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Abstract

We present some techniques for planning in domains specified with the recent standard
language pddl2.1, supporting “durative actions” and numerical quantities. These tech-
niques are implemented in lpg, a domain-independent planner that took part in the 3rd
International Planning Competition (IPC). lpg is an incremental, any time system pro-
ducing multi-criteria quality plans. The core of the system is based on a stochastic local
search method and on a graph-based representation called “Temporal Action Graphs” (TA-
graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing
some techniques to guide the search in lpg using this representation. The experimental
results of the 3rd IPC, as well as further results presented in this paper, show that our
techniques can be very effective. Often lpg outperforms all other fully-automated plan-
ners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that
can be produced.

1. Introduction

Modeling temporal and numerical information in automated planning is important for rep-
resenting real-world domains, where actions take time, and consume resources, and the
quality of the solutions should take these aspects into account. In the ’80s and early ’90s
some expressive, but inefficient, planning systems handling time were developed (e.g., Vere,
1983; Tsang, 1986; Allen, 1991; Penberthy & Weld, 1994). More recently, a number of
alternative interesting approaches to temporal planning has been proposed (e.g., Smith &
Weld, 1999; Do & Kambhampati, 2001; Haslum & Geffner, 2001; Dimopoulos & Gerevini,
2002). Some of these planners can compute plans with optimal makespan, but in practice
most of them scale up poorly.

Local search is emerging as a powerful method to address fully-automated planning,
though in principle this approach does not guarantee generation of optimal plans. In par-
ticular, two planners that successfully participated in the recent 3rd International Planning
Competition (IPC) are based on local search: ff (Hoffmann & Nebel, 2001) and lpg.

In earlier work on lpg (Gerevini & Serina, 1999, 2002) we proposed a first version of our
system using several techniques for local search in the space of action graphs (A-graphs),
particular subgraphs of the planning graph representation (Blum & Furst, 1997). This
version of the planner handled only strips domains, possibly extended with simple costs
associated with the actions. In this paper, which is a revised and extended version of a recent
work (Gerevini, Serina, Saetti, & Spinoni, 2003), we present some major improvements
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that were used in the 3rd IPC to handle domains specified in the recent pddl2.1 language
supporting “durative actions” and numerical quantities (Fox & Long, 2003).

The general search scheme of our planner is Walk-plan, a stochastic local search procedure
similar to the well-known Walk-sat (Selman, Kautz, & Cohen, 1994). Two of the most
important extensions on which we focus in this paper concern the use of temporal action
graphs (TA-graphs), instead of simple A-graphs, and some new techniques to guide the local
search process. In a TA-graph, action nodes are marked with temporal values estimating
the earliest time when the corresponding action terminates, while fact nodes are marked
with temporal values estimating the earliest time when the corresponding fact becomes
true. A set of ordering constraints is maintained during search to handle mutually exclusive
actions, and to represent the temporal constraints implicit in the “causal” relations between
actions in the current plan.

The new heuristics exploit some reachability information to weigh the elements (TA-
graphs) in the search neighborhood that resolve an inconsistency selected from the current
TA-graph. The evaluation of these TA-graphs is based on the estimated number of search
steps required to reach a solution (a valid plan), its estimated makespan, and its estimated
execution cost. lpg is an incremental planner, in the sense that it produces a sequence
of valid plans each of which improves the quality of the previous ones. Plan quality is
modeled by execution and temporal costs in a flexible way (the user can determine the
relative importance of the plan quality criteria).

In the 3rd IPC, our planner demonstrated excellent performance on a large set of test
problems in terms of both speed to compute the first solution and quality of the best solution
computed by the incremental process. lpg was the fully-automated planner that solved the
greatest number of problems, and the one with the highest success ratio between attempted
problems and solved problems.

The paper is organized as follows. Section 2 presents the action and plan representation
used in the competition version of lpg. Section 3 describes lpg’s local search neighborhood,
some new heuristics for temporal action graphs, and the techniques for computing the
reachability and temporal information used in these heuristics. Moreover, in this section
we describe how lpg handles numerical variables and the incremental process to produce
good quality plans. Section 4 presents the results of an experimental analysis using the
test problems of the 3rd IPC, and illustrating the efficiency of our approach especially for
temporal planning. Section 5 gives conclusions, and mentions current and future work.
Finally, a collection of appendices describes lpg’s algorithm for computing the mutual
exclusion relations used during search, and gives details about some of the experimental
results presented in Section 4.

2. Action and Plan Representation

In this section we introduce our graph-based representations for strips and temporal plans,
which can be seen as an elaboration of planning graphs (Blum & Furst, 1997).

2.1 Planning Graphs and Actions Graphs

A planning graph is a directed acyclic levelled graph with two kinds of nodes and three kinds
of edges. The levels alternate between a fact level, containing fact nodes, and an action

240



Planning through Stochastic Local Search and Action Graphs in LPG

level containing action nodes. An action node at a level t represents an action (instantiated
operator) that can be planned at time step t. A fact node at a level t represents a proposition
corresponding to a precondition of one or more actions at time step t, or to an effect of one
or more actions at time step t − 1. The fact nodes of level 1 represent the positive facts
of the initial state of the planning problem (every fact that is not mentioned in the initial
state is considered false).

In the following, we indicate with [u] the proposition (action) represented by the fact
node (action node) u. The edges in a planning graph connect action nodes and fact nodes.
In particular, an action node a at a level i is connected by: precondition edges from the
fact nodes of level i representing the preconditions of [a]; add-edges to the fact nodes of
level i+ 1 representing the positive effects of [a]; delete-edges to the fact nodes of level i+ 1
representing the negative effects of [a]. Each fact node f at a level l is associated with a
no-op action node at the same level, which represents a dummy action having [f ] as its only
precondition and effect.

Two action nodes a and b are marked as mutually exclusive in the graph when one of
the actions deletes a precondition of the other (interference) or an add-effect of the other
(inconsistent effects), or when a precondition node of a and a precondition node of b are
marked as mutually exclusive (competing needs).

Two proposition nodes p and q in a proposition level are marked as exclusive if all ways
of making proposition [p] true are exclusive with all ways of making [q] true (each action
node a having an add-edge to p is marked as exclusive with each action node b having an
add-edge to q). When two fact or action nodes are marked as mutually exclusive, we say
that there is a mutex relation (or simply a mutex) between them.

Given a planning problem Π, the corresponding planning graph G can be incrementally
constructed level by level starting from level 1 using a polynomial algorithm (Blum & Furst,
1997). The graph construction should reach a propositional level where the goal nodes are
present, and there is no mutex relation between them.1 The fixed-point level of the graph
is the level from which the nodes and mutex relations at every subsequent level remain the
same. Blum and Furst refer to this level as the level where the graph has “leveled off”.
The mutex relations in the planning graph monotonically decrease with the increase of the
levels: a mutex relation holding at a certain level may not hold at the next levels, but it is
guaranteed that it holds at all previous levels containing the fact/action nodes involved in
the relation. The mutex relations at the fixed-point level of the graph are called persistent
mutex relations (Fox & Long, 2000), because they hold at every level of the graph.

Without loss of generality, we can assume that the goal nodes of the last level represent
the preconditions of the special action [aend], which is the last action in any valid plan, while
the fact nodes of the first level represent the effects of the special action [astart], which is
the first action in any valid plan.

Our approach to planning uses particular subgraphs of G, called action graphs, which
represent partial plans.

Definition 1 An action graph (A-graph) for G is a subgraph A of G containing astart

and aend, and such that, if a is an action node of G in A, then also the fact nodes of G

1. In some cases, when the problem is not solvable, the algorithm identifies that there is no level satisfying
these conditions, and hence it detects that the problem is unsolvable.
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corresponding to the preconditions and positive effects of [a] are in A, together with the
edges connecting them to a.

Notice that an action graph can represent an invalid plan for the problem under consid-
eration, since it may contain some inconsistencies, i.e., an action with precondition nodes
that are not supported, or a pair of action nodes involved in a mutex relation. In general,
a precondition node q at a level i is supported in an action graph A of G if either (i) in A
there is an action node at level i− 1 representing an action with (positive) effect [q], or (ii)
i = 1 (i.e., [q] is a proposition of the initial state). An action graph without inconsistencies
represents a valid plan and is called a solution graph.

Definition 2 A solution graph for G is an action graph As of G such that all precondition
nodes of the actions in As are supported, and there is no mutex relation between action nodes
of As.

For large planning problems the construction of the planning graph can be computa-
tionally very expensive, especially because of the high number of mutex relations. For this
reason our planner considers only pairs of actions that are persistently mutex, derived using
a dedicated algorithm given in Appendix A. An experimental comparison with ipp’s imple-
mentation of the planning graph construction (Koehler, Nebel, Hoffmann, & Dimopoulos,
1997) showed that in practice our method for deriving mutex relations is considerably more
efficient than the “traditional” method for deriving the mutex relations in the fixed-point
level of the graph. Moreover, for the problems that we tested, our method derived all the
persistent mutex relations found by the traditional method.

The definition of action graphs and the notion of supported facts can be made stronger
by observing that the effects of an action node can be automatically propagated to the next
levels of the graph through the corresponding no-ops, until there is an interfering action
blocking the propagation (if any), or the last level of the graph has been reached. The use
of the no-op propagation, that we presented in previous work (Gerevini & Serina, 2002),
leads to a smaller search space and can be incorporated into the definition of action graph.

Definition 3 An action graph with propagation is an action graph A such that if a is
an action node of A at a level l, then, for any positive effect [e] of [a] and any level l′ > l
of A, the no-op of e at level l′ is in A, unless there is another action node at a level l′′

(l ≤ l′′ < l′) which is mutex with the no-op.

Since in the rest of this paper we consider only action graphs with propagation, we will
abbreviate their name simply to action graphs (leaving implicit that they include the no-op
propagation).

In most of the existing planners based on planning graphs, when the search for a solution
graph fails, G is iteratively expanded by adding an extra level and performing a new search
using the resulting graph. In systematic planners like graphplan (Blum & Furst, 1997),
stan (Fox & Long, 1998b) and ipp (Koehler et al., 1997) the search fails when there exists
no solution graph, while in planners that use local search like blackbox (Kautz & Selman,
1999) or gpg (Gerevini & Serina, 1999) the search fails when a certain search limit is
exceeded. As we will show, in lpg there is no need to explicitly treat this kind of search
failure, since the size of the graph is incrementally increased during search (i.e., the graph
extension can be part of a local search step).
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2.2 Linear and Temporal Action Graphs

The first version of lpg (Gerevini & Serina, 2002) was based on action graphs where each
level may contain an arbitrary number of action nodes, as in the usual definition of planning
graph. The version of the system that participated in the 3rd IPC uses a restricted class of
action graphs, called linear action graphs, combined with some additional data structures
supporting a more expressive action and plan representation. In particular, the new system
can handle actions having temporal durations and preconditions/effects involving numerical
quantities, as specified in pddl2.1 (Fox & Long, 2003). In this paper we focus mainly on
planning for temporal domains, where lpg showed particularly good performance with
respect to the other (fully-automated) participants of the 3rd IPC.

In order to keep the presentation simple, we describe our techniques considering mainly
preconditions of type “over all” (i.e., preconditions that must hold during the whole action
execution) and effects of type “at end” (i.e., effects that hold at the end of the action
execution).2 In Section 3.4 we discuss how we handle the other types of preconditions and
effects in the test domains of the 3rd IPC.

Definition 4 A linear action graph (LA-graph) of G is an A-graph of G in which each
level of actions contains at most one action node representing a domain action and any
number of no-ops.

It is important to note that having only one action in each level of an LA-graph does
not prevent the generation of parallel (partially ordered) plans. In fact, from any LA-graph
we can easily extract a partially ordered plan where the ordering constraints are (1) those
between mutex actions and (2) those implicit in the causal structure of the represented plan.
Regarding the first constraints, if a and b are mutex and the level of a precedes the level of
b, then [a] is ordered before [b]; regarding the second constraints, if a has an effect node that
is used (possibly through the no-ops) to support a precondition node of b, then [a] is ordered
before [b]. These causal relations between actions producing an effect and actions consuming
it are similar to the causal links in partial-order planning (e.g., McAllester & Rosenblitt,
1991; Penberthy & Weld, 1992; Nguyen & Kambhampati, 2001). lpg keeps track of these
relationships during search and uses them to derive some heuristic information useful for
guiding the search (more details on this in the next section), as well as to extract parallel
plans from the solution graph.

For temporal domains where actions have durations and plan quality mainly depends
on the makespan, rather than on the number of actions or graph levels, the distinction
between one action or more actions per level is scarcely relevant. The order of the graph
levels should not imply any ordering of the actions (e.g., an action at a certain level could
terminate before the end of an action at the next level).

Since in LA-graphs there is at most one action node for each level, and every inconsis-
tency is an unsupported precondition, the use of this representation has some advantages
over general A-graphs:

• LA-graphs can be represented by simpler data structures, which allow one to manage
the no-op propagation, the inconsistency identification and selection, and the numer-
ical effect propagation more efficiently.

2. lpg supports all types of preconditions and effects that can be expressed in pddl2.1 (levels 1–3).
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• LA-graphs better support the computation of the heuristic and reachability informa-
tion used by the local search algorithm presented in the next section. As we will see,
for these techniques it is important to derive a consistent and possibly complete de-
scription of the state where any action in the current plan is applied. In an LA-graph,
we can efficiently derive these state descriptions by using the levels of the graph as a
total order of the actions in the current plan.

• In numerical domains, if mutex actions can belong to the same level of the current
action graph, it could be impossible to determine whether a numerical precondition of
an action at a following level is satisfied.3 In an LA-graph (persistent) mutex actions
belong to different levels and are ordered, making this easy to determine.

Also note that the fact of having only one action per level allows us to define a larger
search neighborhood. In general, a disadvantage of LA-graphs with respect to A-graphs is
the size of the representation, since the number of levels in an LA-graph can be significantly
larger than the number of levels in the corresponding A-graph. However, in all planning
problems that we tested, the size of LA-graphs was never a problem for our planner.4

For pddl2.1 domains involving durative actions, our planner represents temporal infor-
mation by an assignment of real values to the action and fact nodes of the LA-graph, and
by a set Ω of ordering constraints between action nodes. The value associated with a fact
node f (T ime(f)) represents the earliest time when [f ] becomes true, given the actions in
the represented plan and the constraints in Ω; the value associated with an action node a
(T ime(a)) represents the earliest time when the execution of [a] can terminate. These tem-
poral values are derived from the duration of the actions in the LA-graph and the ordering
constraints between them that are stated in Ω.

Definition 5 A temporal action graph (TA-graph) of G is a triple 〈A,T ,Ω〉 where

• A is a linear action graph;

• T is an assignment of real values to the fact and action nodes of A;

• Ω is a set of ordering constraints between action nodes of A.

The ordering constraints in a TA-graph are of two types: constraints between actions
that are implicitly ordered by the causal structure of the plan (≺C-constraints), and con-
straints that are imposed by the planner to deal with mutually exclusive actions (≺E-
constraints). a ≺C b belongs to Ω if and only if a is used to achieve a precondition node
of b in A, while a ≺E b (or b ≺E a) belongs to Ω only if a and b are mutually exclusive
in A (a ≺E b, if the level of a precedes the level of b, b ≺E a otherwise). In Section 3.4
we will discuss how ordering constraints are introduced by lpg during the search. Given
our assumption on the types of action preconditions and effects in temporal domains, an

3. For instance, suppose we have an A-graph with two mutex actions at a level such that one action sets
the value of the numerical variable x to 10, while the other sets it to 20. Unless we order these actions,
it is impossible to determine whether x > 15 holds when the action at the next level is applied.

4. lpg’s implementation of LA-graphs uses an extended version of Hoffmann’s “connectivity graph”, a
compact representation of the action and fact nodes in a planning graph (Hoffmann & Nebel, 2001).
The extensions are needed to represent persistent mutex relations, durative actions and numerical
preconditions/effects.
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Figure 1: An example of TA-graph. Dashed edges form chains of no-ops that are blocked by
mutex actions. Round brackets contain temporal values assigned by T to the fact
nodes (circles) and the action nodes (squares). The numbers in square brackets
represent the durations of the actions. “(–)” indicates that the corresponding fact
node is not supported.

ordering constraint a ≺ b (where “≺” stands for ≺C or ≺E) states that the end of [a] is
before the start of [b]. The temporal value assigned by T to a node x, denoted by T ime(x),
is derived as follows. If a fact node f of the action graph is unsupported, then T ime(f)
is undefined, otherwise it is the minimum value over the temporal values assigned to the
actions supporting it. If the temporal value of every precondition node of an action node
a is undefined, and there is no action node with a temporal value that must precede a
according to Ω, then T ime(a) is set to the duration of a; otherwise T ime(a) is the sum
of the duration of a and the maximum value over the temporal values of its precondition
nodes and the temporal values of the action nodes that must precede a.

Figure 1 gives an example of a TA-graph containing four action nodes (a1...4) and several
fact nodes representing thirteen facts. Since a1 supports a precondition node of a4, a1 ≺C a4

belongs to Ω (similarly for a2 ≺C a3). a1 ≺E a2 also belongs to Ω because a1 and a2 are
persistently mutex (similarly for a2 ≺E a3 and a2 ≺E a4). The temporal value assigned to
the facts f1...5 at the first level is zero, because they belong to the initial state. a1 has all
its preconditions supported at time zero, and hence T ime(a1) is the duration of a1. Since
a1 ≺ a2 ∈ Ω, T ime(a2) is given by the sum of the duration of a2 and the maximum value
over the temporal values of its precondition nodes (zero) and T ime(a1). Since f9 at level 3
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is supported only by a2, and this is the only supported precondition node of a3, T ime(a3)
is the sum of T ime(a2) = T ime(f9) and the duration of a3. Since a2 must precede a4

(but there is no ordering constraint between a3 and a4), T ime(a4) is the maximum value
over T ime(a2) and the temporal values of its supported precondition nodes (f6), plus the
duration of a4. Finally, note that f12 at the last level is supported both by a4 and a3. Since
T ime(a3) > Time(a4), we have that T ime(f12) at this level is equal to T ime(a4).

Definition 6 A temporal solution graph for G is a TA-graph 〈A,T ,Ω〉 such that A is
a solution LA-graph of G, T is consistent with Ω and the duration of the actions in A, Ω is
consistent, and for each pair 〈a, b〉 of mutex actions in A, either Ω |= a ≺ b or Ω |= b ≺ a.

While obviously the levels in a TA-graph do not correspond to real time values, they
represent a topological order for the ≺C-constraints in the TA-graph (i.e., the actions of the
TA-graph that are ordered according to their relative levels form a linear plan satisfying
all ≺C-constraints). This topological sort can be a valid total order for the ≺E-constraints
of the TA-graph as well, provided that these constraints are appropriately stated during
search, i.e., that if a and b are exclusive, the planner appropriately imposes either a ≺E b
or b ≺E a. lpg chooses a ≺E b if the level of a precedes the level of b, b ≺E a otherwise.
Under this assumption on the “direction” in which ≺E-constraints are imposed, it is easy
to see that the levels of a TA-graph correspond to a topological order of the actions in the
represented plan satisfying every ordering constraint in Ω.

For planning domains that require minimizing the plan makespan (like the “Time”,
“SimpleTime”, “Complex”, and some of the “Numeric” and “HardNumeric” domain sets
of the 3rd IPC) each element of lpg’s search space is a TA-graph. For domains where time
is irrelevant (like the “Strips” and “Numeric” domain sets of the 3rd IPC) the search space
is formed by LA-graphs.5

2.3 Action Durations and Costs

In this section we comment on the representation of action durations and action costs in
lpg. In accordance with pddl2.1, our planner handles both static durations and dynamic
durations, i.e., durations depending on the state in which the action is applied. Static
durations are either explicitly given as numbers specified in the field “:duration” of the
operator description, or they are implicitly specified by an expression involving some static
quantities specified in the initial state of the planning problem. An example of implicit
static duration is the duration of the Drive actions in the Depots-Time domain of the 3rd
IPC: the Drive operator defines the duration as the distance between the source and the
destination of travel (two operator parameters instantiated by values specified in the initial
state), divided by the speed of the vehicle that is driven (another operator parameter).

Typically, dynamic durations depend on some numeric quantities that may vary from
one state to another state reached by the actions in the plan. An example is the energy
of a rover in the domain Rovers-Time of the 3rd IPC, where the duration specified in the
recharge operator is

(/ (- 80 (energy ?x)) (recharge-rate ?x))).

5. An experimental analysis showed that in strips domains the techniques for LA-graphs are more powerful
than the techniques for A-graphs that we proposed in previous work (Gerevini & Serina, 2002).
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This expression depends on the current value of energy for the rover ?x and on its static
recharging rate (recharge-rate) specified in the initial state. Our planner handles the
dynamic duration of an action by computing and maintaining during search an estimate of
the value of the numerical quantities in the state where the action is applied. In Section
3.5 we will briefly describe how the version of lpg that took part in the 3rd IPC handles
numerical state variables, and numerical preconditions and effects involving them. However,
in this paper we will not describe their treatment in detail, and in the next section we will
assume that action durations are static.

Each action of a plan can be associated with a cost that may affect the plan quality.
Like action durations, in general these costs could be either static or dynamic, though the
current version of lpg handles only static ones. lpg precomputes the action costs using the
plan metric specified in the problem description using the pddl2.1 field “:metric”.6 For
instance, the plan metric used for a problem in the ZenoTravel-Numeric domain of the 3rd
IPC is

(:metric minimize (+ (* 4 (total-time)) (* 5 (total-fuel-used)))),

i.e., it is the sum of four times the plan makespan and five times the total amount of the fuel
used by the actions in the plan. The cost of an action a is derived by evaluating how the
value of the plan metric expression is changed by the effects of a. lpg computes an initial
value m0 for the expression by using the values specified in the initial state as values of the
involved numerical variables. From m0 lpg derives a new value m1 by applying the effects
of a that increase/decrease the value of one or more variables in the expression. The cost of
a is defined as m1−m0. If this difference is zero, in order to prefer plans containing a lower
number of actions, the cost of a is set to a small positive quantity. Notice also that in these
evaluations of the metric expression the temporal value total-time is not considered (it is
set to zero, if present), because the temporal aspect of the plan quality is already taken into
account by the durations of the actions. In the previous example, the metric subexpression
used to derive the action costs is (* 5 (total-fuel-used))). Thus, for instance, the cost
of the ZenoTravel action (fly plane1 city0 city1) in the problem pfile1 of the 3rd
IPC is 13560 because the effects of this action increase total-fuel-used by the following
quantity

(* (distance city0 city1) (slow-burn plane1))) = 678 * 4 = 2712,

which increases the metric value of the plan by 5 * 2712 = 13560.

3. Local Search in the Space of Temporal Action Graphs

In this section we present some search techniques used in lpg. We start with a description
of the general local search scheme in the space of action graphs. Then we concentrate on
temporal action graphs giving a detailed description of lpg’s heuristics and of its methods
for computing and using reachability information, for maintaining the TA-graph represen-
tation during search, and for deriving good quality plans incrementally. In order to simplify
the notation, instead of using a and [a] to indicate an action node and the action repre-

6. As in the domains of the competitions, we assume that the plan metric expression is linear. For simple
strips domains, where there is no metric expression to minimize, the cost of each action is set to one,
and lpg minimizes the number of actions in the plan.
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sented by this node respectively, we will use a to indicate both of them (the appropriate
interpretation will be clear from the context).

3.1 Basic Search Procedure: Walkplan

Given a planning graph G, the local search process of lpg starts from an initial A-graph of
G (i.e., a partial plan), and transforms it into a solution graph (i.e., a valid plan) through
the iterative application of graph modifications improving the current partial plan. The two
basic modifications consist of an extension of the A-graph to include a new action node, or
a reduction of the A-graph to remove an action node (and the relevant edges).7 At any step
of the search process, which produces a new A-graph, the set of actions that can be added
or removed is determined by the inconsistencies that are present in the current A-graph.

The general scheme for searching for a solution graph (a final state of the search) consists
of two main steps. The first step is an initialization of the search in which we construct
an initial A-graph. The second step is a local search process in the space of all A-graphs,
starting from the initial A-graph. We can generate an initial A-graph in several ways. Four
possibilities that can be performed in polynomial time, and that we have implemented are:
an empty A-graph (i.e., containing only the no-ops of the facts in the initial state, and the
special action nodes astart and aend); a randomly generated A-graph; an A-graph where all
precondition facts are supported, but in which there may be some violated mutex relations;
and an A-graph obtained from an existing plan given as input to the process. The last
option is particularly useful in the plan optimization phase, as well as for solving plan
adaptation problems (Gerevini & Serina, 2000). In the current version of lpg, the default
initialization strategy is the empty action graph with the fixed-point level as the last level
of the graph. Further details on the initialization step can be found in earlier papers on
planning through local search and action graphs (Gerevini & Serina, 1999, 2000).

Once we have computed an initial A-graph, each basic search step selects an inconsis-
tency in the current A-graph. If this is an unsupported fact node, then in order to resolve
(eliminate) it, we can either add an action node that supports it, or we can remove an action
node that is connected to that fact node by a precondition edge. If the chosen inconsistency
is a mutex relation, then we can remove one of the action nodes of the mutex relation. Note
that the elimination of an action node can remove several inconsistencies (e.g., all those cor-
responding to the unsupported preconditions of the action removed). On the other hand,
obviously the addition of an action node can introduce several new inconsistencies. The
strategy for selecting the next inconsistency to handle may have a significant impact on the
overall performance (this has been extensively studied in the context of causal-link partial-
order planning, e.g., Pollack, Joslin, & Paolucci, 1997; Gerevini & Schubert, 1996). Our
planner includes several strategies that we are currently testing. The default strategy that
we used in the 3rd IPC and in all experiments presented in Section 4, prefers inconsistencies
appearing at the earliest level of the graph.

Given an action graph A and an inconsistency σ in A, the neighborhood N(σ,A) of σ
in A is the set of A-graphs obtained from A by applying a graph modification that resolves

7. Another possible modification that is analyzed by Gerevini and Serina (2002), but that will not be
considered in this paper, is action ordering, i.e., moving forward or backward one of two exclusive action
nodes.
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Walkplan(Π,max steps,max restarts, p)

Input : A planning problem Π, the maximum number of search steps max steps,

the maximum number of search restarts max restarts, a noise factor p (0 ≤ p ≤ 1).

Output : A solution graph representing a plan solving Π or fail.

1. for i← 1 to max restarts do

2. A ← an initial A-graph derived from the planning graph of Π;
3. for j ← 1 to max steps do

4. if A is a solution graph then

5. return A
6. σ ← an inconsistency in A;
7. N(σ,A)← neighborhood of A for σ;
8. if ∃A′ ∈ N(σ,A) such that the quality of A′ is not worse than the quality of A
9. then A ← A′ (if there is more than one A′-graph, choose randomly one)
10. else if random < p then

11. A ← an element of N(σ,A) randomly chosen
12. else A ← best element in N(σ,A);
13. return fail.

Figure 2: General scheme of Walkplan with restarts. random is a randomly chosen value
between 0 and 1. The quality of an action graph in the neighborhood is measured
using an evaluation function estimating the cost of the graph modification used
to generate it from the current action graph.

σ. At each step of the local search scheme, the elements of the neighborhood are evaluated
according to a function estimating their quality, and an element with the best quality is
then chosen as the next possible A-graph (search state). The quality of an A-graph depends
on a number of factors, such as the number of inconsistencies and the estimated number of
search steps required to resolve them, the overall cost of the actions in the represented plan
and its makespan.8

Gerevini and Serina (1999) proposed three general strategies for guiding the local search:
Walkplan, Tabuplan and T-Walkplan. In this paper we focus on Walkplan, which is the
strategy used by lpg in the 3rd IPC, as well as in the experimental tests presented in Section
4. Walkplan is similar to Walksat, a stochastic local search method for solving propositional
satisfiability problems (Selman et al., 1994; Kautz & Selman, 1996). In Walkplan the best
element in the neighborhood is the A-graph which has the lowest decrease of quality with
respect to the current A-graph, i.e., it does not consider possible improvements. Like
Walksat, our strategy uses a noise parameter p. Given an A-graph A and an inconsistency σ,
if there is a modification for σ that does not decrease the quality of A, then this modification
is performed, and the resulting A-graph is chosen as the next A-graph; otherwise, with

8. For simple strips domains the execution cost of the plan is measured in terms of the number of actions
(i.e., each action has cost 1), while plan makespan is ignored. Alternatively it can be modeled as the
number of parallel time steps (Gerevini & Serina, 2002).
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probability p one of the graphs in N(σ,A) is chosen randomly, and with probability 1− p
the next A-graph is chosen according to the minimum value of the evaluation function.
If a solution graph is not reached after a certain number of search steps (max steps), the
current A-graph and max steps are reinitialized, and the search is repeated up to a user-
defined maximum number of times (max restarts). Figure 2 gives a formal description of
Walkplan with restarts.

Gerevini and Serina (2002) proposed some heuristic functions for evaluating the search
neighborhood of A-graphs with action costs. In the next section we present additional,
more powerful heuristic functions for LA-graphs and TA-graphs. These techniques are
implemented in the latest version of our planner and were used in the 3rd IPC.

3.2 Neighborhood and Heuristics for Temporal Action Graphs

The search neighborhood for an inconsistency σ in an LA-graph A is the set of LA-graphs
that can be derived from A by adding an action node supporting σ, or removing the action
with precondition σ (in linear graphs the only type of inconsistencies are unsupported
preconditions). An action a supporting σ can be added to A at any level l preceding the
level of σ, and such that the desired effect of a is not blocked before or at the level of σ
(assuming that the underlying planning graph contains a at level l). The neighborhood for
σ contains a linear action graph for each of these possibilities.

Since at any level of an LA-graph there can be at most one action node (plus any number
of no-ops), when we remove an action node from A, the corresponding action level becomes
“empty” (i.e., it contains only no-ops).9 If the LA-graph contains adjacent empty levels,
and in order to resolve the selected inconsistency a certain action node can be added at
any of these levels, then the corresponding neighborhood contains only one of the resulting
graphs.

When we add an action node to a level l that is not empty, the LA-graph is extended
by one level, all action nodes from l are shifted forward by one level, and the new action is
inserted at level l (Figure 8 in Section 3.4 gives an example). Moreover, when we remove an
action node a from the current LA-graph, we can also remove each action node b supporting
only the preconditions of a. Similarly, we can remove the actions supporting only the
preconditions of b, and so on. While this induced pruning is not necessary, an experimental
analysis showed that it tends to produce better quality plans more quickly.

The elements of the neighborhood are evaluated according to an action evaluation func-
tion E estimating the cost of adding (E(a)i) or removing an action node a (E(a)r). In
general, E consists of three weighed terms evaluating three aspects of the quality of the
current plan that are affected by the addition/removal of a:

E(a) =











E(a)i = α ·Execution cost(a)i + β · Temporal cost(a)i + γ · Search cost(a)i

E(a)r = α ·Execution cost(a)r + β · Temporal cost(a)r + γ · Search cost(a)r

The first term of E estimates the increase of the plan execution cost (Execution cost),
the second estimates the end time of a (Temporal cost), and the third estimates the increase

9. Note that the empty levels are ignored during the extraction of the plan from the (temporal) solution
graph.
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of the number of search steps needed to reach a solution graph (Search cost). The coef-
ficients of these terms are used to normalize them, and to weigh their relative importance
(more on this in Section 3.6).

In the computation of the terms of E there is an important tradeoff to consider. On one
hand, an accurate evaluation of them could lead to valid plans of good quality within few
search steps. On the other hand, the computation of E should be fast “enough”, because
the neighborhood could contain many elements, and an accurate evaluation of its elements
could slow down the search excessively. In the design of our heuristics for evaluating the
terms of E we took this tradeoff into account trying to find an appropriate balance between
informativeness and efficiency of computation.

The evaluation of the terms of E is based on computing particular relaxed plans for
achieving certain action preconditions in the context of the current TA-graph. In the next
subsections, first we describe how these relaxed plans are derived, and then we give a
detailed description of how the terms of E are defined using relaxed plans.

3.2.1 Relaxed Plans for Action Preconditions

Suppose we are evaluating the addition of a at a level l of the current linear action graph A.
The three terms of E are heuristically estimated by computing a relaxed plan πr containing
a minimal set of actions for achieving (1) the unsupported preconditions of a and (2) the
set Σ of preconditions of the other actions in the LA-graph that would become unsupported
by adding a (because it would block the no-op propagation currently used to support such
preconditions). This plan is relaxed because during its construction we do not consider the
possible interference between actions resulting from delete-effects.

πr is computed in two stages. First we deal with the preconditions of type (1) and then
with the preconditions of type (2). The generation of πr depends on the actions in the
current partial plan (the plan represented by A) in two ways:

• The actions in the current plan are used to define an initial state for the problems of
achieving the preconditions of a and those in Σ. In particular, the relaxed subplan
for the preconditions of a is computed from the state INITl obtained by applying the
actions in A up to level l − 1, ordered according to their corresponding levels.10 The
relaxed subplan for achieving Σ is computed from INITl modified by the effects of
a, and it can reuse the actions in the relaxed subplan previously computed for the
preconditions of a.

• In the process of deriving a relaxed plan, when we choose an action, we consider its
potential interference with the no-ops that support a precondition of some action in
A at a level following l, and we prefer actions that do not block the propagation of
such no-ops. The motivation is that taking these interferences into account during
the construction of a relaxed plan can lead to a better estimate of the cost required
to support preconditions of type (1) and (2) in the context of the search that we are
conducting to transform the current action graph into a solution graph (more details
below).

10. Notice that, as we pointed out in the previous section, the levels in a TA-graph correspond to a total
order of the actions of the represented partial-order plan that is consistent with the ordering constraints
in Ω (though, of course, this is not necessarily the only valid total order).
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We indicate with Threats(a) the set of preconditions of the actions in A that would
become unsupported when adding a (similarly for the action preconditions that could be
subverted by an action in the relaxed plan). Using the causal-link notation of partial-order
planners (e.g., McAllester & Rosenblitt, 1991; Penberthy & Weld, 1992), Threats(a) can be
formally defined in the following way

Threats(a) = {f | no-op(f) and a are mutex; ∃ b, c ∈ A such that b
f
→ c}.

Note that, according to our representation, b
f
→ c implies Level(b) < Level(a) < Level(c),

where Level(x) denotes the level of x in A.
Figure 3 gives a recursive algorithm for computing our relaxed plans, RelaxedPlan,

which uses the following additional notation. Duration(a) denotes the duration of a;11

Pre(a) denotes the precondition nodes of a; Add(a) denotes the (positive) effect nodes of
a; Supported facts(l) denotes the set of positive facts that are true after executing the
actions at levels that precede l (ordered according to their level); Num acts(p, l) denotes
an estimated minimum number of actions required to reach p from Supported facts(l) (if
p is not reachable, Num acts(p, l) is a negative number). The technique for computing
Num acts is described in Section 3.3.

Given a set G of goal facts, an initial state INITl, and a possibly empty set of actions A,
RelaxedPlan computes a pair Rplan = 〈ACTS, t〉 where: ACTS is a set of actions including
A and forming a relaxed plan achieving G from INITl; t is a temporal value estimating the
earliest time when all facts in G are achieved. The first element of Rplan is indicated with
Aset(Rplan), the second with End time(Rplan).

As mentioned above and described in detail in Section 3.2.3, when we evaluate the
addition of an action a, RelaxedPlan is run twice: first to compute a relaxed plan for the
preconditions of a, and then to extend this plan for achieving the preconditions that would
be subverted by a (i.e., Threats(a)). The input set A is the set of actions currently in the
relaxed plan that can be “reused” to achieve an action precondition or goal of the relaxed
(sub)problem. A is not empty whenever RelaxedPlan is recursively executed, and when it is
run to achieve Threats(a).

RelaxedPlan constructs Rplan through a backward process where Bestaction(g) is the
action a′ chosen to achieve a (sub)goal g, and such that: (i) g is an effect of a′; (ii) all
preconditions of a′ are reachable from INITl; (iii) the reachability of the preconditions
of a′ requires a minimum number of actions, estimated as the maximum of the heuristic
minimum number of actions required to support each precondition p of a′ from INITl (i.e.,
the maximum of Num acts(p, l) over each precondition p of a′); (iv) a′ subverts a minimum
number of supported precondition nodes inA (i.e., the size of the set Threats(a′) is minimal).
More formally,

Bestaction(g) = ARGMIN
{a′∈Ag}

{

MAX
p∈Pre(a′)−F

Num acts(p, l) + |Threats(a′)|

}

,

where F is the set of positive effects of the actions currently in ACTS, and Ag is the set of
actions with the effect g and with reachable preconditions, i.e.,

11. If the duration of a is dynamic (it depends on the value of one or more numerical variables), it is
computed using the values of the numerical variables in INITl.
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RelaxedPlan(G, INITl, A)

Input: A set of goal facts (G), the set of facts that are true after executing the actions of
the current TA-graph up to the level l (INITl), a possibly empty set of actions (A);

Output: A set of actions and a real number, estimating a minimal set of actions required
to achieve G and the earliest time when all facts in G can be achieved, respectively.

1. t← MAX
g∈G∩INITl

T ime(g);

2. G← G− INITl; ACTS ← A;
3. F ←

⋃

a∈ACTS Add(a);

4. t←MAX

{

t,MAX
g∈G∩F

T (g)

}

;

5. while G− F 6= ∅
6. g ← a fact in G− F ;
7. bestact← Bestaction(g);
8. Rplan← RelaxedPlan(Pre(bestact), INITl, ACTS);
9. forall f ∈ Add(bestact) − F
10. T (f)← End time(Rplan) + Duration(bestact);
11. ACTS ← Aset(Rplan) ∪ {bestact};
12. F ←

⋃

a∈ACTS Add(a);
13. t←MAX{t, End time(Rplan) + Duration(bestact)};
14. return 〈ACTS, t〉.

Figure 3: Algorithm for computing a relaxed plan achieving a set of action preconditions
from the state INITl. Rplan is a pair of values 〈Aset(Rplan), End time(Rplan)〉,
where the first value is a set of actions and the second is a temporal quantity.
Bestaction(g) is the action that is heuristically chosen to support g as described
in the text.

Ag = {a ∈ O | g ∈ Add(a), O is the set of all actions, ∀p ∈ Pre(a) Num acts(p) ≥ 0}.12

Notice that the set of actions O in the definition of Ag does not contain operator instances
with mutually exclusive preconditions. The reason why Bestaction(g) considers the cost
of the preconditions in Pre(a′) − F , instead of in Pre(a′), is that the preconditions of a′

that are in F are already supported by other actions currently in the relaxed plan under
construction.

Requirements (i) and (ii) for the definition of Bestaction are obvious. Regarding (iii)
and (iv), we considered alternative versions that are implemented in lpg, but that are not
used as default strategies because we experimentally found that on average they lead to a

12. In principle Ag can be empty because g might not be reachable from INITl (i.e., Bestaction(g) = ∅).
RelaxedPlan treats this special case by forcing its termination and returning a set of actions including
a special action with a very high cost, leading E to consider the element of the neighborhood under
evaluation a bad possible next search state. For clarity we omit these details from the formal description
of the algorithm.
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worse performance. In particular, instead of using the maximum of the heuristic minimum
number of actions required to support each precondition a′, we tested the use of the sum
of such numbers, which can give an overestimation of the actual search cost. We have
also tested a version of Bestaction which does not consider (iv), i.e., without the term
|Threats(a′)|. While this simplified version is faster to compute, overall the performance
of the planner was on average worse both in terms of CPU-time and quality of the plans
produced (detailed results of this experiment are available from the web page of lpg).

Steps 1, 4 and 13 of RelaxedPlan estimate the earliest time required to achieve all goals
in G. This is recursively defined as the maximum of

(a) the times assigned to the facts in G that are already true in the state INITl (step 1);

(b) the estimated earliest time T (g) required to achieve every fact g in G that is an effect
of an action currently in ACTS (step 4);

(c) the estimated earliest time required to complete the execution of the actions chosen
by Bestaction to achieve each of the remaining facts in G (step 13).

The T -times of (b) are computed by steps 9–10 from the relaxed subplan derived to
achieve them. Clearly the algorithm terminates, because either every (sub)goal p is reach-
able from INITl (i.e., Num acts(p, l) ≥ 0), or at some point bestact = ∅ holds, forcing
immediate termination (see footnote 12). Moreover, it can be proved that the complexity
of the algorithm is polynomial in the number of actions and facts in the planning prob-
lem/domain.

3.2.2 An Example Illustrating RelaxedPlan

Suppose we are evaluating the addition of a to the current TA-graph A illustrated in Figure
4. For each fact that is used in the example, the tables of Figure 4 give the relative
Num acts-value or the temporal value (Num acts for the unsupported facts, T ime for the
other nodes). The Num acts-value for a fact belonging to INITl is zero. The duration of
the actions used in the example are indicated in the corresponding table of Figure 4. Solid
circle and square nodes represent precondition and action nodes in A ∪ {a}; dotted circle
and square nodes represent the precondition and action nodes that are considered during
the evaluation process; finally, the gray circle and square nodes represent the precondition
and action nodes that are selected by RelaxedPlan.

First we describe the derivation of the sets of actions in the relaxed plan for Pre(a) and
Threats(a), i.e.,

S1 = Aset(RelaxedPlan(Pre(a), INITl, ∅)) and

S2 = Aset(RelaxedPlan(Threats(a), INITl, S1))

respectively. Then we describe the derivation of the estimation of the earliest time when all
preconditions in Pre(a) can be achieved, i.e., End time(RelaxedPlan(Pre(a), INITl, ∅)).

Actions for Pre(a) in the Relaxed Plan

Pre(a) is {p1, p2, p3} but, since p2 ∈ INITl, in the first execution of RelaxedPlan step 2
removes p2 from G. So, only p1 and p3 are the goals of the relaxed problem. Suppose
that in order to achieve p1 we can use a1, a2 or a3 (forming the set Ag examined by
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precondition
Unsupported

mutex

mutex

r

r

INITl

a

b

a1 a2 a3

a4

a5 a6

a7 a8

p

q

q

q

q

p1 p2

p2

p3

p4 p5

p5

p6 p7

p7

p8

p9 p10

p11

p11

p12 p13

p13

p14 p15 p16

Level l + 1

Fact Num acts

p1 2
p3 2
p4 1
p6 6
p8 2
p12 1
p14 2
p15 2
p16 9

Fact T ime

p2 220
p5 170
p7 300
p9 50
p10 30
p11 170
p13 30

Action Duration

a 30
a1 70
a4 100
a5 30
a7 90

Figure 4: An example illustrating RelaxedPlan. Square nodes represent action nodes, while
the other nodes represent fact nodes; solid nodes correspond to nodes in A∪{a};
dotted nodes correspond to the precondition and action nodes that are considered
during the evaluation process; the gray nodes are those selected by RelaxedPlan.

Bestaction(p1) in step 7). Each of these actions is evaluated, and a1 is chosen. In the
recursive call of RelaxedPlan applied to the preconditions of a1, p5 is not considered because
it already belongs to INITl. Regarding the other precondition of a1 (p4), suppose that
a4 is the only action achieving it. Then this action is chosen to achieve p4, and since its
preconditions belong to INITl, they are not evaluated (the new recursive call of RelaxedPlan
returns an empty action set).

Regarding the precondition p3 of a, assume that it can be achieved only by a5 and a6.
These actions have a common precondition (p12) that is an effect of a4, an action belonging
to ACTS (because it was already selected by RelaxedPlan(Pre(a1), INITl, ∅)). The other
preconditions of these actions belong to INITl. Since |Threats(a5)| = 0 and |Threats(a6)| =
1, Bestaction(p3) is a5. Consequently, Aset(RelaxedPlan(Pre(a), INITl, ∅)) is {a1, a4, a5}.

Actions for Threats(a) in the Relaxed Plan

Concerning the execution of RelaxedPlan for Threats(a), i.e., RelaxedPlan({q}, INITl, {a1, a4,
a5}), suppose that the only actions for achieving q are a7 and a8. Since the precondition
p14 of a7 is an effect of a5, which is an action in the input set A (it belongs to the relaxed
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subplan computed for the preconditions of a), and Threats(a7) is empty, the best action
chosen by RelaxedPlan to support q is a7. It follows that the set of actions returned by
RelaxedPlan is {a1, a4, a5, a7}.

Temporal Value for Pre(a)

We now consider the evaluation of the temporal value returned by RelaxedPlan(Pre(a),
INITl, ∅). According to the temporal values specified in the table of Figure 4, the value of
t at step 1 is T ime(p2) = 220. As illustrated above, RelaxedPlan for Pre(a) is recursively
executed to evaluate the preconditions of a1 (the action chosen to achieve p1) and then of
a4 (the action chosen to achieve p4). In the evaluation of the preconditions of a4, at step 1
of RelaxedPlan(Pre(a4), INITl, ∅)) t is set to 50, i.e., the maximum value between T ime(p9)
and T ime(p10) and the algorithm returns 〈∅, 50〉.

In the evaluation of the preconditions of a1, at step 1 of RelaxedPlan(Pre(a1), INITl, ∅))
t is set to T ime(p5) = 170, at step 8 RelaxedPlan(Pre(a4), INITl, ∅)) returns 〈∅, 50〉, while
steps 9–10 set T (p12) to 50+100 (the duration of a4), and at step 13 t is set to MAX{170, 50+
100}. Hence, the recursive execution of RelaxedPlan applied to the preconditions of a1 re-
turns 〈{a4}, 170〉, and at step 13 of RelaxedPlan(Pre(a), INITl, ∅) t is set to MAX{220, 170+
70} = 240.

As we have seen in the first part of the example, the action chosen to support p3 is
a5. The recursive execution of RelaxedPlan(Pre(a5),INITl, {a1, a4}) applied to the precon-
ditions of a5 returns 〈{a1, a4}, 170〉. In fact, the only precondition of a5 that is not in
INITl (p12) is achieved by an action already in ACTS (a4). Moreover, since T (p12) = 150
and T ime(p11) = 170, the estimated end time of a5 is 170 + 30 = 200. At step 13 of
RelaxedPlan(Pre(a), INITl, ∅) t is then set to MAX{240, 200} and the output of Relaxed-
Plan is 〈{a1, a4, a5}, 240〉.

3.2.3 Estimating the terms of E

As noted before, the terms of the action evaluation function E are computed by using
the relaxed (sub)plan πr for a set of preconditions. The number of actions in πr and the
threats of these actions are used to define a heuristic estimate of the additional search cost
that would be introduced by adding an action a to the current TA-graph, or removing it
(i.e., the Search cost terms of E). Note that in general this is not an admissible heuristic,
because it can overestimate the minimum number of search steps needed to cope with the
inconsistency under consideration.

The Temporal cost term of E(a)i is an estimation of the earliest time when the new
action a would terminate, given the actions in πr and the earliest time when πr can be
applied in the context of the current action graph.13 The Temporal cost term of E(a)r is
an estimation of the earliest time when all preconditions that would become unsupported
by removing a from the current action graph could be supported again.

The Execution cost term of E(a)i is an estimation of the additional execution cost that
would be required to satisfy the preconditions of a, and is derived by summing the cost of
each action a′ in πr (Cost(a′)). The Execution cost term of E(a)r is estimated similarly by

13. The makespan of πr is not a lower bound for Temporal cost(a) because the possible parallelization of
πr with the actions already in A is not considered.
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EvalAdd(a)

Input : An action node a that does not belong to the current TA-graph.

Output: A pair formed by a set of actions and a temporal value t.

1. INITl ← Supported facts(Level(a));
2. Rplan← RelaxedPlan(Pre(a), INITl, ∅);
3. t1 ←MAX{0,MAX{T ime(a′) | Ω |= a′ ≺ a}};
4. t2 ←MAX{t1, End time(Rplan)};
5. A← Aset(Rplan) ∪ {a};
6. Rplan← RelaxedPlan(Threats(a), INITl − Threats(a), A);
7. return 〈Aset(Rplan), t2 + Duration(a)〉.

EvalDel(a)

Input : An action node a that belongs to the current TA-graph.

Output: A pair formed by a set of actions and a temporal value t.

1. INITl ← Supported facts(Level(a));
2. Rplan← RelaxedPlan(Unsup facts(a), INITl, ∅).
3. return Rplan.

Figure 5: Algorithms for estimating the search, execution and temporal costs for the in-
sertion (EvalAdd) and removal (EvalDel) of an action node a. Rplan is a pair of
values, identified by Aset(Rplan) and End time(Rplan), where the first is a set of
actions and the second a temporal value. Num acts, Supported facts, Duration
and Threats have been defined in Section 3.2.1. Unsup facts(a) denotes the set
of precondition nodes that become unsupported by removing a from A.

considering the preconditions of the actions that would become unsupported when removing
a from the current action graph. More formally, E is defined as follows:

E(a)i



















Execution cost(a)i =
∑

a′∈ Aset(EvalAdd(a)) Cost(a′)

Temporal cost(a)i = End time(EvalAdd(a))

Search cost(a)i = |Aset(EvalAdd(a))| +
∑

a′∈Aset(EvalAdd(a)) |Threats(a′)|

E(a)r



















Execution cost(a)r =
∑

a′∈ Aset(EvalDel(a)) Cost(a′)− Cost(a)

Temporal cost(a)r = End time(EvalDel(a))

Search cost(a)r = |Aset(EvalDel(a))| +
∑

a′∈Aset(EvalDel(a)) |Threats(a′)|

where EvalAdd(a) and EvalDel(a) are the functions defined in Figure 5. EvalAdd(a) returns
two values: the set of actions in πr (Aset) and an estimation of the earliest time when the
new action a would terminate (End time). Similarly for EvalDel(a), which returns the set of

257



Gerevini, Saetti & Serina

actions in the relaxed plan achieving the preconditions that would become unsupported if
a were removed from A, together with an estimation of the earliest time when all these
preconditions would become supported. The relaxed subplans used in EvalAdd(a) and
EvalDel(a) are computed by RelaxedPlan, as described in Section 3.2.1.

After having computed the state INITl using Supported facts(l), in step 2 EvalAdd uses
RelaxedPlan to compute a relaxed subplan (Rplan) for achieving the preconditions of the
new action a from INITl. Steps 3–4 compute an estimation of the earliest time when a can
be executed as the maximum value over the end times of all the actions preceding a in A
(t1) and End time(Rplan) (t2). Steps 5–6 compute a relaxed plan for Threats(a) taking
account of a and the actions in the first relaxed subplan.

EvalDel is simpler than EvalAdd, because the only new inconsistencies that can be gener-
ated by removing a are the precondition nodes supported by a (possibly through the no-op
propagation of its effects) that would become unsupported. Unsup facts(a) denotes the
set of these nodes.

Of course, an action elimination from A to cope with an inconsistency could remove
some additional inconsistencies (the unsupported preconditions of the eliminated action).
Similarly, an action that is added to A to support a certain precondition could support
additional preconditions as well. However note that, as described in Section 3.1, Walkplan,
like Walksat, does not consider possible improvements during the evaluation of the search
neighborhood. Hence, EvalDel and EvalAdd do not take account of additional inconsistencies
that are removed from A as positive “side-effects” of coping with the inconsistency under
consideration.

In order to illustrate the steps of EvalAdd, consider again the example of Figure 4. As
shown in Section 3.2.2, the pair assigned to Rplan by step 2 of EvalAdd(a) is 〈{a1, a4, a5}, 240〉
(which is the pair of values returned by RelaxedPlan(Pre(a), INITl, ∅)). At step 3 of Eval-
Add(a) suppose that t1 is set to 230 (i.e., that the highest temporal value assigned to the ac-
tions in the TA-graph that must precede a is 230). Step 4 sets t2 to MAX{230, 240}, and the
execution of RelaxedPlan({q}, INITl−{q}, {a1, a4, a5, a}) at step 6 returns 〈{a1, a4, a5, a, a7},
tq〉, where tq is a temporal value that is ignored in the rest of the algorithm, because it does
not affect the estimated end time of a. Thus, since the duration of a is 30, the output of
EvalAdd(a) is 〈{a1, a4, a5, a, a7}, 240 + 30〉.

3.3 Computing Reachability and Temporal Information

The techniques described in the previous subsection for computing the action evaluation
function use heuristic reachability information about the minimum number of actions re-
quired to achieve a fact f from INITl (Num acts(f, l)), and the earliest times for actions
and preconditions. lpg precomputes Num acts(f, l) for l = 1 and any fact f , i.e., it esti-
mates the minimum number of actions required to achieve f from the initial state I of the
planning problem before starting the search. For l > 1, Num acts(f, l) can be computed
only during search because it depends on which actions nodes are in the current TA-graph
(at levels preceding l). Since during search many action nodes can be added and removed,
it is important that the computation of Num acts(f, l) is fast.

Figure 6 gives ComputeReachabilityInformation, the algorithm used by lpg for comput-
ing Num acts(f, 1) trying to take account of the tradeoff between quality of the estimation
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ComputeReachabilityInformation(I,O)

Input: The initial state of the planning problem under consideration (I) and all ground
instances of the operators (O);

Output: An estimate of the number of actions (Num acts) and of the earliest time
(T ime fact) required to achieve each fact from I.

1. forall facts f /* the set of all facts is precomputed by the operator instantiation phase */

2. if f ∈ I then

3. Num acts(f, 1)← 0; T ime fact(f, 1)← 0; Action(f, 1)← astart;
4. else Num acts(f, 1)← −1;
5. F ← I; Fnew ← I; A← O;
6. while Fnew 6= ∅
7. F ← F ∪ Fnew; Fnew ← ∅
8. while A′ = {a ∈ A | Pre(a) ⊆ F} is not empty
9. a← an action in A′;
10. ra← RequiredActions(I, Pre(a));
11. t←MAX

f∈Pre(a)
T ime fact(f, 1);

12. forall f ∈ Add(a)
13. if f 6∈ F ∪ Fnew or T ime fact(f, 1) > (t + Duration(a)) then

14. T ime fact(f, 1)← t + Duration(a);
15. if f 6∈ F ∪ Fnew or Num acts(f, 1) > (ra + 1) then

16. Num acts(f, 1)← ra + 1;
17. Action(f, 1)← a;
18. Fnew ← Fnew ∪Add(a) − F ;
19. A← A− {a};

RequiredActions(I,G)

Input: A set of facts I and a set of action preconditions G;

Output: An estimate of the minimum number of actions required to achieve all facts in G
from I (ACTS).

1. ACTS ← ∅;
2. G← G− I;
3. while G 6= ∅
4. g ← an element of G;
5. a← Action(g, 1);
6. ACTS ← ACTS ∪ {a};
7. G← G ∪ Pre(a)− I −

⋃

b∈ACTS Add(b);
8. return(|ACTS|).

Figure 6: Algorithms for computing heuristic information about the reachability of each
fact.
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and computational effort to derive it. The same algorithm could be used for (re)computing
Num acts(f, l) after an action insertion/removal for any l > 1 (when l > 1, instead of I,
in input the algorithm has Supported facts(l)).14 In addition to Num acts(f, 1), Com-
puteReachabilityInformation derives heuristic information about the possible earliest time of
every fact f reachable from I (T ime fact(f, 1)). lpg can use T ime fact(f, 1) to assign an
initial temporal value (T ime(f)) to any unsupported fact node representing f , instead of
leaving T ime(f) undefined as we indicated in Section 2.2. This can give a more accurate
estimation of the earliest start time of an action with unsupported preconditions, which
is defined as the maximum value over the times assigned to its preconditions. Note that
T ime fact(f, 1) is not updated when actions are added to (or removed from) the current
TA-graph.

Before illustrating in detail the algorithm for computing reachability information that
we used for the competition version of lpg, we should also note that preconditions involv-
ing numerical quantities are ignored by this technique. A new version taking numerical
preconditions into account is under development.

3.3.1 Computation of Num acts and T ime facts

For clarity we first describe only the steps of ComputeReachabilityInformation used to derive
Num acts, and then we comment on the computation of T ime fact. In steps 1–4, the
algorithm initializes Num acts(f, 1) to 0, if f ∈ I, and to -1 otherwise (indicating that f
is not reachable). Then in steps 5–19 it iteratively constructs the set F of facts that are
reachable from I, starting with F = I, and terminating when F cannot be further extended.
In this forward process each action is applied at most once, when its preconditions are
contained in the current F . The set A of the available actions is initialized to the set of
all possible actions (step 5), and it is reduced after each action application (step 19). The
internal while-loop (steps 8–19) applies the actions in A to the current F , possibly deriving
a new set of facts Fnew in step 18. If Fnew is not empty, F is extended with Fnew and the
internal loop is repeated. Since F monotonically increases and the number of facts is finite,
termination is guaranteed. When an action a in A′ (the subset of actions currently in A
that are applicable to F ) is applied, the reachability information for its effects are revised
as follows. First we estimate the minimum number ra of actions required to achieve Pre(a)
from I using the subroutine RequiredActions (step 10). Then we use ra to possibly update
Num acts(f, 1) for any effect f of a (steps 12, 15–16). If the application of a leads to a
lower estimation for f , i.e., if ra + 1 is less than the current value of Num acts(f, 1), then
Num acts(f, 1) is set to ra + 1. In addition, a data structure indicating the current best
action to achieve f from I (Action(f, 1)) is set to a (step 17).15

For any fact f in the initial state, the value of Action(f, 1) is astart (step 3). RequiredAc-
tions uses Action to derive ra through a backward process starting from the input set of

14. In order to obtain better performance, for l > 1 lpg uses an incremental version of ComputeReachabil-

ityInformation updating Num acts(f, l) after each action insertion/removal. We omit the details of this
version of the algorithm.

15. In the actual algorithm implemented in lpg, when we set Action(f, 1), we consider also the case in
which Num acts(f, 1) is equal to ra + 1; if the execution cost of a is lower than that cost of the current
Action(f, 1), or they have the same cost but the a supports f earlier, then Action(f, 1) is revised to a.
For clarity these details are omitted from the formal description of the algorithm.
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action preconditions (G), and ending when G ⊆ I. The subroutine incrementally constructs
a set of actions (ACTS) achieving the facts in G and the preconditions of the actions already
selected (using Action). At each iteration the set G is revised by adding the preconditions
of the last action selected, and removing the facts belonging to I or to the effects of ac-
tions already selected (step 7). Termination of RequiredActions is guaranteed because every
element of G is reachable from I.

T ime fact(f, 1) is computed in a way similar to Num acts(f, 1). Step 3 of Comput-
eReachabilityInformation initializes it to 0, for any fact f in the initial state. Then, at every
application of an action a in the forward process described above, we estimate the earliest
possible time t for applying a as the maximum value over the times currently assigned to
its preconditions (step 11). For any effect f of a that has not been considered yet (i.e., that
is not in F ), or that has a temporal value higher than t plus the duration of a, steps 13–14
set T ime fact(f, 1) to this lower value (because we have found a shorter relaxed plan to
achieve f from I).

The complexity of ComputeReachabilityInformation is polynomial in the number of facts
and actions in the problem/domain under consideration. Step 10, the most expensive step
of the algorithm, is executed O(|O|) times, where O is the set of all actions, and |O| is
the size of this set. It is easy to see that the worst-case time complexity of RequiredAc-
tions is O(|O|). It follows that the time complexity of ComputeReachabilityInformation is
O(|O|2). However, we have experimentally observed that very often RequiredActions termi-
nates returning numbers much smaller than |O| (i.e, that the number of iterations that the
algorithm performs is well below |O|). Finally, we observe that the order in which actions
are examined for their application in the forward process can affect the output results. In
our current implementation we use a random order.

Figure 7 illustrates the algorithm with an example. Suppose that the facts in the initial
state I are f1...8, and that the actions in O are a1...7, where the subscript of the actions
correspond to the order in which they are applied by the algorithm. The first actions that
are applied are a1, a2 and a3, because their preconditions are in F which is initially set to I.
The Num acts value of these preconditions is set to zero, because RequiredActions applied
to them returns zero. In the internal for-loop of the algorithm we update the reachability
information for each effect of these actions. In particular, consider the effects f1 and f9 of
a1. Since f1 is not a new fact (it belongs to I) and its Num acts and T ime fact values
are set to the minimum (initial) values, steps 14 and 16 do not revise them. Since f9 is
a new fact, step 14 sets T ime fact(f9) to 10 (i.e., the duration of a1), and step 16 sets
Num acts(f9) to 1 (ra is zero). Moreover, Action(f9, 1) is set to a1 by step 17. The effects
of a2 and a3 are handled similarly.

At this point, since there is no other action that is applicable in F , the internal while-
loop terminates, F is set to F ∪ {f9, f10, f11, f12}, and Fnew is set to ∅. The set A′ of the
actions in A that are applicable is {a4, a5, a6}. Consider the application of a4. We have
that ra at step 10 is set to 2, because RequiredActions(I, Pre(a4)) sets ACTS to {a1, a2}
(note that f1 ∈ I, Action(f9, 1) = a1, Action(f10, 1) = a2, and all preconditions of these
actions are in I). Thus, T ime fact(f13) is set to 80 (i.e., the maximum temporal value
assigned to a precondition of a4, 30, plus the duration of a4), and Num acts(f13) to 3. The
effects of the actions a5 and a6 are handled in a similar way. However, it is worth noting
that Num acts(f15) is first set to 3, when we examine a5, and then revised to 2, when we
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(1)

(7)

I

(0) (1) (1) (1) (1) (0)

(3) (2) (2)(3)

(2)

a1 a2 a3

a4
a5 a6

a7

f1

f1

f1 f2 f3 f4 f5 f6 f7

f8

f8

f8

f9

f10

f10

f10

f11 f12

f13 f14

f15

f15

f15 f16

f17
Actions ra Duration

a1 0 10
a2 0 30
a3 0 50
a4 2 50
a5 2 70
a6 1 30
a7 5 20

Facts Num acts T ime fact
f9 1 10
f10 1 30
f11 1 30
f12 1 50
f13 3 80
f14 3 120
f15 2 80
f16 2 80
f17 7 140

Figure 7: An example illustrating ComputeReachabilityInformation. The numbers in paren-
thesis are Num acts values. O = {a1, a2, ..., a7}. The subscript of each action
corresponds to the order in which it is applied.

examine a6. Analogously, T ime fact(f15) is first set to 120, and then revised to 80, while
Action(f15, 1) is first set to a5 and then to a6.

Consider now the preconditions of the last applicable action a7. RequiredActions ap-
plied to Pre(a7) by step 10 returns 6, because the set ACTS of actions selected by the
subroutine is {a4, a1, a2, a5, a3, a6}. Steps 11 of the ComputeReachabilityInformation sets t
to T ime fact(f14) = 120, and hence the T ime fact-value for the new effect f17 is set to
120+20, while its Num acts-value is set to 6+1.

3.3.2 Related work on reachability information

Other techniques for estimating the cost of reaching a fact (or a set of facts) from a cer-
tain state have been proposed and used in some planners, e.g., hsp (Bonet & Geffner,
2001), ff (Hoffmann & Nebel, 2001) and sapa (Do & Kambhampati, 2002). When com-
paring ComputeReachabilityInformation with these techniques, we should note that in lpg

the Num acts-values are used to select the actions forming relaxed plans achieving sets
of action preconditions or goals (computed by RelaxedPlan). These relaxed plans are then
used by the action evaluation function E guiding the search. In general, this approach is
similar to ff’s and sapa’s methods, but with some significant differences that we comment
on below.
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Bonet & Geffner proposed two basic heuristics for hsp, hmax and hadd. In hadd the
(search) cost of a set of facts is the sum of the costs of each individual fact, while in hmax it
is the maximum cost over all individual costs. As noted by Haslum and Geffner (2000), hmax

and hadd are approximation of the optimal cost function of a relaxed problem where delete
effects are ignored. hadd ignores positive interactions among subgoals that could make one
goal simpler after a second one has been achieved (this makes hadd non-admissible). hmax

is admissible, but it is less informative and effective for Bonet & Geffner’s hsp planner.

A difference between the forward process of our algorithm for computing Num acts and
Bonet & Geffner’s forward propagation for computing hadd is that in our propagation every
action is applied at most once, while in their propagation it can be considered more than
once (for computing hmax it suffices to apply each action once with an appropriate order).
This restriction, that we introduced for efficiency reasons, can clearly lead to overestimation
of reachability costs. By adding a new step between steps 17 and 18 of ComputeReachabil-
ityInformation that adds to A every action with f as precondition, we can obtain a more
accurate cost propagation like in hadd. However, this could slow down the planning process,
given that reachability information may be (re)computed many times during search.

Another important difference concerns the use of the subroutine RequiredActions at step
10 for estimating the cost of reaching a set of preconditions G. Instead of considering
the maximum value over the costs of the preconditions or the sum of their costs, like in
hmax and hadd, respectively, we compute a relaxed plan for G, and we count the number
of actions forming it. This can be seen as an intermediate approach between the hmax and
hadd methods, aimed at taking account of positive interactions among subgoals.16

Finally, another difference concerns the initial set of actions used in the forward process.
While our set (O) does not contain actions with preconditions that are mutex, Bonet &
Geffner’s forward processes for computing hmax and hadd contain them. The use of our
restricted set of actions would make the approximation of hmax and hadd more accurate.

As observed by Hoffmann (2001), ff’s reachability technique is similar to hmax, and so
the previous observations about hmax compared to our reachability information hold also
for ff’s technique. Another difference with respect to ff concerns the choice of actions
forming the relaxed plans. While RelaxedPlan and EvalAdd take threats into account, ff’s
relaxed plans do not consider them. Moreover, ff can generate relaxed plans including
actions with mutex preconditions, while we exclude such actions.

Most of the differences with respect to hsp’s and ff’s reachability information that
we have outlined appear to also hold when comparing ComputeReachabilityInformation and
sapa’s reachability techniques (in particular, the use of RequiredActions for estimating the
search cost of a set of preconditions, the application of an action at most once in the
forward process, and the use of a more restrictive set of actions O). Another significant
difference is that, while sapa’s reachability information concerns execution and temporal
costs, our information concerns mainly search costs. As a consequence, the action choices in
RelaxedPlan depend mainly on the search costs (as we pointed out, when there is more than
one action with the lowest search cost, Bestaction chooses the one with lower execution
cost). In lpg the execution and temporal costs of the relaxed plans are subsequently

16. Note that if we replaced step 10 with ra ← “sum of Num acts(f, 1) for each f in Pre(a)”, then the
resulting algorithm would be quite similar to hadd (using the additional step for reconsidering actions
already applied that we mentioned above).
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taken into account by the action evaluation function E, using the actions in the computed
relaxed plans. A major motivation for giving primary importance to search costs was that
we designed our planner as an any time planning system, that can compute a first solution
quickly, and then derive additional solutions with incrementally better quality, but requiring
more CPU-time (this incremental process is described in Section 3.6).

3.4 Updating Ordering Constraints and Temporal Values

In this subsection we describe the generation during search of action ordering constraints
in the current TA-graph A, and the update at each search step of the temporal values
associated with the fact and action nodes of A. If during search the planner adds an action
node a to A for supporting a precondition of another action node b, then a ≺C b is added
to Ω. Moreover, for each action c in A that is mutex with a, if Level(a) < Level(c), then
a ≺E c is added to Ω, otherwise (Level(c) < Level(a)) c ≺E a is added to Ω. If the planner
removes a from A, then any ordering constraint involving a is removed from Ω.

The addition/removal of an action node a also determines a possible revision of T ime(x),
the temporal value assigned to any fact and action x that is (directly or indirectly) connected
to a through the ordering constraints in Ω. Essentially, the algorithm for revising the
temporal values assigned to the nodes of A performs a simple forward propagation starting
from the effects of a, and updating level by level the times of the actions (together with the
relative precondition and effect nodes) that are constrained by Ω to start after the end of a.
If every precondition is of type overall and every effect is of type at end, when an action
node a′ is considered for possible temporal revision, T ime(a′) becomes the maximum value
over the temporal values assigned to (a) its preconditions and (b) the actions preceding
a′ according to Ω, plus the duration of a′. The times assigned to the effect nodes of a′

are revised accordingly. If a′ is the only action node supporting a precondition node f , or
its temporal value is lower than the value assigned to the other action nodes supporting
f , then T ime(f) is set to T ime(a′). For instance, suppose that, in order to support the
precondition node f7 of a4 in the TA-graph in Figure 1, we insert the action node a5 at
level 4 (see Figure 8). a5 has duration 110 and precondition node f8. Since T ime(f8) =
120, T ime(f7) becomes 230, which is propagated to a4 and its effects. T ime(a4) becomes
270, T ime(f12) is revised to 220 (T ime(a3)), T ime(f13) is revised to 270 (T ime(a4)), while
T ime(f8) remains 120 (T ime(a2)).

Some operators in the domains used for the 3rd IPC contain (pre)conditions of type
“at end” or “at start”, and effects of type “at start” (Fox & Long, 2003), i.e., precondi-
tions that must hold at the end or at the beginning of the action, and effects that are true at
the beginning of the action. In the following we revise the definition of T ime that we have
given in Section 2.2 to consider actions involving these types of preconditions/effects. When
an action node a has a precondition node p of type at end, in the definition of T ime(a),
we use T ime(p) − Duration(a) instead of T ime(p).17 While in the definition of T ime(a)
precondition nodes of type at start are treated as precondition nodes of type overall.

17. In the special cases in which a precondition of a is of type either at end or overall, and it is also an
effect node of type at start of a, T ime(p) is not considered in the definition of T ime(a) because the
action itself makes p true (unless p is also a precondition node of a of type at start).
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Figure 8: Update of the TA-graph of Figure 1 after the addition of action node a5 at level
4 to support the precondition node f7 of a4. Dashed edges form chains of no-
ops that are blocked by mutex actions. Round brackets contain temporal values
assigned by T to the fact nodes (circles) and the action nodes (squares). The
numbers in square brackets represent action durations. “(–)” indicates that the
corresponding fact node is not supported.

If an action node a has an effect node e of type at start, when we estimate T ime(e),
instead of using T ime(a), we use the minimum value over (1) T ime(a′), for any action
node a′ supporting e by an effect of type at end, (2) T ime(a′′) − Duration(a′′), for any
action node a′′ supporting e by an effect of type at start, and (3) T ime(a) − Duration(a)
(because e is supported at the start time of a).

When preconditions of type different from overall and effects of type different from
at end are present in the domain specification, in some cases two mutex actions can par-
tially overlap.18 The version of lpg that took part in the 3rd IPC did not handle these
possible overlaps, and any pair of mutex actions was treated by always imposing an ordering
constraint between the end of an action and the start of the other one. While this is always
a sound way of ordering mutex actions, it might over-constrain the actions, introducing

18. For example, if f is a precondition at start of a and ¬f is an effect at end of b, although a and b are
mutex, a can overlap b (e.g., a can start after the start time of b and terminate before the end time of
b). If a is at a level preceding the level of b, the only ordering constraint that should be imposed is that
the start of a is before the end of b. Otherwise, the imposed ordering constraint is that the end of b is
before the start of a, and so the two actions do not overlap.
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unnecessary delays in the plan. However, in the test problems of the 3rd IPC the possibility
of overlapping mutex actions is rare, and when it is possible it does not affect the temporal
quality of the plans significantly. Recently, we have extended the treatment of mutex ac-
tions in lpg, distinguishing various types of interferences and competing needs. These are
handled by ordering constraints between different endpoints of the involved actions, allow-
ing overlapping mutex actions. Experimental results using the SimpleTime variant of the
Satellite domain show that the new version of lpg generates plans which are about 10%
better (in terms of makespan) than those computed by the competition version. Moreover,
the overhead introduced by the more sophisticated management of the temporal information
is on average negligible. A detailed description of how temporal information is managed in
the new version of lpg is given in another recent paper (Gerevini, Saetti, & Serina, 2003).

3.5 Numerical State Variables

In this subsection we briefly describe how lpg deals with preconditions and effects involving
numerical quantities. We start with a brief description of numerical preconditions and
effects in pddl2.1, and then we show how the plan representation, search neighborhood and
heuristics that we presented in the previous sections have been extended to handle them.

In pddl2.1 a state s for a planning domain involving numerical variables is a pair
〈p(s), v(s)〉 where p(s) is a set of ground atoms (positive facts), and v(s) = 〈r1, . . . , rn〉 is
a tuple of real numbers representing the values of the n numerical variables v1, v2, ..., vn.
A numerical expression is an arithmetic expression over the set V of these variables and
the real numbers. A numerical precondition is a triple 〈exp, rel, exp′〉, where exp and exp′

are numerical expressions, and rel ∈ {<,≤,=,≥, >} is a relational operator. A numerical
effect is a triple 〈vi, ass, exp〉, where vi ∈ V is a variable, ass ∈ {:=,+=,−=, ∗=, /=} is an
assignment operator (using a C-like notation), and exp is a numerical expression.

In order to handle numerical domains, we have extended the notion of TA-graph with
numerical fact nodes representing values of numerical variables. For each level l in the
current action graph A and each numerical variable vi ∈ V , there is a numerical fact node
representing the value for vi at level l. The resulting tuple of real values at level l is
denoted by Num values(l). These values are derived by applying all actions in A at the
levels preceding l, starting from the initial level and following the order of the corresponding
levels.19 The values of the numerical fact nodes at the initial level, Num values(0), are
the real numbers assigned to the corresponding numerical variables in the initial state of
the planning problem under consideration. Similarly, we can associate with each level l a
set of facts that are true (Supported facts(l)), given the actions in A at levels preceding l.
In this way we can define a numerical state sl = 〈Supported facts(l),Num values(l)〉 for
each level l of A.

A numerical precondition 〈exp, rel, exp′〉 of an action at a level l is supported if and
only if the values of exp and exp′ evaluated in sl satisfy the relation rel.

19. This way of ordering actions at levels before l is consistent with the action ordering constraints in A (if
any). Furthermore, note that if an action a at level l has a numerical precondition involving a numerical
variable vj , then any action b with an effect affecting the value of vj is mutex with a. So, if A is a
TA-graph, then b ≺E a ∈ Ω. Otherwise (A is a simple LA-graph without temporal information), b ≺ a

is implied by the levels of a and b.
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Every time an action is added/removed to/from a level of A we apply/retract the numer-
ical effects of the action, which can modify the values associated with some numerical fact
nodes at the next level. These changes are propagated to the following levels of the graph.
During this propagation, we identify the numerical preconditions that become supported or
unsupported. Moreover, if the value of a numerical fact node affecting the duration of an
action is changed, then we update the duration of this action.

The local search neighborhood associated with an unsupported numerical precondition
p = 〈exp, rel, exp′〉 of an action a is defined as the set of linear action graphs obtained by
either removing a, or adding a new action that decreases the “gap” between the values of
exp and exp′ according to rel (possibly supporting p).20 In the competition version of lpg,
we considered adding an action only to the level immediately before the level of p (while for
a boolean unsupported precondition q an action supporting it can be added to any preceding
level). We are currently studying an extension of the neighborhood in which supporting
actions can be added to any preceding level also in the case of numerical preconditions.

We now briefly describe how lpg computes the relaxed plans used by EvalAdd and
EvalDel for numerical domains. This is done by an extended version of RelaxedPlan handling
numerical preconditions in a very simple way. Since the current version of ComputeReach-
abilityInformation ignores numerical preconditions, there is no Num acts-value associated
with them. Hence, when RelaxedPlan chooses the (heuristic) best action to support a sub-
goal g, for each numerical precondition p involved in the definition of Bestaction(g) (see
Section 3.2.1), Num acts(p, l) is replaced by 1, i.e., the estimated minimum cost to satisfy
any numerical precondition is always 1. (Of course, this is quite a strong assumption giving
weak information; we are currently working on a new version of the planner using more
informative heuristics for constructing relaxed plans involving numerical preconditions.)
Another difference in the definition of Bestaction(g) is that, if g is a numerical precondi-
tion, instead of considering only the actions supporting g, we consider every action that
decreases the gap between the values of the expressions forming g.

The relaxation of the plans computed by the extended version of RelaxedPlan concerns
both the negative effects, which are ignored for plan validity (but considered to count
possible threats), and a form of monotonic change of the minimum and maximum possible
values for the numerical quantities. We start from the numerical initial state INITl =
〈Supported facts(l), Num values(l)〉 and, for each numerical variable involved in an action
in the relaxed plan constructed from INITl, we consider only the minimum/maximum
values that the variable can assume given the actions already in the relaxed plan. These
values are monotonically decreased/increased whenever an action is added to the relaxed
plan. Specifically, we define two tuples of numerical values, vmax and vmin, that are both
initialized using Num values(l). If an effect of an action in the relaxed plan increases the
value of a variable vi by a quantity δ, then we increase vi

max by δ; while, if it decreases the
value of vi by δ, then we decrease vi

min by δ. During the construction of a relaxed plan,
when we check whether a numerical precondition p = 〈vx, >, vy〉 is supported, we evaluate
vx > vy considering vx

max as the value assigned to vx, and vy
min as the value assigned to

20. Note that it can be necessary to add more than one action to support a numerical precondition. These
actions are added to different levels by different search steps. For instance, suppose that p = 〈x,>, 100〉
is a numerical precondition, and that a is the only action with a numerical effect e increasing the value
of x. If e increases x by 20 and the current value of x is 30, then we need four actions to support p.
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vy. If an expression involves more than one numerical variable (e.g., p = 〈vx − vy, >, vz〉),
we consider the combination of the maximum/minimum values that is most favorable to
satisfy the condition (the value of vx is vmax, the value of vy is vy

min, and the value of vz is
vz
min). Similarly if the expression involves another relational operator.

3.6 Multi-Criteria Incremental Plan Quality

As we have seen, our approach can model different plan quality criteria determined by
action execution costs and action durations. The coefficients α, β and γ of the action
evaluation function E specified in Section 3.2 are used to weigh the relative importance of
the execution and temporal costs of E, as well as to normalize them with respect to the
search cost. Specifically, lpg uses the following function for evaluating the insertion of an
action node a (the evaluation function E(a)r for removing an action node is analogous):

E(a)i =
µE

maxET
·Execution cost(a)i+

µT

maxET
·Temporal cost(a)i+

1

maxS
·Search cost(a)i,

where µE and µT are non-negative coefficients that weigh the relative importance of the
execution and temporal costs, respectively. Their values can be set by the user, or they can
be automatically derived from the expression defining the plan metrics in the formalization
of the problem. The factors 1/maxET and 1/maxS are used to normalize the terms of E to
a value less than or equal to 1. The value of maxET is defined as µE ·maxE + µT ·maxT ,
where maxE (maxT ) is the maximum value of the first (second) term of E over all TA-
graphs in the neighborhood, multiplied by the number κ of inconsistencies in the current
action graph; maxS is defined as the maximum value of Search cost over all possible action
insertions/removals that eliminate the inconsistency under consideration. The role of κ is to
decrease the importance of the first two optimization terms when the current plan contains
many inconsistencies, and to increase it when the search approaches a valid plan. I.e., E(a)i

can be rewritten as

E(a)i = 1
κ·(µE ·maxE+µT ·maxT ) ·

(

µE · Execution cost(a)i + µT · Temporal cost(a)i
)

+

+ 1
maxS

· Search cost(a)i.

Without this normalization the first two terms of E could be much higher than the
value of the third term. This would guide the search towards good quality plans without
paying sufficient attention to their validity. Instead, we would like to have the search give
more importance to reducing the search cost, rather than optimizing the quality of a plan,
especially when the current partial plan contains many inconsistencies,

Our planner can produce a succession of valid plans where each plan is an improvement
of the previous ones in terms of quality. The first plan generated is used to initialize a new
search for a second plan with better quality, and so on. This is a process that incrementally
improves the quality of the plans, and the search can be stopped at any time to give the
best plan computed so far (each plan can be written in a file as soon as it is derived). When
lpg starts a new search, some inconsistencies are forced in the TA-graph representing the
previous plan, and the resulting TA-graph is used to initialize the search. Similarly, during
search some random inconsistencies are forced in the current TA-graph when a valid plan
that does not improve the plan of the previous search is reached. This is done by choosing
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a small set R of action nodes that are removed from the action graph together with (1) the
action nodes supporting their preconditions and (2) the action nodes with a precondition
supported by an action in R. The elements of R are chosen by taking account of the values
of µE and µT . If µE > µT , we randomly remove action nodes giving higher probability to
those representing actions with higher execution costs, otherwise preference is given to the
action nodes having a higher impact on the plan makespan.21

In the 3rd IPC, for each test problem attempted, we considered only the first and the
last solutions generated by lpg within five CPU-minutes. The first solution was used to
test how fast our planner can be; the last solution to test how good a solution can be. Often
the first solution has low quality compared to the last one, while the last solution requires
much more CPU-time than the first. The other fully-automated planners in the competition
did not exhibit any-time behavior like lpg. So, when we compare our two solutions with
the single solution derived by the other planners, we should consider that lpg very often
derives additional solutions of intermediate quality, and requiring intermediate CPU-time.
In particular, as will be shown in the next section, it can be the case that, when (1) the
first solution found by lpg requires less CPU-time than any other planner, but has quality
worse than the best solution found by the other planners, and (2) the last solution of
lpg has superior quality to all other planners but requires more CPU-time, lpg finds an
intermediate solution which is still better than the solutions found by all other planners
and is derived in less CPU-time.

4. Experimental Results

All our techniques are implemented in lpg. The system is written in C and is available
from http://prometeo.ing.unibs.it/lpg. In this section we present some experimental
results illustrating the efficiency of lpg using the test problems of the 3rd IPC. These
problems belong to several domains, most of which have some variants containing different
features of pddl2.1. The variants are named “Strips”, “SimpleTime”, “Time”, “Complex”,
“Numeric” and “HardNumeric”, and are all handled by our planner. For a description of
the domains and of the relative variants, the reader can visit the official web site of the 3rd
IPC (www.dur.ac.uk/d.p.long/competition.html).

All tests were conducted on the official machine of the competition, an AMD Athlontm

MP 1800+ (1500MHz) with 1 Gbyte of RAM. The results for lpg correspond to median
values over five runs for each problem considered. The CPU-time limit for each run was 5
minutes, after which termination was forced.22 Notice that the results that we present here
are not exactly the same as the official results of the competition, where for lack of time we
were not able to run our system a sufficient number of times to obtain meaningful statistical
data. However, in general the new results are very similar to those of the competition, with

21. In the version of lpg that took part in the 3rd IPC this second preference was based on a simple
estimation of the temporal impact of each action node. We are currently testing a newer version that
selects such actions more accurately by using the critical path in the graph of the ordering constraints
in the TA-graph.

22. When the CPU-time limit was exceeded in one or two runs, the median values are derived by considering
these runs as those producing the worst results. When the CPU-time limit was exceeded in three or
four runs, instead of the median values, we considered the worst results of the remaining successful runs.
This happened in 16 of the 442 problems solved.
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Planner Solved Attempted Success ratio

LPG 442 468 94%
FF 237 284 83%

Simplanner 91 122 75%
Sapa 80 122 66%
MIPS 331 508 65%

VHPOP 122 224 54%
Stella 50 102 49%
TP4 26 204 13%

TPSYS 14 120 12%
SemSyn 11 144 8%

Table 1: Number of problems attempted and solved by the planners that took part in the
3rd IPC ordered by their success ratio. The data from the planners compared
with lpg are from the official web site of the 3rd IPC. The data for lpg do not
consider the 20 problems in Satellite HardNumeric, which are all solved by the
current version of the planner, slightly improving the success ratio.

some considerable improvement in Satellite Complex and in the Rovers domains, where
many problems could not be solved due to a minor bug in the parser of our planner that
was easily fixed right after the competition.

Overall, the number of problems attempted in the new tests by our planner was 468
(over a total of 508 problems), and the success ratio was 94.4% (the problems attempted
by lpg in the competition were 428 and the success ratio 87%). Figure 1 gives these data
for every fully-automated planner that took part in the competition. The success ratio of
lpg is the highest one over all competing domain-independent planners.

The version of lpg that we used in the competition is integrated with an alternative
search method that can be activated when the local search is not effective. This method is
based on the same best-first search technique implemented in ff (Hoffmann & Nebel, 2001).
The only domain were we used best-first search instead of local search is FreeCells. The 40
problems that were not attempted by our planner are the 20 problems in Settlers Numeric
and the 20 problems in Satellite HardNumeric. The first domain contains operators
with universally quantified effects, which are not handled in the current version of lpg.
The plan metrics of the problems in the second domain require maximizing the value of
a certain numerical variable representing acquired data (data-stored), which is another
feature of pddl2.1 that the competition version of lpg did not handle properly. Many of
these problems were solved by the other fully-automated planners by the empty plan or by
plans with zero quality. While such plans could have been derived also by lpg, we did not
consider these interesting solutions.23

23. Very recently we have extended lpg to handle maximization of plan metric expressions. This new
version of lpg solves all the 20 test problems of Satellite HardNumeric, generating plans with quality
higher than zero. The only fully-automated planner of the competition that derived solutions with
data-stored > 0 is mips. An experimental comparison of mips and lpg considering only these solutions
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We ran lpg with the same default settings for every problem attempted (maximum
numbers of search steps and restarts for each run, inconsistency selection strategy, and
noise factor), that can be modified by the user. The default initial value of the noise p
is 0.1. Note that this is a dynamic value that is automatically increased/decreased by the
planner during search, depending on the variance of the number of inconsistencies in the last
n search steps. In all our tests p was automatically increased if the variance did not change
significantly in the last 50 search steps. It was set to the initial default value otherwise.
The parameters µE and µT of the action evaluation function were automatically set using
the (linear) plan metric specified in the problem formalization. In particular, µE was set to
1, while µT was set to the coefficient weighing the total-time variable in the expression
specifying the plan metric. For instance, in the example of plan metric given at the end of
Section 2, the coefficient weighing total-time is 4, and so for that problem µT was set to
4. If no plan metric was specified, then µE was set to 0.5 and µT to 0.

The performance of lpg was tested in terms of both CPU-time required to find a so-
lution (lpg-speed) and quality of the best plan computed (lpg-quality) using at most five
CPU-minutes. In the plots of Figures 9, 10, 11 and 12, on the x-axis we have the problem
names (simplified with numbers); on the y-axis, in the plots for CPU-time we have mil-
liseconds (logarithmic scale), while in the plots for plan quality we have the quality of the
plans generated, measured using the plan metric expression in the corresponding problem
specification. Note that the lower the plan quality values, the better the corresponding
plans are.

Figure 9 shows the performance of lpg-speed compared to the other competitors in some
variants of four domains.24 In DriverLog Strips, ff is on average the fastest planner, but
lpg solves more problems, and it scales up somewhat better. In ZenoTravel SimpleTime,
lpg outperforms the other competitors in terms of both number of problems solved and
CPU-time (our planner is about one order of magnitude faster). In Satellite Complex
the excellent performance of lpg is even more evident especially for the largest problems.
Finally, in Rovers Numeric, ff and lpg perform similarly, but our planner solves a larger
number of problems. The plots concerning the performance of lpg-quality for these four
domain variants are given in Figure 10. These results show that the solution computed by
our planner was always similar to or better than the solution derived by any of the other
planners. The most interesting differences are in Satellite Complex, where lpg-quality
produced solutions of higher quality for almost every problem.

In order to derive some general results about the performance of our approach with
respect to all other fully-automated planners of the competition, we compared lpg with
the best result over all these planners. We will indicate these results as if they were produced
by a hypothetical “SuperPlanner” (which does not exist). Clearly, if lpg performs generally
better than the SuperPlanner in a certain domain, then in that domain it performs better
than any other real planner that we considered. On the other hand, if it performs worse,

shows that the plans generated by lpg have quality much higher than those computed by mips, and that
our planner is significantly faster (detailed results of this experiment are available from the web page of
lpg).

24. Complete results for all other domains and variants are available from http://prometeo.ing.unibs.it/

lpg/test-results.
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Figure 9: CPU-time and number of problems solved by the fully-automated planners of the
3rd IPC for the domains DriverLog Strips, ZenoTravel SimpleTime, Satellite
Complex and Rovers Numeric.

this does not necessarily imply that there is a single real planner that generally performs
better than lpg.

The plots of Figures 11 and 12 give complete results for Satellite, one of the domains
where our planner performed particularly well in the temporal and Complex variants. The
plots on the left show CPU-times for lpg-speed, lpg-quality, and the two corresponding
versions of the SuperPlanner: a version in which, for each problem, we consider the fastest
planner over all the other fully-automated planners, and a version in which we consider the
planner that produced the best quality plan (of course it can be the case that the fastest
planner for a problem is different from the planner that produces the best quality solution
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Figure 10: Quality of plans computed by the fully-automated planners of the 3rd IPC for
the domains DriverLog Strips, ZenoTravel SimpleTime, Satellite Complex,
Depots Time and Rovers Numeric. In order to improve readability, the plot for
DriverLog-Strips is given in logarithmic scale.

for that problem). The plots on the right show plan quality for the two versions of lpg and
the SuperPlanner.

The results in these and in the following plots are mostly self explanatory. In the tempo-
ral and complex variants lpg-speed is often one or more orders of magnitude faster than the
SuperPlanner. In the Strips variant the SuperPlanner is faster for the smallest problems,
but it is generally slower for the largest ones. In the Numeric variant the SuperPlanner is
faster, but our planner produces solutions of better quality. Regarding lpg-quality, in all
variants except Satellite Strips our planner performs much better than the SuperPlanner.
In the Strips variant, the quality of the plans produced by lpg-quality is approximately the
same as the quality of the plans generated by the SuperPlanner.

Concerning the quality of the solutions computed by lpg-speed and the CPU-time
required by lpg-quality, as we have described in Section 3.6, it is important to note that
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Figure 11: Performance of lpg-speed (left plots) and lpg-quality (right plots) compared
with the SuperPlanner (speed and quality versions) in Satellite Strips, Sim-
pleTime and Time.
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Figure 12: Performance of lpg-speed (left plots) and lpg-quality (right plots) compared
with the SuperPlanner (speed and quality versions) in Satellite Complex and
Numeric.

lpg produces additional intermediate solutions, that for clarity are not shown in these plots.
It is not surprising that very often plan quality for lpg-speed is poor with respect to plan
quality for lpg-quality, and that the CPU-time required by lpg-quality is much higher that
the CPU-time required by lpg-speed. Things become less clear if we compare plan quality
for lpg-speed (or CPU-time for lpg-quality) and plan quality for the speed version of the
SuperPlanner (or CPU-time for the quality version of the SuperPlanner).

Given the any time nature of lpg, obviously there is a tradeoff between plan quality
and speed. The more CPU-time the planner is allowed to run, the better the last solution
generated. If we want to study this tradeoff experimentally, we need to consider not only
the first and last solutions that lpg found in the competition tests, but also the interme-
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Figure 13: Plan quality and the corresponding CPU-milliseconds (logarithmic scale) for the
solutions found by lpg (five runs) and the SuperPlanner for four problems in
Satellite Strips, SimpleTime, Time and Numeric.

diate solutions. In fact, we observed that in several cases lpg generates an intermediate
solution that has quality better than or similar to the quality of the best plan generated by
the SuperPlanner, and that requires less or no more CPU-time than the SuperPlanner. In
Figure 13 we give some support to our claim (a detailed analysis of all intermediate solu-
tions generated by our planner is beyond the scope of this paper). The plots in this figure
show CPU-time and quality of all plans generated by lpg (five runs) and by the SuperPlan-
ner for some problems in the Satellite domain. In Satellite-SimpleTime-pfile15 and
Satellite-Time-pfile6 (first two plots of Figure 13) lpg’s first solutions (lpg-speed)
require less CPU-time than the first solution found by the SuperPlanner. On the other
hand, the quality of lpg-speed’s solutions are worse than the quality of the solution found
by the speed version of the SuperPlanner (see also the corresponding plots of Figure 11,
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keeping in mind that they are derived from median values over five runs). However, Figure
13 shows that for these two problems lpg-speed generates additional intermediate solu-
tions that have quality better than the solutions found by the SuperPlanner, and that
still require less CPU-time. Moreover, the third and fourth plots of Figure 13 show that
in Satellite-Strips-pfile9 and Satellite-Numeric-pfile3 the SuperPlanner is faster
than lpg-speed, but lpg finds intermediate solutions of quality better than the best solution
of the SuperPlanner using less CPU-time than the SuperPlanner and lpg-quality.

Since our main focus in this paper is temporal planning, it is interesting to compare lpg

and the SuperPlanner in the Time variant of all competition domains. The detailed results of
this comparison are given in Appendix B. As shown by the plots in this appendix, lpg-speed
is usually faster than the SuperPlanner, and it always solves a larger number of problems,
except in ZenoTravel, where our planner solves one problem less than the SuperPlanner.
This problem was solved by mips, another planner of the 3rd IPC that performed well in the
temporal domains (Edelkamp, 2002). The percentage of the problems solved by lpg-speed
is 95.1%, while those solved by the SuperPlanner is 77.5%. The percentage of the problems
in which our planner is faster is 81.4%, the percentage in which it is slower is 13.7%.

Regarding lpg-quality, generally in these domains the quality of the best plans produced
by our planner is similar to the quality of the plans generated by the SuperPlanner, with
some significant differences in ZenoTravel, where in a few problems the SuperPlanner
performs better, and in Satellite, where our planner always performs better. Overall, in
the Time variant of all the domains the percentages of the problems in which our planner
produces a solution of better/worse quality are the same as the percentages of the problems
in which lpg-speed is faster/slower.

We have also analyzed the performance of lpg with respect to the SuperPlanner for
all other domains and problems attempted. Appendices C and D give summary results.25

As for the Time-problems, in the SimpleTime problems lpg solves more problems than the
SuperPlanner, and the percentages of problems in which lpg-speed and lpg-quality perform
better than SuperPlanner are even higher than the corresponding percentages for the Time
variants. In the Numeric and Strips problems, on average lpg-speed is less efficient than
the SuperPlanner. This is mainly due to the generally good performance of ff in these
domains. However, note that lpg-quality on average is better than the SuperPlanner in
every domain except the Strips version of ZenoTravel.

Overall, considering all problems attempted, lpg-speed performs better/worse than the
SuperPlanner in 55.8/38.1% of the problems, while lpg-quality performs better/worse in
71/11.6% of the problems.

Finally, we ran our planner on some of the large problems that were used to test the
hand-coded planners in the 3rd IPC. In this experiment lpg was tested using a PC Pentium
III, 500 MHz, with 1 Gbyte of RAM, which is more than two times slower than the machine
used for testing the hand-coded planners. Of course, we did not expect to solve these
problems more efficiently than the hand-coded planners. This experiment was aimed at
testing how far we are from planners exploiting domain knowledge.

Figure 14 shows plots comparing the performance of lpg and the competing hand-
coded planners for the two temporal variants of Rovers. lpg solved 38 of the 40 problems

25. The paper in this issue by Long and Fox (2003) presents a detailed statistical analysis of all official
results of the 3rd IPC.
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Figure 14: Performance of lpg in two temporal domains designed for hand-coded planners
competing at the 3rd IPC. lpg was tested on a machine that is more than two
times slower than the machine used to test the other planners.

attempted. In terms of plan quality, very often lpg-quality generates plans that are nearly
as good as those computed by the hand-coded planners, especially in Rovers-SimpleTime-

HandCoded. Interestingly, given that the machine used to test lpg was slower, in this
domain lpg-speed appears to perform slightly better than shop2 (Nau, Au, Ilghami, Kuter,
Murdock, Wu, & Yaman, 2003). In Rovers-Time-HandCoded lpg-speed can solve most of
the problems, but it does not perform as well. It remains an open question whether further
research can reduce this gap significantly, but we are optimistic about this.
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5. Conclusions and Future Work

We have presented some new techniques for planning in pddl2.1 domains that are imple-
mented in lpg, an incremental (any time) planner producing multi-criteria quality plans.
lpg was given an award for “distinguished performance of the first order” at the 3rd Inter-
national Planning Competition, and additional experimental results presented in this paper
give further evidence of the high performance of our system.

Other related techniques that are implemented in lpg, but not described here, con-
cern: the restriction of the search neighborhood when it contains many elements, and their
evaluation can slow down the search excessively; different strategies to choose the inconsis-
tency to handle at each search step; the use of Lagrange multipliers in the action evaluation
function (Gerevini & Serina, 2002, 2003).

We have already mentioned some directions that we are pursuing to improve our sys-
tem. These include, in particular, an extension of our algorithm for computing reachability
information taking account of numerical preconditions and goals (a recent related method
has been proposed by Hoffmann (2003)). In addition, we intend to test other local search
strategies for action graphs based on the use of a “tabu list” (Gerevini & Serina, 1999),
and further types of graph modifications, some of which were implemented in the previous
version of lpg (Gerevini & Serina, 2002). This might be especially important for improving
the incremental plan-quality process. Another possible improvement of this process that
is worth investigating is the use of dynamic coefficients to weigh the terms of the action
evaluation function. When we start a new search for a plan of better quality, the weights
of the terms representing the execution and temporal costs could be increased with respect
to the term representing the search cost. This could guide the search towards plans better
than those already derived, which is the purpose of the incremental process.

Finally, other directions for improving temporal planning in lpg concern the treatment
of a richer temporal representation to handle upper and lower bounds on the possible action
durations, as well as the integration of temporal reasoning techniques to deal with temporal
constraints between actions similar to those that can be stated using Allen’s Interval Algebra
(Allen, 1983) or STP-constraints (Dechter, Meiri, & Pearl, 1991).
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Appendix A: Mutex Relations in LPG and Related Work

lpg precomputes a set of mutex relations for the input planning problem using the two al-
gorithms given in Figure 15, where Add(a) denotes the set of the positive effects of a, Del(a)
the set of its negative effects, and Pre(a) the set of its preconditions. ComputeMutexFacts
derives a set of mutex relations between facts, that are used by ComputeMutexActions to
compute a set of relations between actions. The correctness of this second algorithm is
obvious since it just applies the original definition of mutex relation (Blum & Furst, 1997).

ComputeMutexFacts iteratively constructs a set M of potential mutex relations and the
set F of all possible facts for the planning problem under consideration. At each iteration
we consider every possible action a (step 5) to possibly generate a set of new potential mutex
relations (steps 7–11), and to possibly invalidate other potential mutex relations that have
already been formulated (steps 12–18). The algorithm terminates when all possible facts
have been considered (F ∗ = F ), and no new potential mutex relations can be generated
(M∗ = M). When the algorithm terminates, M contains a set of persistent mutex relations
between facts. A mutex relation m in M is persistent if there is no state that can be
reached from the initial state of the problem, using the operators of the domain under
consideration, in which the facts of m are both true. All mutex relations in the fixed-point
level of a traditional planning graph are persistent.

Given an action a, two facts f1 and f2 form a potential mutex relation m if (1) one of
them is a positive effect of a and the other is a negative effect (steps 7–9), or (2) one of them
is a positive effect of a and the other is (potentially) mutually exclusive with a precondition
of a (steps 7, 10 and 11). (1) is a natural way of hypothesizing mutex relations that is
used also by Gerevini and Schubert (1998). (2) is based on the observation that, if f1 is an
effect of a, p ∈ Pre(a), f2 6∈ Add(a), and f2 is mutually exclusive with p, then in any state
resulting from the application of a to a reachable state, f2 and f1 cannot be both true.

A potential mutex relation m ∈M between f1 and f2 becomes invalid if (1) there exists
an action containing the two facts of m among its positive effects (steps 13–14), or f1 (f2) is
an add-effect of an action a, f2 (f1) is not deleted by a, and f2 (f1) is (potentially) mutually
exclusive with no precondition of a (steps 15–18). The first case if obvious, while the second
can be explained as follows. If f1 is a positive effect of a, and we cannot exclude that f2

is true in a state where a can be applied, then f2 could persist from this state to the state
produced by a (similarly if f2 is a positive effect of a).

Note that lpg handles negative preconditions as proposed by Koehler et al. (1997), i.e.,
no explicit atomic negation is available in lpg’s language. Instead we model atomic negation
by introducing an additional predicate not-p(x) if ¬p(x) is needed and by formulating add
and delete effects correspondingly (this guarantees than not-p(x) and p(x) are mutex).

The next theorem states the correctness of our algorithms.

Theorem ComputeMutexFacts and ComputeMutexActions correctly compute a set of persis-
tent mutex relations between facts and actions respectively.

Proof. Correctness of ComputeMutexActions is obvious, since it is a direct consequence
of the definition of persistent mutex relation between actions. Correctness of ComputeMu-
texFacts follows from the two conditions under which a potential mutex relation is made
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ComputeMutexFacts(I,O)

Input : An initial state (I) and all ground operator instances (O);
Output : A set of persistent mutex relations between facts (M).

1 F ∗ ← I; F ← ∅;
2. M ← ∅; M∗ ← ∅; A ← ∅;
3. while F ∗ 6= F ∨M∗ 6= M
4. F ← F ∗; M ←M∗;
5. forall a ∈ O such that Pre(a) ⊆ F ∗ and ¬(∃ p, q ∈ Pre(a) ∧ (p, q) ∈M∗)
6. New(a)← Add(a) − F ∗;
7. forall f ∈ New(a)
8. forall h ∈ Del(a)
9. M∗ ←M∗ ∪ {(f, h), (h, f)}; /* Potential mutex relation */
10. forall (p, q) ∈M∗ such that p ∈ Pre(a) and q 6∈ Del(a)
11. M∗ ←M∗ ∪ {(f, q), (q, f)}; /* Potential mutex relation */
12. if a 6∈ A then

13. forall p, q ∈ Add(a) such that (p, q) ∈M∗

14. M∗ ←M∗ − {(p, q), (q, p)}; /* Invalid mutex relation */
15. L← Add(a) −New(a);
16. forall (i, q) ∈M∗ such that i ∈ L
17. if q /∈ Del(a) ∧ ¬(∃ p ∈ Pre(a) ∧ (p, q) ∈M∗) then

18. M∗ ←M∗ − {(i, q), (q, i)}; /* Invalid mutex relation */
19. F ∗ ← F ∗ ∪New(a);
20. A ← A ∪ {a};
21. return M .

ComputeMutexActions(M,O)

Input : A set of mutex relations between facts (M) and all ground operator instances (O);
Output : A set of persistent mutex relations between actions (N).

1. N ← ∅; O∗ ← O extended with the no-op of every fact;
2. forall (p, q) ∈M
3. forall a ∈ O∗ such that p ∈ Pre(a)
4. forall b ∈ O∗ such that q ∈ Pre(b)
5. N ← N ∪ {(a, b), (b, a)}; /* Competing needs */
6. forall a ∈ O∗

7. forall p ∈ Pre(a)
8. forall b ∈ O such that p ∈ Del(b)
9. N ← N ∪ {(a, b), (b, a)}; /* Interference */
10. forall p ∈ Add(a)
11. forall b ∈ O such that p ∈ Del(b)
12. N ← N ∪ {(a, b), (b, a)}; /* Inconsistent effects */
13. return N .

Figure 15: lpg’s algorithms for computing the mutex relations.
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invalid by the algorithm, and it can be proved by an inductive argument on the number k
of actions applied to reach a state S from the initial state.

Induction base (k = 0). It is easy to see that each element m in the output set M is a valid
mutex relation for the initial state (S = I), because the algorithm cannot formulate mutex
relations involving two facts that are both true in the initial state.

Induction hypothesis (k = n). Suppose that any element m in the output set M is a valid
mutex relation in any state reached by the application of n actions (n ≥ 1).

Induction step (k = n + 1). Assume that there exists an element m in the output set M
that is not a valid mutex relation in a state S reachable by applying a sequence of n + 1
actions (because the two facts f1 and f2 of m are both true in S), and let an+1 be the last
action in this sequence. By the inductive assumption this can happen only if (i) f1 and
f2 are both positive effects of an+1, or (ii) f1 (f2) is an add-effect of an+1, f2 (f1) is not
deleted by an+1, and f2 (f1) is true in the state S′ where an+1 is applied. Case (i) is ruled
out by steps 13–14 of ComputeMutexActions. Regarding case (ii), since we are assuming
that S′ is a reachable (consistent) state where f2 (f1) is true and an+1 can be applied, there
must exist no precondition p of an+1 that is mutex with f2 (f1). Moreover, by the inductive
assumption (p, f2) ((p, f1)) cannot belong to the output M -set – if some iteration of the
algorithm adds the potential mutex relation between p and f2 (f1) to M , then it must be
the case that it is then removed from M . It follows that, if some iteration adds (f1, f2) to
M , steps 16–18 will then remove it from M , contrary to our assumption that m belongs to
the output M -set.

Termination of the two algorithms is guaranteed because there is always a finite maxi-
mum number of different facts, actions and potential mutex relations. 2

Smith and Weld proposed the notion of “eternal mutex” (emutex) as a mutex relation
that persists for all time (Smith & Weld, 1999). According to their definition of emutex, our
persistent mutex relations between facts and between actions subsume theirs. Concerning
emutex relations between an action and a fact, Smith and Weld consider an action a with
effect p emutex with a fact p, while we do not consider a and no-op(p) persistently mutex.

Bonet and Geffner (2001) proposed a method for deriving a set of mutex relations
between facts that has some similarities with ours. Both methods are based on hypothesizing
a set of pairs of mutex facts that are then possibly eliminated from the set according to
certain conditions on the preconditions and effects of the actions. However, there are also
some significant differences. While Bonet and Geffner compute an initial large set M0 of
candidate mutex pairs, and then prune it, ComputeMutexFacts incrementally constructs and
verifies the set M through a forward process. The conditions under which a pair of facts is
in M0 are different from the conditions used by ComputeMutexFacts to create M (especially
the condition in step 10). Moreover, our algorithm generates and tests the pairs of M
considering only applicable actions (i.e., actions with all preconditions in F ∗ and with non-
mutex preconditions), while Bonet and Geffner derive M0 using every operator instance.
Finally, their paper does not contain algorithmic details about the identification of “bad
pairs” in M0, and there is no formal proof of correctness.

For problems involving a very high number of actions, precomputing mutex relations
could be computationally very expensive. In order to cope with these cases, the user of lpg

can set an option of the planner (lowmemory) for computing the mutex relations between
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actions at search time (while those between facts and between actions and no-ops are still
precomputed). Preprocessing with lowmemory on becomes faster and requires much less
memory, but each search step becomes slower. For this reason in the current version of
lpg this option is recommended only when the precomputation of mutex relations between
actions is prohibitive. This was never the case for the test problems of the 3rd IPC designed
for the fully-automated planners, but for some of the problems designed for the hand-
coded planners, like those of the domain Satellite Hand-Coded, the use of this option
is necessary. Currently we are studying an alternative method for computing (persistent)
mutex relations during search based on the use of state invariants automatically derived
by existing domain analysis tools, such as Discoplan (Gerevini & Schubert, 1998) or Tim

(Fox & Long, 1998a). A similar method has been proposed by Fox and Long (2000).
Finally, for domains involving numerical preconditions and effects, the set of mutex

relations between actions computed by the algorithms of Figure 15 is extended using the
definition of mutex relations for numeric domains given by Fox and Long (2003).
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Appendix B: LPG and the SuperPlanner in the Time variant of the

competition domains
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Appendix C: Comparison of LPG-speed and the SuperPlanner

The following table shows the performance of lpg-speed and the SuperPlanner in every vari-
ant of every domain tested using our local search techniques. The two systems are compared
in terms of: number of problems solved (2nd and 3rd columns); number of problems in which
lpg-speed is faster/slower than the SuperPlanner (4th/6th columns); number of problems
in which lpg-speed is much faster/slower than the SuperPlanner (5th/7th columns). A
system was considered much faster than the other one when the CPU-time required by the
first was at least one order of magnitude lower than the second. When a planner was not
able to find a solution, the required CPU-time was considered infinite.

Problems Problems LPG LPG much LPG LPG much
Domain solved solved by better then better then worse than worse than

by the Super- the Super- the Super- the Super- the Super-
LPG Planner Planner Planner Planner Planner

Strips

Depots 22 (100%) 22 (100%) 6 (27.3%) 0 (0%) 16 (72.7%) 5 (22.7%)
DriverLog 20 (100%) 15 (75%) 7 (35%) 5 (25%) 12 (60%) 1 (5%)
Rovers 20 (100%) 20 (100%) 4 (20%) 0 (0%) 14 (70%) 3 (15%)
Satellite 20 (100%) 20 (100%) 6 (30%) 1 (5%) 14 (70%) 2 (10%)
ZenoTravel 19 (95%) 20 (100%) 0 (0%) 0 (0%) 20 (100%) 12 (60%)
Total 99% 95.1% 22.5% 5.9% 74.5% 22.5%

Simple-time

Depots 21 (95.5%) 11 (50%) 18 (81.8%) 14 (63.6%) 3 (13.6%) 0 (0%)
DriverLog 18 (90%) 16 (80%) 15 (75%) 6 (30%) 3 (15%) 2 (10%)
Rovers 20 (100%) 10 (50%) 17 (85%) 12 (60%) 1 (5%) 1 (5%)
Satellite 20 (100%) 19 (95%) 18 (90%) 12 (60%) 1 (5%) 1 (5%)
ZenoTravel 19 (95%) 16 (80%) 18 (90%) 9 (45%) 1 (5%) 0 (0%)
Total 96% 70.6% 83.4% 51.9% 8.8% 3.9%

Time

Depots 20 (90.9%) 11 (50%) 14 (63.6%) 12 (54.5%) 6 (27.3%) 2 (9.1%)
DriverLog 18 (90%) 16 (80%) 17 (85%) 6 (30%) 0 (0%) 0 (0%)
Rovers 20 (100%) 12 (60%) 18 (90%) 13 (65%) 2 (10%) 1 (5%)
Satellite 20 (100%) 20 (100%) 19 (95%) 12 (60%) 1 (5%) 0 (0%)
ZenoTravel 19 (95%) 20 (100%) 15 (75%) 0 (0%) 5 (25%) 1 (5%)
Total 95.1% 77.5% 81.4% 42.1% 13.7% 3.9%

Numeric

Depots 21 (95.5%) 20 (90.9%) 8 (36.4%) 2 (9.1%) 12 (54.5%) 2 (9.1%)
DriverLog 18 (90%) 16 (80%) 7 (35%) 3 (15%) 10 (50%) 3 (15%)
Rovers 17 (85%) 9 (45%) 10 (50%) 8 (40%) 7 (35%) 3 (15%)
Satellite 12 (60%) 14 (70%) 2 (10%) 2 (10%) 14 (70%) 5 (25%)
ZenoTravel 20 (100%) 20 (100%) 0 (0%) 0 (0%) 20 (100%) 5 (25%)
Total 83.6% 77.4% 26.4% 14.7% 61.8% 17.6%

Complex

Satellite 20 (100%) 17 (85%) 19 (95%) 14 (70%) 1 (5%) 1 (5%)

Hard-numeric

DriverLog 20 (100%) 16 (80%) 12 (60%) 5 (25%) 8 (40%) 2 (10%)

Total 94.6% 80.3% 55.8% 30.3% 38.1% 11.6%
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Appendix D: Comparison of LPG-quality and the SuperPlanner

The following table shows the performance of lpg-quality and the SuperPlanner in every
variant of every domain tested using our local search techniques. The two systems are
compared in terms of: number of problems solved (2nd and 3rd columns); number of
problems in which the quality of the solution computed by lpg is better/worse than the
solution computed by the SuperPlanner (4th/6th columns); number of problems in which
the solution of lpg-quality is much better/worse than the solution of the SuperPlanner
(5th/7th columns). A solution π derived by a system is considered much better than the
solution π′ for the same problem derived by the other system if the quality of π is at least
twice as good as the quality of π′, or if π exists and π′ does not exist (because the system
could not solve the corresponding problem). The quality of a plan is measured using the
plan metric indicated in the problem specification, except for the Strips problems, where
plan quality is defined as the number of actions. In all problems considered, the lower the
value of the metric expression, the better the plan is.

Problems Problems LPG LPG much LPG LPG much
Domain solved solved by better than better than worse than worse than

by the Super- the Super- the Super- the Super- the Super-
LPG Planner Planner Planner Planner Planner

STRIPS

Depots 22 (100%) 22 (100%) 12 (54.5%) 0 (0%) 4 (18.2%) 0 (0%)
DriverLog 20 (100%) 15 (75%) 14 (70%) 5 (25%) 0 (0%) 0 (0%)
Rovers 20 (100%) 20 (100%) 9 (45%) 0 (0%) 1 (5%) 0 (0%)
Satellite 20 (100%) 20 (100%) 13 (65%) 0 (0%) 0 (0%) 0 (0%)
ZenoTravel 19 (95%) 20 (100%) 3 (15%) 0 (0%) 9 (45%) 1 (5%)
Total 99% 95.1% 50% 4.9% 13.7% 0.9%

Simple-time

Depots 21 (95.5%) 11 (50%) 19 (86.4%) 11 (50%) 1 (4.5%) 0 (0%)
DriverLog 18 (90%) 16 (80%) 17 (85%) 3 (15%) 1 (5%) 0 (0%)
Rovers 20 (100%) 10 (50%) 20 (100%) 10 (50%) 0 (0%) 0 (0%)
Satellite 20 (100%) 19 (95%) 20 (100%) 7 (35%) 0 (0%) 0 (0%)
ZenoTravel 19 (95%) 16 (80%) 17 (85%) 3 (15%) 2 (10%) 0 (0%)
Total 96% 70.6% 91.2% 33.3% 3.9% 0%

Time

Depots 20 (90.9%) 11 (50%) 17 (77.3%) 9 (40.9%) 2 (9.1%) 0 (0%)
DriverLog 18 (90%) 16 (80%) 17 (85%) 4 (20%) 1 (5%) 0 (0%)
Rovers 20 (100%) 12 (60%) 18 (90%) 8 (40%) 2 (10%) 0 (0%)
Satellite 20 (100%) 20 (100%) 20 (100%) 5 (25%) 0 (0%) 0 (0%)
ZenoTravel 19 (95%) 20 (100%) 11 (55%) 0 (0%) 9 (45%) 3 (15%)
Total 95.1% 77.4% 81.4% 25.5% 13.7% 2.9%

Numeric

Depots 21 (95.5%) 20 (90.9%) 10 (45.5%) 1 (4.5%) 8 (36.4%) 1 (4.5%)
DriverLog 18 (90%) 16 (80%) 15 (75%) 2 (10%) 0 (0%) 0 (0%)
Rovers 17 (85%) 9 (45%) 8 (40%) 8 (40%) 0 (0%) 0 (0%)
Satellite 12 (60%) 14 (70%) 12 (60%) 7 (35%) 4 (20%) 4 (20%)
ZenoTravel 20 (100%) 20 (100%) 9 (45%) 1 (5%) 6 (30%) 3 (15%)
Total 86.3% 77.4% 52.9% 18.6% 17.6% 7.8%

Complex

Satellite 20 (100%) 17 (85%) 19 (95%) 9 (45%) 1 (5%) 0 (0%)

Hard-numeric

DriverLog 20 (100%) 16 (80%) 18 (90%) 5 (25%) 1 (5%) 0 (0%)

Total 94.6% 80.3% 71% 21.9% 11.6% 2.7%
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