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Abstract IPC3 DePoOT IPC4 AIRPORT
DRIVERLOG PIPESWORLD
The 3rd and 4th International Planning Competitions have en FREECELL PROMELA
riched the set of benchmarks for classical propositiorehpl ROVERS PSR
ning by a number of novel and interesting planning domains. SATELLITE SATELLITE
Although they are commonly used for the purpose of evalu- ZENOTRAVEL

ating planner performance, the planning domains themselve
have not yet been studied in depth. In this contribution, we
prove complexity results for the decision problems reldted Figure 1: IPC3 and IPC4 domains.
finding some plan finding anoptimal sequential planand
finding anoptimal parallel planin these planning domains.
Our results also provide some insights into the questiby

e X - . exclusively use IPC domains for evaluation purposes, while
planning is hard for some of the domains under consideration y purp

the remaining one uses two competition domains and the
towers of Hanoi.

Introduction Whether or not this focus on the competition domains
It is hard to deny the fact that the International Planning constitutes a healthy trend is a matter of some debate. It

Competitions (IPCs), starting from their first incarnatem can be argued that current practice in classical planning re
AIPS 1998 (McDerrﬁott 2000), have had a marked impact search focuses too much on raw benchmark performance,
on classical planning research in recent years. This is true and too little on original ideas. This has led to a cer-

not just of the competitions themselves, but also of the-plan }?/'2 ggsli?rr;r%rgir?laqgwr?e?spi%r(t)ﬁghnisﬁ-gmtri]n;[igriﬁe Ojothc?-
ning domains used within them. P ap p g prop

Evidence for this is manifold. First, significant work has sitional track of IPC4 (Hoffmann & Edelkamp 2005) being

: . : : some variation of Hoffmann’s FF. In any case, it is evident

been published that discuss properties of, or algorithms fo " : ’ .
some%f the competition domginsp(Slaney& Thigbauxrgoor that the competition domains haye becomg such a staple in
Thiébaux & Cordier 2001; Helmert 2003). (Some domains,’ current planning research that it is worthwhile putting som
such as PSR, have only been used in the competititias eff\(/)\;t 'E.to upderséan;l:_ng thelmt;/]\_/ell. | th
being the topic of research papers, but this only reinforces orking towards this goal, this paper analyzes the com-
our point that they are interesting in their own right.) p_utauonal _complexny of planning in the propositionalipla

Second, we observe that many developments in classical ning domains of IPC3 (Long & Fox 2003) and IPC4 (Hoff-

; : : . mann & Edelkamp 2005), shown in Fig. 1. We focus on
planning are motivated by weaknesses of earlier planning ; :
approaches in benchmark domains. For example, the Goal lPQ?? and IPC4 because the domains of the first two com-
Agenda Management technique used in IPP and FF (Koehler PElitions have already been addressed (Helmert 2003). We
et al. 1997; Hoffmann & Nebel 2001) is motivated by the [0CUS on propositional (i.e., non-numerical, non-temfjora
BLOCKSWORLD domain and the CG heuristic used by Fast domains because they are more commonly used than their

Downward (Helmert 2004) is inspired by “transportationdo- 1°"-Propositional counterparts; indeed, no ICAPS 2005 pa-
mains” such as baisTicsand MYSTERY. per includes experiments with the latter. However, this is

Finally, it has become a rare occurrence that a paper dis- not to say that the non-propositional domains are without

cussing new techniques for classical planning is published géfvrv?t' and indeed a follow-up investigation of thoseris u
without presenting performance results for some of the com- Y. . . .

petition domains. Indeed, in the ICAPS 2005 proceedings Studies of decision complexity are certalnl_y not the be-
(Biundo, Myers, & Rajan 2005), there are eight papers on all and end-all of research on planning domains. We rather

domain-independent deterministic planning, of which seve S€€ them as afirst step, where other steps should involve ap-
' proximability properties, phase transition behavior, axia

Copyright © 2006, American Association for Artificial Intelli- reference for comparison) domain-dependent optimal plan-
gence (www.aaai.org). All rights reserved. ning algorithms. All these steps have been undertaken for



the BLockswoORLDdomain (Slaney & Thiébaux 2001). To AIRPORT

allow the_z other ben<_:hmark domains to c_atch upa little bit, 2 The ARPORT domain models ground traffic on an airport,

companion paper discusses the approximability of the com- j o movement of aircraft along taxiways and runways.

petition benchmarks (Helmert, Mattmiiller, & Roger 2006)  ypiike other route planning domains,I®PORT tasks are
We proceed as follows. In the next section, we provide an heqyily space-constrained: Not only can any given location

overview of the problems addressed in this paper, and pro- (called ataxiway segmebnly be occupied by one aircraft
vide some first results. This is followed by four sections in-

vestigating certain planning domains in depth, namely-A
PORT, PIPESWORLD, PROMELA, and PSR. Finally, we dis-

=SV be occupied at a given time. The purpose of these con-
cuss our findings and conclude.

straints is to model realistic safety conditions. Indeée, t
AIRPORTdomain is firmly grounded in real-world planning
The problems tasks (Hatzack & Nebel 2001), and some of the IPC4 bench-
The propositional planning domains of IPC3 and IPC4 are marks are faithful translations of realistic data from Mzmi
shown in Fig. 1. For each of these domains, we are interested Airport. (Note that the formulation in Hatzack and Nebel's
in the complexity of the following decision problems: paper is quite different from the IPC4 version, leading to

e Plan existencels a given planning task solvable? different complexity results.)

e Bounded plan existencés a given planning task solvable
using no more than a certain number of actions?

Planning domain 1 AIRPORT
The set ofnovement modes for aircraft is defined as
M := {pushingtaxiing, airborne parked.

at a time, there even exist mutual exclusion constraints be-
tween segments to the effect that at most one of them may

Plan existence is closely related to the problergerfier-
ating a planfor the task, while bounded plan existence is
related togenerating an optimal plafor a task, i.e., a plan
consisting of a minimal number of actions. If itis hard to de-
cide the decision problem, then the planning problem must
also be hard. While the converse does not hold universally, i
does hold for the domains we analyze: All our proofs of eas-
iness for the decision problems are constructive, progidin
planning algorithm for the domain under consideration.

For many planning domains, plan existence can be de-
cided in polynomial time whereas bounded plan existence is
NP-complete. In these cases, itis natural to ask how difficult
it is to generate@pproximate solutionglans which are not
much worse than optimal, for some definition of “not much
worse.” We answer this question for the competition do-
mains in a companion paper (Helmert, Mattmiller, & Roger
2006), which includes classifications of approximability f
the DEPOT, DRIVERLOG, ROVERS, SATELLITE and ZENO-
TRAVEL domains. Because that paper contains an in-depth
study of these domains, we only discuss them very briefly
here.

In all five domains, non-optimal plans can be easily gen-
erated in polynomial time by addressing one subgoal at a
time. NP-hardness of bounded plan existence fapor,
DRIVERLOG and ZENOTRAVEL follows because each of
these domains generalizes thedd@nic-STRIPS domain,
for which bounded plan existence NP-hard (Helmert
2003). For RBVERS and SXTELLITE, we can reduce from
anNP-hard set covering problem. The mappings are shown
in the companion paper (Helmert, Mattmdller, & Roger
2006), where they are used to show limits of approxima-
bility. Membership inNP follows because shortest plans
are only polynomially long and hence guess-and-check al-
gorithms are applicable.

This leaves us with five domains to investigate. One of
these, REECELL, was already part of IPC2 and has been
shown to haveNP-complete plan existence and bounded
plan existence problems (Helmert 2003). We dedicate the
following sections to the remaining four domains, starting
with AIRPORT.

An AIrRPORTtask is given by the following components:

finite sets ofircraft A andtaxiway segments S,
ataxiway relation, pushback relation andblocking rela-
tion Rr, Rp,Rg C S x S,

aninitial mode function mg : A — {pushingtaxiing}
andinitial segment function sy : A — S, and

e agoal modefunction m, : A — {airborne parked and

goal segment function s, : A — S.
The digraphsG+ = (S, Rt), Gp = (S, Rp) andGp =

(S, Rp) are called thetaxiway graph, pushback graph and
blocking graph of the task.

The task is calledindirected iff Rt, Rp and Rg are sym-

metric, planar iff (S, Rr U Rp) is a planar digraph, and
regularly constrained iff Rt = Rp = Rp.

States of the task are paifsn,s) € (A - M) x (A —

S), wherem(a) is called thecurrent mode and s(a) is
called thecurrent segment of aircraft a € A. The initial
state is(my, so), the only goal state is the staten,, s ).

Any state (including initial and goal state) must satisfy th

following blocking constraints:
o If two aircraft share the same current segment, at least

one must be airborne.

If an aircraft located at segment is pushing or taxiing
and another aircraft located at segmenis pushing, taxi-
ing or parked, therfu, v) ¢ Rp.

There are five kinds of actions:

An aircraft can change its current segment franto v

if it is taxiing and (u,v) € Rr (move actions), or if it

is pushing andu,v) € Rp (push actions), unless the
resulting state violates the blocking constraints.

An aircraft can change its current mode from pushing to
taxiing (start up actions), from taxiing to airbornetgke

off actions), and from taxiing to parkegdrk actions).

The AIRPORTtasks of IPC4 obey two further restrictions

not captured by our definition. First, there are no aircraft
whose initial mode igpushingand goal mode is “parked”.



This would make little sense gmishingmode is associated
with outbound aircraft only angdarkedmode is associated
with inbound aircraft only. Second, the pushback graphis al
ways a subgraph of the taxiway graph with all arcs reversed.
Neither restriction has an impact on the complexity of the

mentsmy and,, we generate an IRPORT task with seg-
ment set/, aircraft sel’, taxiway graphG, pushback graph

G and blocking graplG, initial segment functionry and
goal segment function,. All aircraft are taxiing in the ini-

tial state and must be parked in the goal state. Clearly, the

problem because our hardness results already hold if there mapping can be computed in polynomial time.

are no pushing aircraft at all.

We also made some deviations from the PDDL definition
of the domain (Hoffmann & Edelkamp 2005) to simplify
presentation. Most importantly, the PDDL definition distin
guishes between thecationandfacingof an aircraft, while
we only consider its curresegmentCompilations between
these two representations are straightforward.

Other differences involve the modeling of take-off ac-
tions. In the PDDL definition, aircraft “leave the map”
when taking off, and they can only take off from specific
runway segments. We ignore airborne aircraft for blocking

No solution to the planning task can ever contpirsh
start uportake offactions, so we only need to consideove
andparkactions. If the planning task has a solution, then the
sequence ofnoveactions in such a solution defines a solu-
tion to the puzzle instance. Note that if a taxiing aircrafre
moved to a segment which is adjacent to the current segment
of another (taxiing or parked) aircraft, this would violate
blocking constraints. Similarly, from a solution to the puz
zle we can obtain a sequence of actions that move each air-
craft to its goal location without violating the blockingrco
straints, and from that state the task is solved by parking al

purposes, which amounts to the same thing as having them aircraft. Therefore, the mapping is indeed a reduction.

leave the map, and while we allow take-off everywhere, it

Thus, plan existence for restrictediBPORT tasks is

never makes sense to take off from a non-goal segment, andPSPACE-hard, which implies that bounded plan existence is

goal segments of outbound aircraft are always runway seg-

ments. The PDDL domain also contains a minor modeling
flaw that allows airplanes to park immediately before take-
off. However, this is never a useful thing to do and hence
cannot affect complexity.

Finally, the PDDL domain allows the blocking relation to
depend on the aircraft (viairplane typey but none of the
existing benchmarks makes use of this feature. Again, mod-
eling it would not make a difference in complexity, as even
without airplane types, we can proPSPACE-hardness.

Theorem 2 AIRPORT planning is PSPACE-complete.

Plan existence and bounded plan existence A0RPORT
tasks arePSPACE-complete. This is true even if we only
allow undirected, planar, regularly constrained tasks veéhe
all aircraft are taxiing initially and must be parked in the
goal.

Proof: For a graphG = (V, E)) and a set ofokensT’, we
define alegal placemenbf T' on G as an injective function
m : T — V such that no two tokens are placed on adjacent
vertices. A legal placement is asuccessoof another le-
gal placementr iff they differ on exactly one token € T,
for which we have{n(¢),7'(t)} € E. In other words, to

alsoPSPACE-hard. Moreover, both problems must belong
to PSPACE because PDDL planning in any fixed proposi-
tional domain is iPSPACE. This concludes the proof. =

Clearly, the result equally applies to the parallel plan-
ning framework, as alPSPACE-completeness results for
PDDL domains do. The result also implies that there ex-
ist AIRPORT tasks for which the shortest plan consists of
exponentially many actions (or sets of parallel actionsy. F
example, the shortest solution to the puzzle corresponding
to a QBF formula withn quantifier alternations consists of
Q(2™) many steps (Hearn & Demaine 2005), leading to an
AIRPORTtask with a similarly bounded sequential solution
length. The optimal parallel solution can only be shorter by
a linear amount, because orffn) many actions can be ex-
ecuted in parallel (one per aircraft). This also implieg tha
any AIRPORT planning algorithm requires exponential time
for writing down the solution for such instances.

We have also proved another polynomial reduction (not
included in this paper) from the halting problem for polyno-
mially space-constrained Turing Machines. This reduction
only generatedeterministicAIRPORT tasks, where at most
one action is applicable at any time. ThereforeRRORT

obtain a successor of a legal placement, move a single tokenplanning isPSPACE-complete even if no branching is in-

along an edge and verify that this results in another legal
placement.

We showPSPACE-hardness of ARPORT plan existence
by polynomially reducing from the followingRSPACE-
complete) variation of the Sliding Tokens puzzle (Hearn &
Demaine 2005): Given a planar graph set of tokendl’
and legal placements), 7, of T' on G, is there a sequence
of legal placements, ..., w5, such thatr; is a successor
ofm;_y foralli € {1,..., M} andry = 7,2

We now describe the mapping of puzzle instancesito-A
PORTtasks. Given grapliy = (V, E), tokensT” and place-

!In the original Sliding Tokens puzzle, tokens are indistiist-
able and the goal has a different form. Only simple adjuststn
the hardness proofs are needed for the modified versionheb-T
rem 23 and Corollary 6 in the reference (Hearn & Demaine 2005)

volved. However, the tasks generated by this reduction are
not undirected, planar, or regularly constrained.

PIPESWORLD

The RPEswoORLDdomain models the flow of oil-derivative
liquids throughpipeline segmentsonnectingareas and is
inspired by applications in the oil industry (Milidit, dos
Santos Liporace, & de Lucena 2003). Liquids are modeled
asbatchesof a certain unit size. A segment must always
contain a certain number of batches (i. e., it must always be
full). Batches can be pushed into pipelines from either,side
leading to the batch at the opposite end “falling” into the
incident area. Batches have associgtentluct typesand
batches of certain types may never be adjacent to each other
in a pipeline. Moreover, areas may have constraints on how



many batches of a certain product type they can hold.

Planning domain 3 PIPESWORLD

P := {lco,gasolinerat-a, ocal oclh} is the set ofprod-
ucts. Two product, p’ € P are calledcompatible unless
p = rat-a andp’ € {ocal oclb} or vice versa.

A PIPESwWORLDtask is given by:

o finite sets ofreas A andpipeline segments S,

afinite set obatches B, each with goroduct typeb” € P,

for each pipelines segmente S, astartareas™ € A
andend area s™ € A and asegment length |s| € Ny,

anarea capacity function ¢ : A x P — Ny,

a goal contents function Cg : A — 28 such that for
each batchh € B, we haved € Cg(a) for at most one
areaa € A, and

an (arbitrary) initial state,

where a state of the task is defined byaaea contentsfunc-
tion C4 : A — 2B and apipeline segment contents func-
tionCs : S — B* such that

for each batchh € B, eitherb € C4(a) for exactly one
areaa € A, orb € Cg(s) for exactly one segmente S,

for all areasa € A and product® € P, C4(a) contains
at mostc(a, p) batches of product type and

for all pipeline segments € S, |Cs(s)| = |s| and any

two adjacent batches if’s(s) can interface, i.e., have

compatible product types.

A state is a goal state iff;(a) C Ca(a) forall a € A.
The only actions in the task apaish actions. Ifs € Sisa

pipeline segment with conterits. . . b, andb € Ca(s™)is

a batch that can interface withy, thenb can be pushed into

Theorem 5 PIPESWORLD isNP-hard

Plan existence and bounded plan existence in the domains
PIPESWORLD TANKAGE and PIPESWORLD-NOTANKAGE

are NP-hard problems.

Proof: We prove that PESWORLD-NOTANKAGE has an
NP-hard plan existence problem, so that the other results
follow. The reduction is from satisfiability of propositiah
CNF formulae where clauses contain at most four literals
and each variable occurs in at most three clauses (and at
most once per clause). This problem is known tdNBehard
(Garey & Johnson 1979, LO1). (We could limit clauses to
three literals, but then Fig. 3 would look less symmetric.)

Let x be the formula, and leV and C be its variable
and clause sets. Throughout the proof, we refer to batches
of type rat-a as white batches, batches of typacal as
blackbatches, and batches of tygasolineasgray batches.
Observe that white batches may not interface with black
batches, while gray batches may interface with anything.

The generated IPESWORLD-NOTANKAGE instance is
assembled from components shown in Figs. 2 and 3, where
edges with differently decorated endpoints distinguish be
tween different kinds of pipeline segments. The key to these
decorations is shown in Fig. 4. The first five kinds of seg-
ments all have lengté| V| + 1, while the sixth has length.

The first kind of segment is filled with|V| black batches,
then a gray one to interface between black and white, and
then3|V| white batches. The second and third kind are com-
pletely filled with one product type, and the fourth and fifth
are like the second and third except that the first batch is
gray. The sixth kind is like the fifth, but only contains three
batches.

The pipe network contains one copy of teriable gad-

s. This results in a state where the new contents of segment yet strycture shown in Fig. 2 for each variables V, and
sarebb; ...bjs—1, bis nolongerinCa(s™), andb, is in

Ca(s1). Similarly,b € C4(s™) can be pushed ints if it

can interface withp|,|, leading to a state where the contents

of s are by ...b,b, b is no longer inC4(s™), andb; is in

CA(Sf).

constraints.

one copy of theclause gadgestructure shown in Fig. 3 for
each clause € C. The open ends to the right of the vari-
able gadgets (dotted) are connected to the open ends to the
left of the clause gadgets. In particular, if clauseontains

Pushing a batch into a pipeline segment is not the positive literak, then area’ of the variable gadget is
allowed if the resulting state would violate the area capgaci

connected to any of the dangling pipeline segments of the
clause gadget fat. Similarly, for negative literals im, area
—w’ is connected to a dangling pipeline segment of the clause

General PPESWORLDtasks are sometimes referred to as ; -
PIPESWORLD TANKAGE tasks. Note that with our defini-  92dget. Because every clause contains at most four literals

tion (as in the IPC4 benchmarks), the set of products and there are sufficiently many pipes_to make these connections.
their compatibility relation is fixed. We will see thatwe can  Because every variable occurs in at most three clauses, at
prove hardness already for this fixed compatibility relaio ~ Most three new pipeline segments are connected to either

, , or —v’. Any pipeline segments left dangling (for clauses of
Planning domain 4 PIPESWORLD-NOTANKAGE

! size three or less) are removed.
A PIPESWORLD-NOTANKAGE task is aPIPESWORLDtask The areas in the variable gadgets labeleare the only

where the area capacity for each area and product type is greas that are not initially empty, each of them containing
equal to the total number of batches of that producttype.  three plack batches. In each clause gadget, the goal require
Our definition of RPESWORLD faithfully captures the ment is to move the last (rightmost) black batch in the pipe
PDDL specification except for one modeling flaw of the lat- connecting areasandG into area. We call these pipeline
ter: In some situations, the PDDL definition allows pushing segmentgoal pipes
batches through a pipe even though this violates the area This completes the description of the mapping. Clearly,
capacity constraints on the receiving end of the pipe, mak- the RPESwORLDtask can be generated in polynomial time.
ing some unsolvable tasks solvable. This minor difference We will now show that it has a solution iff is satisfiable.
does not affect the applicability of our results becauseghe First assume that is satisfiable, and that is a satisfying
already hold for the PESWORLD-NOTANKAGE domain, assignment td/. For each variable € V', we push the
where area capacities can be ignored. three black batches in ar@aof the corresponding variable



previously pushed into the clause gadget through the same
pipe. This is because batches moved iktofrom /; have

the wrong color to be pushed infg and vice versa, and
similarly there cannot be a flow betweénandi, via 3,4

or betweeri;; andis4 via c. (Note that there are not suffi-
ciently many batches on the left side of the network to push
a gray batch out of the pipes leading/{¢ls orc.)

We can thus treat the segments connecting variable gad-
gets to clause gadgets as “one-way pipes”, which simplifies
the analysis because we can consider each variable gadget
in isolation. The important property for variable gadgsts i
that we can either push batches into arear into area—’,
but never both. To see this, note that to push even a sin-
gle batch into area’, we must pustall three batches from
area3 into areav; otherwise we obtain only white batches in
areav, which cannot be pushed into the pipe connecting to
v’. Moreover, to push a batch intd, we must make use of
the gray batch from the pipe betwegmandv’ and without
pushing that gray batch back into(which requires empty-
ing areav’), we cannot push anything back into afea

Therefore, if there is a solution, then there is one where
for each variable only one of the areasand —v' ever
) contains a batch. Define the truth assignmenso that

Figure 3: Clause gadget. a(v) := 1if areav’ ever contains a batch, andv) := 0
otherwise. Then a batch can only be pushed into the clause
_ ) ) ) gadget ared; if « satisfiesl;. Because at least one batch
gadget into the pipe leading to the area denoted by a literal myst be pushed into each clause gadgedatisfies at least
| satisfied by (i.e., to area if a(v) = 1 and to areaw one literal in every clause, and hengés satisfiable. This
otherwise). This pushes three batches into this area, one of concludes the proof. [
which is gray. We push the gray batch, then the two white . ) o
batches available there. We then push one batch into each ofthat bounded parallel plan existenceNB-hard. Also note
the pipes connectin to clause gadgets. that the proof works just as well if batches of the same
Due to the way variable gadgets are connected to clause product type are indistinguishable, and hence the goatis ex

gadgets and becausesatisfiesy, this places at least one  Pressed in term oproduct typesnot batches, which is a
batch in one of the areas I, I or [, of each clause gadget. ~ More realistic model of the under_lylng application p_robJem
In each clause gadget, we choose one such batch and push it Unfortunately, we cannot provide &P membership re-
into the pipe leading td;» or Is4, placing a batch in one of sult, and mdee_d the_ques'uon whether plan existence for
these areas. This batch is then pushed into the pipe leadingt PIPESWORLDIS in NP is open.
¢, releasing a batch there which is pushed into the goal pipe, However, we do know thatIPESWORLD-NOTANKAGE
satisfying the goal for this clause. We thus satisfy the goal Withoutinterface constraints (all product types are cotipa
in each clause gadget, which shows that the task is solvable. Pl€) admits polynomial planning algorithms (Pessoa 2004),
Now assume that the task has a solution. Obviously, this although bounded plan existence is shIP-complete for
requires that more batches are pushed into each clause gad!liS PPESWORLDvariant. Due to space limitations, we do
get than pushed out of them. It is never possible to push "OtProve this result.
any batch out of a clause gadget unless this batch has been

PROMELA
PROMELA (Processor Protocol Meta Languageis the
— HENR RREREO0O0O..000 input language used by the SPIN model checker (Holz-
—+ HEEE EEEEEEE EEE mann 1997). The ROMELA planning domain (Edelkamp
2003) encodes a subset of PROMELA in PDDL2.2, al-
— [00..0000000..000 lowing the application of planning technology to a cer-
— +« IJEE EEEEEEE EEE tain class of model-checking problems. We first intro-
duce and discuss the genera®dMELA planning domain,
— [EO0...0000000...000 then the restricted subclasseRdMELA-PHILOSOPHERS
3 W0 and RROMELA-OPTICALTELEGRAPH, which were part of

the IPC4 benchmark set.
) ) A PROMELA task defines a distributed system consisting
Figure 4: Key to Figs. 2 and 3. of a set ofprocessesmodeling individual components of



a distributed system, amglieuesused for communication solution iff the Turing Machine halts (starting from a blank
between processes. The goal is always to firdkadlock tape).

state, in which no process is able to continue its operation. Let M be a Turing Machine with state sét, including
Planning domain 6 PROMEL A initial statezy € Z and accepting state € Z, tape alphabet

A PROMELA task is given by finite sets @focesses P, I, including blank symbold € T', and transition function

e : L §: (Z\{2}) xT — Z xT x {-1,+1}. We assume
gtrjlzufgﬁrcgscnhdpr::gseiEﬁgcapacnyfuncnonc Q= Ny, that the machine hastape cells, starts at the left-most one,

and that attempts to move past the end of the tape in either

» afinite set oftates S(p), direction is an error that terminates computation (juse lik
e aninitial state so(p) € S(p), reaching the accepting state).
e asetofreading transitions R(p) C S(p) x Q x X x S(p), The cor(;esponding FR?MELA tﬁk has %nm?le cell pr}O-
o o cessp; and one queug; for each tape cell € {1,...,n}.
* asetofwriting transitions W(p) € S5(p) x @ x X x 5(p). Theszs),et of mess?:\ges@its the set of F')I'uring Machine stéates
A state of the task defines: All queues have capacity, all tape cell processes have state
o for each procesp € P, aprocess state s(p) € S(p), setl' U (' x Z), and the initial state of each procesdis
initially s(p) = so(p), except for procesg; with initial state(, zo).
For each Turing Machine transitidtiz,a) = (2/,d/, A)

e for each queug € @, thequeue contents C(q) € ¥*,
initially C(q) = e.

There is only one kind of actions of the taagplying lo- - .
cal transitions. Processp € P can apply local transition e Atransition froma to (a, z) which reads: from ¢;.

and each tape positioh € {1,...,n} wherei + A €
{1,...,n}, tape cell procegs has the following transitions:

t = (s,q,a,5") € R(p) UW (p) iff s(p) = s and eithert is e Atransition from(a, z) to a’ which writesz’ to gy a.
areading transition and the first element®@fq) is the mes- ) )
sageq, Or ¢ is a writing transition andC(q)| < ¢(q). As a ~ There is a straightforward correspondence between con-
result of the action, the local state of processhanges to  figurations of the Turing Machine and states of the cor-
s and the first element af(q) is removed (it is a reading responding ROMELA task. If afterk computation steps,
transition), or message is appended t@'(q) (if ¢ is a writ- the Turing Machine reaches statevith current tape posi-
ing transition). All other state components are unaffected ~ tion i and tape contents, . .. a,, then after2k steps in the

A state is a goal state iff no action is applicable. PROMELA task, process; is in state(a;, z) and each pro-

cessp; # p; is in statea;. Moreover, all queues are empty.

Our defi_nit!on Qf the ROMELA domain differs fro_m _the We prove this inductively. Clearly, the statement is true
PDDL definition in some minor ways that do not limitthe ¢ " Assume that it is true fok. We can assume that
applicability of our results. These are discussed towdrest £ aﬁdé(z ai) = (#,d',A) With.i—i— Acil,....n)

end of the section. . . since otherwise the Turing Machine computation stops and
Processes can be naturally described by labeled directede g js nothing to prove. In this case, the only possible lo-

graphs, where vertices correspond to process states @d arc 5| execution in the ROMELA task is by process;, since

to transitions. For a transition = (s,q,a,5"), the graph all other processes are in states that require reading from a

contains an arc frons to " with the labelg : a? if ¢ queue, and all queues are empty by the inductive hypothe-

is a reading transition angl : ! if ¢ is a writing transi- sis. Procesg; is in state(a,, z), which has only one out-

tion. Fig. 5 shows an example process fronnoWlELA_— going transition, writing:’ to queuey; . Ao and changing the

PHILOSOPHERS  The process corresponds to a single  bracess state gf; to o’. In the next step, all processes are

philosopher, the queudsand R to the forks to his left and in a state that requires reading, but only progess. can

right. The intuition behind the model is that writing a mes- o454 from a non-empty queue, S’O this process acts next. The

sage corresponds to putting a fork on the table, and reading oy applicable transition is the one that reads message

a message corresponds to picking it up. Initial process stat and changes state from. a 10 (a;., 2'). After these two

1 is a set-up state in which each philosopher puts one fork steps, all queues are empty again, and the local process stat

on the Fa.b'?- After leaving this state, philos.ophers folow again correspond to the Turing Machine configuration as re-
deterministic strategy of repeatedly requesting the twhksfo quired, concluding the inductive proof.

they require in a certain order, then putting them down again This shows that if the Turing Machine does not halt, we

_ Communicating processes are a very expressive formal- .o\t reach a deadlock in the®VELA task. On the other
ism for modeling computations. This makes planning for hand, if the Turing Machine halts, it either does so by at-
general ROMELA tasks hard. tempting to go past the tape boundaries or by reaching state
Theorem 7 PROMELA planning is PSPACE-complete. z«. In both cases, theHOMELA task reaches a deadlock,
Plan existence and bounded plan existenceRROMELA because no local executions are possible in the state cor-
tasks arePSPACE-complete. This is true even if all queues responding to the last Turing Machine configuration after
have capacity 1 and the tasks are deterministic, i. e., atmos reachingz, (or before going past the tape boundaries).

one action is applicable in any reachable state. Thus, plan existence forHOMELA tasks isPSPACE-
Proof: We provide a reduction that maps space-restricted hard, which implies that bounded plan existence is also
Turing Machines to ROMELA tasks such that the task hasa PSPACE-hard. Moreover, both problems must belong to



L: fork?
O L: fork! @/\
R: fork! R: fork?
L: fork!

Figure 5: ROMELA-PHILOSOPHERStransition graph.
State numbers follow the PDDL specification.

W: att!

R: data?

C: . 2
R: stop? w: Stopy @ R: data*
7 W: datal!

. W: start! O R: att!

Figure 6: ROMELA-OPTICALTELEGRAPHtransition
graph. State numbers follow the PDDL specification.

PSPACE because PDDL planning in any fixed propositional
domain is inPSPACE. This concludes the proof. u

Having established the result for the generabMELA
domain, we now turn to theFRdMELA-PHILOSOPHERSand
PROMELA-OPTICALTELEGRAPHdOMains. These domains
are special cases oRBMELA where each task is character-
ized by a single number. In the former domain, this number
defines the number of philosophers in a dining-philosophers
style problem. In the latter, it defines the number of optical
telegraphs in a communication protocol.

Planning domain 8 PROMELA-PHILOSOPHERS

A PROMELA-PHILOSOPHERStask is given by a natural
numbern > 2 and denotes #ROMELA task with message
set{fork}, processeg; and queuesg; (of capacityl) for all

1 € {1,...,n}. Throughout this section, process and queue
indices of PROMELA-PHILOSOPHERStasks are considered
modulon. States and transitions of processare given by
the directed graph in Fig. 5, where the initial process state
is statel, L denotes the queug, and R denotes the queue

qi+1-

Planning domain 9 PROMELA-OPTICALTELEGRAPH

A PROMELA-OPTICALTELEGRAPHtask is given by a nat-
ural numbern > 2 and denotes &PROMELA task with
message sdatt, ctl, data start, stop}, processegs and p!

and queuess§, ¢¢f and ¢ (of capacity1) for all i €
{1,...,n}. Throughout this section, process and queue in-
dices of PROMELA-OPTICALTELEGRAPHtasks are consid-
ered modular. States and transitions of the processes are
given by the directed graph in Fig. 6, where the initial pro-
cess state is statgh. For proces¢, C' denotes the queue

¢¢, R denotes the queug' and W denotes the queug'.
For proces}', C denotes the queug, R denotes the queue

¢¥'., andW denotes the queug, ;.

Because of their simple scaling structure, these bench-
marks are much easier to solve than genembReELA
tasks.

Theorem 10 PROMELA-PHILOSOPHERS is €asy.

In the PROMELA-PHILOSOPHERSdomain, optimal plans
can be generated in polynomial time.

Proof: To reach a goal state, apply the transitions frbtn

6 to 3 in all processes. When all processes are in state
they are all blocked, so this is a solution of length if n is
the number of philosophers.

We now prove optimality. Because there is only one mes-
sage type and queues have sizequeues only have two
configurationsfull or empty We can verify the following
invariant: Queue; is full iff p; is in state5 or 6 andp;_1 is
in statel, 3 or 6. Thereforep; cannot be deadlocked in state
1 or4 (g; is not full if p; is in statel or 4) or in state (¢;+1
is not full if p, is in state5). Therefore, processes can only
be blocked in states or 3. However, if all processes are in
state 3 or 6 ang; is in state6, theng; is not full and hence
p; is not blocked. Therefore, for all processes to be blocked,
all of them must be in stateé The generated plan clearly is
the shortest sequence of actions achieving this. u

Theorem 11 PROMELA-OPTICALTELEGRAPH iseasy.

In the PROMELA-OPTICALTELEGRAPH domain, optimal
plans can be generated in polynomial time.

Proof: To reach a goal state, first apply the transitions from
25 to 14 to 15 in all processes, then the transition from
25 to 2 in all processeg}. Clearly, this leads to a dead-
lock. Optimality can be proved by similar arguments as for
PROMELA-PHILOSOPHERS(details omitted). u

All the results in this section easily generalizeptarallel
planning Clearly, the generdPSPACE-completeness re-
sult also applies to that setting, BSPACE-completeness of
plan existence impliePSPACE-completeness of bounded
parallel plan existence for propositional PDDL domains. In
the restricted domains, parallelism allows taking the-tran
sitions of each process simultaneously, so that the opti-
mal parallel plan length for anyR®MELA-PHILOSOPHERS
task is2, whereas the optimal parallel plan length for any
PROMELA-OPTICALTELEGRAPH task is3. In the latter
case, note that proceg$ can only transition to stateafter
p$ , has transitioned to staté.

Finally, some comments on the differences between our
formalization and the actual PDDL domain. First, the PDDL
definition seems to have a minor flaw in the formalization
of writing to queues of capacity 2 or greater. The hard-
ness proof does not require such queues and they do not
occur in the competition domains, so this does not make a
difference. Second, because of another flaw in the PDDL
definition, processes can only be recognized as blocked
in states with at most one outgoing transition; reaching a
deadlock in which some process has two outgoing transi-
tions in its current state is not considered a solution, even
if all those transitions are blocked. This does not affect



our proofs for the competition domains, but it does mean
that thePSPACE-hardness proof is not immediately appli-
cable to the PDDL specification. However, it is easy to
adjust to work around the flaw. Finally, due to the diffi-
culty of expressing the queue updates and dead-lock condi-
tion succinctly in PDDL, a single action in our model corre-
sponds to a sequence of four actions in the PDDL model,
and another action is needed at the end of the plan for
each blocked process with an outgoing transition in the cur-
rent state. Counting the number of PDDL actions, 2he
plan length for ROMELA-PHILOSOPHERSthus becomes
9n (2n transitions;n processes), and tf$z plan length for
PROMELA-OPTICALTELEGRAPHbecomed 4n (3n transi-
tions,2n processes). The optimal parallel plan lengths in the
PDDL domains, following the PDDL definition of concur-
rency, become%for PROMELA-PHILOSOPHERSand11 for
PROMELA-OPTICALTELEGRAPH(itis not14 since some of

the “subactions” can be interleaved).

PSR

The PSR power supply restoratigndomain was origi-
nally introduced for planning under uncertainty (Thiébau
& Cordier 2001). At the 4th International Planning Com-
petition, a deterministic and fully observable variant was
one of the benchmark domains. The domain models a sit-
uation where parts of a power network, consisting of power
sources ¢ircuit breaker$, switches and power lines, have
turned faulty. Circuit breakers or switches can be open or
closed, with open devices blocking the current. The objec-
tive of a PSR task is to reconfigure the network by opening
and closing devices so that as many lines as possible are fed,
while avoiding to feed any faulty lines (which immediately
opens all power sources feeding them).

Planning domain 12 PSR

A PSRtask is given by a finite set dévices D, partitioned
into circuit breakers C C D andswitches D \ C, and by a
finite set ofines L, some of which aréaulty lines ' C L.

Devices are linked to lines by a connected, bipartite graph
called thepower network. In the power network, each edge
connects a device to a line. Circuit breakers have a degree
of 1, switches a degree dfor 2. There is no restriction on
the degree of lines. We say that a linefésdable iff there
exists a path in the power network leading from a circuit
breaker to that line which does not pass through any faulty
lines (including the line itself).

For each circuit breaker, there is a set of lines and devices
called itsfeeder tree, including the circuit breaker itself. The
subgraph induced by a feeder tree must be a tree where all
leaves are devices. Each line and circuit breaker is part of
exactly one feeder tree, each switch part of one or two feeder
trees. If itis part of two feeder trees, it must be a leaf infbot
induced graphs and is calledjaining switch.

A state of the task is given by a €2tC D of open de-
vices; non-open devices are callddsed. Initially, the join-
ing switches are open, all other devices closed. We say that
alinel € L is fed by a circuit breakerc € C in a given
state iff there exists a path in the power network fioto |
which does not pass through any open device (includibg

self). We say that a circuit breakerasfected iff a faulty line
is fed by it. A state isinsafe iff there is an affected circuit
breaker, andsafe otherwise.

There are three kinds of actions in the task:

e Thewait action is applicable iff the state is unsafe, and
opens all affected circuit breakers.

e Theopen andclose actions are applicable iff the state is
safe. They open or close a single device.

A state is a goal state iff it is safe and each feedable line
is fed by some circuit breaker.

Differently to the original PDDL definition, we do not ex-
plicitly model theearth device, which is always open, but
rather allow to have switches with a degree of 1, which leads
to the same semantics.

Note that there is no requirement that a line be fed by only
one circuit breaker, although this is true for the initiatet
due to the fact that joining devices are initially open.

Somewhat surprisingly, optimal plans in PSR can be gen-
erated in polynomial time.

Theorem 13 PSR iseasy

In the PSRdomain, optimal plans can be generated in poly-
nomial time.

Proof: Solving PSR tasks requires maintaining safety
and feeding all feedable lines. The safety property is
monotonously increasing in the set of open devices, i. e., if
O C O’ and state) is safe, then stat®’ must also be safe.
(Recall that we identify states with the corresponding $et o
open devices.) The feeding property is monotonously de-
creasing in the set of open devices, i.e.QifC O’ and a
certain line is fed inD’, then it is also fed irO. Thus, the
two aspects of solving a PSR task conflict in a certain way.
However, as we shall see, it is possible to separate these as-
pects by ensuring safety first, then feeding all feedabésslin

We say that a circuit breakerdmangeroudff it is adjacent
to a faulty line, and a switch is dangerous iff it is adjacent t
a faulty line and to a feedable line.

If the initial state is a goal state, we return the empty
plan. Otherwise, since all lines are fed initially by thecait
breaker in their feeder tree, the initial state must be nsaf
and the first action in any plan must bavait action, which
opens all dangerous circuit breakers. We thenapsnac-
tions to open all dangerous switches. Like the initiglit
action, these actions must occur in any solution (although
not necessarily at this point), because switches can only be
opened byopenactions (rather than by waiting, as for cir-
cuit breakers), and dangerous switches must be open in a
goal state: Assume dangerous switthwere closed in a
goal state. By definition, it is adjacent to a feedable line
and faulty linel’. In a goal statel, must be fed by some cir-
cuit breakere, sol’ is also fed by, and hence is affected
and the goal state unsafe, a contradiction. It is also etiden
that dangerous circuit breakers must be open in a goal state
to ensure safety.

Interestingly, having all dangerous devices open is not jus
necessary for safety of a goal state, it is asdficientfor
safety of any state. Assume that this were not the case and
there were an unsafe state where all dangerous devices are



open. By definition of safety, in this state there must be a
pathm = d;l; ... d,l, from circuit breakekl; to faulty line
l,, where all deviced; are closed. We can assume thais
the only faulty line on the path (f for i < n is faulty, we

for computing minimum spanning trees, it is easy to verify
that the complete PSR planning algorithm amounts to the
following quite simple greedy strategy:

; . . 1. Ifthe initial state is a solution state, return the empan
considerr’ = dyly ...d;l; instead). Ifn = 1, then the cir- : : P
. ; otherwise continue.
cuit breakewl; is dangerous and therefore not closed, a con- )
tradiction. Ifn > 1, then linel,,_; is feedable by the path 2. Wait.
dily ...dy—1l,—1, @and hencel,, connects a feedable lineto 3. Open all dangerous switches.

a faulty line and is dangerous and therefore not closed, a,

contradiction.
Therefore, we can solve the task as follows:

e Wait, then open all dangerous switches.

e Compute a set of non-dangerous deviégs of minimal
cardinality such that closing) leads to all lines being
fed. Close these devices.

We already saw that all actions in the first step must occur
in any solution. Moreover, due to the monotonicity of feed-
ing and due to the fact that closing a device requires a single
action per device (unlike opening, which can in some cases
be done more efficiently with theait action), the generated
plan is clearly optimal provided that safety is not violabsd

Until a goal is reached, close some non-dangerous device
such that closing this device leads to at least one addi-
tional line being fed.

Second, the proof critically relies on the fact that swikche
are connected to at most two lines, and circuit breakers only
to one line. Eliminating the degree restriction for devices
indeed leads to a more difficult domain, for which bounded
plan existence idNP-complete. However, we do not prove
this result here.

Finally, the problem remains easy in a parallel planning
framework. In fact, according to the PDDL definition of the
domain, no two PSR actions are concurrently executable,
due to the conservative definition of mutexes in the presence

any of the closing actions. However this is ensured by the of derived predicates (Hoffmann & Edelkamp 2005). Under
fact that having all dangerous devices open is sufficient for a less strict notion of concurrency, it makes sense to allow
safety. opening several devices in parallel and closing several de-
Thus, we only need to show how to calculate the/3etin vices in parallel if that does not lead to any circuit breaker
polynomial time. For this purpose, we apply some transfor- being affected. Using this notion, it is obvious that the op-
mation to the power network. First, we remove all dangerous timal parallel solution length for any PSR task is 3, where
devices along with all lines and devices that become discon- the first step consists of a wait action, the second of a num-
nected from the circuit breakers by this operation. Clearly ber of open actions, and the third of a number of close ac-
since all dangerous devices are open and we are not going totions. This concludes our discussion of PSR, and of the IPC
close them, this is a valid operation. This results in a graph benchmarks in general.
where all lines are feedable and no devices are dangerous, so

we can ignore wait or open actions in the following. Second,
we introduce a new (closed)ain circuit breakerconnect it

to a newmain ling and connect that line to all original cir-
cuit breakers in the network, which change status to switche
(note that their degree is now 2 due to the edge from the
main line). Again, this does not change the semantics of the
fed predicate. ldoeschange the semantics of affectedness
for our network, but this is not a problem because our net-
work contains no faulty lines. Third, we remove all switches
with degree 1 (they are no use for solving the task) and re-
place all other switches with colored (i. e., labeled) edges
connecting their two neighboring lines, using red edges for
open switches and green edges for closed switches. Closing
a switch thus corresponds to changing the color of an edge to
green. A line is fed iff it is reached by a path from the main
circuit breaker that does not pass through any red lines, and
hence all lines are fed iff the subgraph obtained by remov-
ing all red lines is connected. To achieve this with a min-
imal number of close actions, we can compute a spanning
tree with a minimal number of red edges, or equivalently
a minimal spanning tree in the weighted graph obtained by
assigning weight 1 to all red edges and weight O to all other
edges. Computing a minimal spanning tree is a polynomial
time operation. u

Some comments are in order at this point. First, if we
use Prim’s algorithm (Cormen, Leiserson, & Rivest 1990)

Summary and discussion

Fig. 7 summarizes our results. Comparing these findings
to the complexity properties of the earlier benchmark do-
mains (Helmert 2003), one notable development is the ad-
vent of PSPACE-equivalent planning domains at IPC4. We
believe that this is an effect of the competition organizers
focus on actively seeking faoealistic andstructurally inter-
estingdomains. Indeed, they mention includin@&PACE-
equivalent benchmark as one of the desiderata for the IPC4
benchmark suite (Edelkamp & Hoffmann 2003). Another
notable development is the advent afi@n-trivial planning
domain in which optimal solutions can be computed effi-
ciently, namely PSR. We consider theoretically tractable,
but non-trivial domains an import addition to the toolset
of planner evaluation, and indeed solving PSR tasks has
proven to be very challenging for state-of-the-art plagnin
systems.

Realism and interestingness come with a cost in complex-
ity, and this is not limited to decision complexity. In three
out of the four IPC4 domains (or domain groups) we studied,
the PDDL models are flawed, PSR being the only exception.
Moreover, two of these three [FEswoORLDand FROMELA)
are modeled unnaturally in the sense that an atomic activ-
ity in the modeled domain (such as pushing a batch into a
pipe, or taking a transition in a process) corresponds te sev
eral actions in the model. A similar need for splitting con-



optimal planning irP:
PROMELA-OPTICALTELEGRAPH,
PROMELA-PHILOSOPHERS PSR

planning inP, optimal planningNP-equivalent:
DEPOT, DRIVERLOG, ROVERS, SATELLITE,
ZENOTRAVEL

planningNP-hard:
PiPEsSwORLD(both variants)

planningPSPACE-equivalent:
AIRPORT, PROMELA (general case)

Figure 7: Planning complexity for the IPC3 and IPC4 do-
mains.

ceptually atomic activities into several PDDL operators ha
been identified in an application domain devised by Boddy
et a. (2005). From these observations, we conclude that it
would be useful to extend PDDL to allow modeling com-
plex operators more naturally. Allowing operators to be de-
fined assequential compositiortf other (notindependently
applicable) suboperators could go a long way towards ad-
dressing these issues, while still allowing for compilatio
techniques to current PDDL.

Apart from an increase of complexity, another interest-
ing trend in the competition domains is the lack of a com-
mon theme or pattern in the IPC4 benchmark suite. Many
of the IPC1 and IPC2 domains can be subsumed under the
headingtransportation domaingHelmert 2001). Many of
the domains of IPC3 have a transportation or route-planning
aspect, but except foreNOTRAVEL, each of them signifi-
cantly diverges from the theme in some way. For the IPC4
domains, no central theme can be identified at all. This is
clearly a healthy development if we want planning technol-
ogy to apply to a wide spectrum of application domains.

In the introduction, we mentioned how the competition
benchmarks have influenced the development of proposi-
tional planning systems in the past. Our results show that
the IPC4 domains present considerable difficulties from a
complexity point of view. It will be interesting to see how
planning technology will rise to this challenge.
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