ceiling c1 0.5 1.0) 

(fire-source g1 1.0) 

(wall w1 0.5 0.0) 

(wallcoords w1 (50 50 50 350)) 

… 

(room r1 v1) 

(borders r1 (w1 w2 w3 w4)) 

(ceiling c1 0.5 0.0) 

(supports c1 (w1 w2 w4 w5 w6 w7)) 

… 

(fire-source g1 0.0) 

(victim v1 injured) 

(contains w1 d1) 

(door d1 outside) 

(achieve-goals ((room r1 fire) (ceiling 
c1 0.5 1.0))) 

Figure 7: Small example domain fragments 

Figure 8: Small example output fragments 
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For the medium example we show 2 alternate scenarios, Figures 

11 and 12.  The scenarios differ in terms of which walls are 

damaged and the amount of damage.  The goal of a fire in room 1 

is satisfied in both cases by a high degree of damage to wall 3.  

The system achieves this by initiating an earthquake which 

damages the main supporting walls 1, 2, 5, 6, 8, 9, 11, and 12.  

The damage is propagated to the internal walls 3, 4, 7, and 10.  In 

both variants wall 3 is damaged enough to initiate a gas leak, and 

thus start a fire.  The second goal of trapping the victim in room 2 

is satisfied by initiating a ceiling collapse, thus both versions also 

show a high degree of damage to wall 7.  The scenarios vary in 

the amount of damage done to the other interior walls.   

 

In the large example, shown in figures 13 & 14, the system ran 

out of memory after generating around 600 variants, many fewer 

than in the medium example.  Because the domain in this case is 

much larger, each plan is significantly larger.  On average, the 

plans generated in the large example contained about 100 steps, 

compared to the 60 steps in the medium example.  Given the 

difference in plan sizes it is reasonable that the medium example 

generated about 2500 plans before running out of memory, 

compared to 600 for the large example. 

 

Figure 12: Medium example, alternate final state 

Figure 14: Large example, final state 

Figure 13: Large example, initial state 

Figure 10: Medium example, initial state 

[ 1 ]    (!!assert (goal (room r1 fire))) 

[ 2 ]    (!!assert (goal (ceiling c1 0.5 1.0))) 

… 

[ 8 ]    (!!assert (goal (earthquake 0.7 (w1 w2 w3 w4)))) 

… 

[ 10 ]    (!op-damage-wall 0.7 w1) 

[ 11 ]    (!op-collapse-ceiling c1) 

[ 12 ]    (!op-damage-wall 0.7 w2) 

… 

[ 17 ]    (!op-ignite-fire-source g1) 

[ 18 ]    (!op-start-fire w3) 

Figure 11: Medium example, final state 

Figure 9: Small example plan fragments 
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5. DISCUSSION 
The utility of a procedural scenario generation system can be 

evaluated by 2 measures.  First, it should generate a large number 

of different scenarios, thus showing that the generator is superior 

to hand made scenarios.  Secondly, the variation in the generated 

scenarios should be superior to the results one would get through 

random generation.  As Rogue and Diablo showed, it is always 

possible to create a large number of levels by randomly 

combining elements, but the resulting levels lack internal 

consistency. 

Our results show that our system can generate a large number of 

different plans.  However, some plans result in the same scenario 

by performing the same steps in a different order.  We do know 

that there is significant variation just because the amount of 

damage propagated is random.  Furthermore, as the size of a 

scenario grows, the combinatorial number of possible variations 

grows.  The relatively limited medium example contains about 20 

elements and generated over 2000 possible variations.  From this 

we can postulate that a scenario with 100 or more elements could 

potentially generate 10,000 or more different scenarios if given 

enough time and memory to do so. 

We can also create significantly more variation in a scenario by 

changing the specified goals.  We can vary the number of victims 

or the degree of collapse to create more scenarios from an input 

structure.  With 5 goal types, most of which can be used multiple 

times in a scenario, there is a large number of possible goals that 

can be specified for a given input structure.  In conjunction with 

the combinatorially large number of possible scenarios within 

each set of goals, the number of possible scenarios that can be 

generated is vast. 

To show that this approach is better than the random approaches 

used in industry, consider the thought experiment of generating 

collapsed structure scenarios using random generation techniques.  

A random level generator consists of a library of various types of 

human designed elements, with a probability distribution for each 

type of element (e.g. rooms, monsters, and treasures in 

Roguelikes) that describes the likelihood of drawing a particular 

element from the library for that type. The level generator 

proceeds by selecting elements based on its distribution in some 

specified order. For example, if there were only two element types 

– rooms and objects – the generator would first select a number of 

rooms from the room distribution, then select 0 or more objects 

for each room from the object distribution.   

For the collapsed structure domain, we could have a library of set 

pieces, each of which would be a small playable section of a 

scenario, e.g., a room with a trapped victim.  A random scenario 

generator would select some of these set pieces and attempt to 

connect them together to make a scenario.  There is no guarantee 

that the scenario as a whole would be consistent, much less that 

adjacent set pieces would match.  An area containing a fire could 

be placed next to an area without fire, or highly collapsed sections 

could be connected by a section with little damage. 

The fact that our system models physical constraints such as 

propagation of damages means that it can produce more 

believable results than unconstrained selection of elements from a 

distribution.  Thus, our generated scenarios are internally 

consistent; key elements are changed to satisfy the goals, and the 

resulting damage is propagated throughout the structure in a 

believable way.   

6. FUTURE WORK 
To reach its full potential, the domain needs to be expanded to 

handle more structural elements.  Handling multiple-story 

buildings would require codifying more chains of causality as 

collapses propagate from floor to floor.  Also, the system could 

work at a higher level of fidelity, acting on smaller units than 

walls and rooms.  For example, locations within rooms should be 

considered for victim placement and ceiling collapses, creating 

scenarios where rescue workers have to remove debris in a room 

in order to access the victim. 

This system could also be expanded to handle a wider variety of 

scenario types.  Besides structures collapsed due to earthquakes, it 

could consider other types of collapse, such as those resulting 

from bomb blasts or hurricanes.  More types of scenario elements 

could be added such as hazardous materials or flooding. 

6.1 Making a Game 
Obvious follow-on work to this project is connecting the planner 

to a playable game.  Such a game could allow the user to play as a 

rescue worker, breaching walls, shoring up damaged parts of the 

structure, and locating and rescuing trapped victims.  It could also 

allow the user to play as an operations commander, allocating 

personnel and resources amongst multiple ongoing rescue 

operations following a disaster.   

Transferring the abstract representation to a 3D game world is a 

difficult problem.  While it’s trivial to build a 3D model of a 

structure in a modeling package like 3D Studio Max, it’s difficult 

to realize the resulting partially collapsed structure.  While 

technologies exist to allow real-time destruction of game objects, 

they are based on either particle systems or a pre-generated 

deformation.  No technology exists that can perform arbitrary 

procedural deformations of a model. 

One proposed method is to build a 3D model of the structure 

divided up into modular sections.  Each section would have 

variant models for each of several levels of destruction.  Based on 

the output of the scenario generator, the appropriate variant of 

each section is added to the model.  As long as the sections and 

their variants are designed to fit together in any combination, the 

resulting structure will appear consistent.  However, to create the 

potential for an interesting level of variation, the modular sections 

would have to be very small. 

6.2 Procedurally Modeled Buildings 
Our system relies on receiving a representation of an intact 

structure as input.  We only show 3 examples, but users who 

desire even greater variation could create any number of input 

structures.  To further increase variation in the system, 

procedurally generated structures could be used as input.   

Müller et al have developed techniques for generating unique 

buildings through context sensitive grammars.  While their work 

is primarily concerned with cosmetic elements, it could be 

adapted to generate usable input structures.  The resulting models 

would have to be converted to our abstract representation and 

marked up with the necessary domain knowledge.   

Such a system would provide a user with a completely unique 

scenario each time.  The user could specify the type of structure 

desired as well as the goals desired for the scenario.  The structure 

itself would be generated procedurally, and then be transformed 
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into a partially collapsed structure containing the elements 

necessary to train on the desired goals. 

7. CONCLUSION 

In this paper we have described an architecture for the procedural 

generation of scenarios for emergency rescue training games.  We 

use HTN planning to generate consistent, believable scenarios 

based on a set of given training goals.  The system outputs a large 

number of variants for each set of inputs, and can generate even 

more variation by changing the given training goals.  The output 

from this scenario generator could be used as input to a training 

game to educate rescue workers about collapsed structure rescue 

techniques. 
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