
A Model for Automating the Abstraction of Planning Problems
in a Narrative Context

Mira Fisher, Stephen Ware
Narrative Intelligence Lab, Department of Computer Science, University of Kentucky

329 Rose Street
Lexington, Kentucky 40506

mira.fisher@uky.edu, sgware@cs.uky.edu

Abstract

Contemporary automated planning research emphasizes the
use of domain knowledge abstractions like heuristics to im-
prove search efficiency. Transformative automated abstrac-
tion techniques which decompose or otherwise reformulate
the problem have a limited presence, owing to poor perfor-
mance in key metrics like plan length and time efficiency. In
this paper, we argue for a reexamination of these transfor-
mative techniques in the context of narrative planning, where
classical metrics are less appropriate. We propose a model
for automating abstraction by decomposing a planning prob-
lem into subproblems which serve as abstract features of the
problem. We demonstrate the application of this approach on
a low-level problem and discuss key features of the resulting
abstract problem. Plans in the abstract problem are shorter,
representing summaries of low-level plans, but can be directly
translated into low-level plans for the original problem.

Introduction
Traditionally, automated planning is primarily used to rep-
resent complex tasks or logistical processes. In these do-
mains, an optimal plan is one which achieves the goal with
the fewest steps or lowest cost, with a secondary focus on
time efficiency. Heuristic search has dominated in this envi-
ronment. As such, state of the art abstractions focus on gath-
ering just enough domain knowledge to identify the most
promising regions of the search space. In this paper, how-
ever, we focus on transformative approaches to abstraction
which identify and extract patterns within the problem to
construct abstract problems. The ability to break a problem
into less complex parts makes these approaches powerful,
but loss of detail typically limits them to producing sub-
optimal plans, and the computational costs involved in both
breaking down and reforming the problem may outweigh the
benefits (Sebastia, Onaindia, and Marzal 2006).

Outside of its primary usage, automated planning also
serves as a powerful tool for computationally modeling nar-
ratives. Narrative planning techniques can represent sto-
ries driven by intentional character behavior that is planned
in advance, including actions motivated by misunderstand-
ings or emotional responses to anticipated events (Riedl and
Young 2010; Teutenberg and Porteous 2013; Shirvani and

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ware 2020). As a representation it bears a resemblance to the
Possible Worlds model of narratives, and it has been used to
predict audience experiences of conflict, suspense, and story
comprehension (Shirvani, Ware, and Farrell 2017; Ware and
Young 2014; Cheong and Young 2015; Cardona-Rivera et al.
2016). In this context, the traditional performance metrics
break down: rather than generating the shortest story in the
least time, a narrative planner may be called upon to find the
most suspenseful story, or a story where an emotional action
leads to conflict, or all possible stories in a domain.

Cardona-Rivera and Young (2019) conclude that plan-
based approaches to representing narratives can be lever-
aged as a model of the mental process of narrative sense-
making. Extending this conclusion, we suggest that abstrac-
tion techniques for plan-based narratives should be consid-
ered in terms of their potential to model the hierarchical as-
pects of this sensemaking process. Accordingly, we argue
that the performance of an automatic abstraction process for
plan-based narratives should be evaluated in terms of 1) the
amount of detail removed at different levels of abstraction,
2) the utility of the remaining information for specific ob-
jectives such as identifying key story beats, and 3) the po-
tential for introducing disruptive events in the process of re-
construction.

We motivate these ideas with one of the key concerns
in narrative planning research: support for advanced fea-
tures like intentionality or theory of mind seen in centrally-
planned narrative systems like Ostari (Eger and Martens
2017) and Sabre (Ware and Siler 2021) is computationally
expensive to a degree which limits the application of these
systems to domains which are described at a high level of ab-
straction. As it stands, an author who wishes to utilize these
systems in a domain which is not sufficiently abstract must
develop an abstraction by hand, along with the transforma-
tions for lifting states or events in the original domain to
the abstract representation, or grounding elements from the
abstract domain in terms of the original. This process is dif-
ficult and error-prone, due in part to the possibility that the
author’s understanding of the domain is distorted with re-
spect to what it ultimately models1 (Cardona-Rivera 2020).

A process for automated abstraction could serve to bridge

1Such a distortion may result from the presence of unintended
possibilities in the story, i.e. bugs.

Proceedings of the Twentieth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2024)

35

the gap between current narrative planning limitations and
the typical granularity of representation that appears in video
games and other computational narrative works. Such a pro-
cess could reduce the authorial burden and expertise re-
quired for constructing the abstraction and the necessary
transformations, as well as having the potential to expose
unintended possibilities by presenting the distortions those
possibilities create in the abstract domain. To serve effec-
tively in this capacity, the abstraction method would need to
1) discard as much non-critical detail as possible in the lift-
ing process, 2) retain the essential information for modeling
narrative events in the abstract domain, and 3) unobtrusively
restore non-critical detail in the grounding process.

Having argued for reexamining the potential of automated
abstraction for plan-based narratives, in the remainder of
the paper we will introduce a method for the abstraction
of a planning problem which supports the evaluation tar-
gets above. Our proposed method models this abstraction
as a process of decomposing a problem into a network of
subproblems, identifying equivalent situations within those
subproblems, and discarding unnecessary detail to arrive at
an abstract state. We hypothesize that 1) this method will re-
sult in an abstract problem with a significantly smaller state
space than the original problem; and 2) that plans in the ab-
stract problem will be shorter than equivalent plans in the
original problem, with individual steps in the abstract plan
summarizing key changes in the state of the problem.

We evaluate (1) by presenting the results of different de-
compositions of our experimental low-level problem, com-
paring it and the resulting abstract problems in terms of the
size of the state space that each represents. We evaluate (2)
by considering a selection of plans from the low-level prob-
lem and comparing them to equivalent plans from the ab-
stract problem in terms of length.

Related Work
We first acknowledge the fields which hold the majority of
recent research in problem abstraction, before then returning
to our focus on automated planning.

State Abstraction
In the field of sequential decision making, state abstraction
has been applied to Markov Decision Processes (MDPs) to
more efficiently generate optimal policies (Abel et al. 2018).
The methods typical of this approach derive an abstract
MDP which groups states from the ground MDP if they have
the same optimal policy (Li, Walsh, and Littman 2006). The
importance of generating optimal or near-optimal policies
for the ground MDP limits the degree of abstraction that
can be applied. An aggressive abstraction may violate the
Markov property expected of an MDP, making it impossi-
ble to identify the optimal policy in a state without tracking
prior history. Some methods have been developed to care-
fully maintain this property and avoid removing too much
information (Allen et al. 2021).

Hierarchical Abstraction
Hierarchical abstraction methods allow more aggressive re-
duction of detail, managing this loss by representing high-

level transitions as subproblems in the lower level. Bai, Sri-
vastava, and Russell (2016) argue for seeing abstract MDPs
as Partially Observable MDPs (POMDPs) but use options, a
common tool in hierarchical reinforcement learning (HRL),
to allow transitions between abstract states without tracking
prior history. This combination enables a fast approximate
solution for the POMDP through tree search, which can be
expanded into an optimal policy for the ground MDP. This
result demonstrates promise in the ability of options to com-
pensate for information loss, though it should be noted that
the abstractions were crafted by hand.

Pateria et al. (2021) provide a thorough survey on the
methods that have been explored in HRL literature. Typ-
ically these methods either break a problem into indepen-
dent subtasks, or package useful strategies into subprograms
which contribute to a solution. The options framework is
most relevant to this paper. Options are a type of subpro-
gram, treated as extended-length actions, enabling an agent
to prioritize long-term goals with a reward signal distinct
from the MDP’s (Sutton, Precup, and Singh 1999). Options
often serve as containers for expert knowledge that an agent
can use, but automatic “discovery” of options has seen ex-
tensive investigation. Existing option discovery approaches
include prioritizing return to frequently visited states, pro-
moting exploration in a variety of ways, or seeking bot-
tleneck states (Stolle and Precup 2002; Stolle 2004; Sim-
sek and Barto 2007; Menache, Mannor, and Shimkin 2002).
While these methods have benefits, the goals they serve are
efficiency focused, e.g. reducing the overall number of train-
ing steps. They do not necessarily construct options with any
relationship to planning at the abstract level.

Konidaris, Kaelbling, and Lozano-Perez (2018) show that
options can enable automated planning in a low-level do-
main. Notably, their options allowed a deterministic planner
to navigate a domain with non-deterministic transitions, a
continuous feature space, and a continuous action space. The
authors conclude that suitable options for planning should
funnel an agent from a large set of initiation states to a
smaller set of termination states, and that the set of termi-
nation states must be a subset of the initiation states of at
least one other option. The options in this paper were hand-
crafted, but later work developed a process for discovering
options that meet these criteria by explicitly connecting ini-
tiation and termination regions in a graph structure (Bagaria
et al. 2021). This was accomplished by first generating op-
tions which initiate near the goal and lead directly to it, and
then recursively adding new options that terminate in the ini-
tiation set of existing options. The resulting graph can be in-
terpreted as an abstract state space, though the abstraction
primarily expresses proximity to the goal. This is useful for
efficiently solving an MDP, but for our purpose it is compa-
rable to heuristic abstraction.

Abstraction in Automated Planning
Hierarchical Task Networks (HTNs) are one of the better
known models for abstract planning, allowing the specifi-
cation of abstract tasks which decompose into collections
of primitive tasks (Georgievski and Aiello 2014). The ab-
stract tasks and decomposition methods are typically au-

36

thored alongside the HTN, but automated abstract task dis-
covery has been explored. Hayes and Scassellati (2016) de-
velop an abstract task hierarchy by identifying bottleneck
nodes in a graph of plan execution traces, grouping the tasks
between those bottlenecks.

In classical planning, action decomposition has played a
similar role to HTNs, allowing hierarchical planning using
authored rules for decomposition—referred to as decompo-
sition schemata (Young, Pollack, and Moore 1994). Macro-
actions are conceptually equivalent, used to store useful ac-
tion sequences to apply as a unit (Botea et al. 2005). Macros
may be authored but are typically learned, and evaluated in
terms of their value to search speed.

The approaches above, rooted in action abstraction, are
limited. Transformative abstractions must ultimately refor-
mulate the reachable state space of the problem.

Sebastia, Onaindia, and Marzal (2006) survey approaches
to decomposition, which can be grouped into those which
compose a solution from subgoal-solving plans (bottom-up),
and those which solve an abstract problem and then fill in
details to ground the plan (top-down, see Highpoint below).
Bottom-up methods benefit from identifying independent
subproblems with few negative interactions between them.
The authors introduce a method which achieves this inde-
pendence using landmarks—propositions which must hold
at some point in any plan which solves the problem, or ac-
tions which must appear in that plan (Hoffmann, Porteous,
and Sebastia 2004). This method performed well on classical
planning benchmarks, but landmarks have dubious value in
low-level story domains which may have too many possible
paths to endings for landmarks to occur. Porteous, Cavazza,
and Charles (2010) demonstrate the potential subgoals have
for expressing hierarchical narrative control, but how to de-
rive useful subgoals remains an open question.

Other approaches abstract the problem by simplifying the
problem states, often by projecting states into an abstract
space which considers only a portion of the state variables.
Highpoint (Bacchus and Yang 1994) and similar top-down
methods establish a hierarchy of abstract spaces. The most-
abstract space considers only the variables critical for solv-
ing the goal directly, and each lower layer is more grounded,
introducing details that are used to fill out the plan until it
solves the original problem. Abstracting by projecting into
abstract spaces is valuable for keeping simple lifting and
grounding functions, and has recently been employed by
Diamanti and Thue (2019) while simulating and synchroniz-
ing multi-agent behavior with adaptive level of detail. Our
definition of subproblems is directly comparable to using ab-
stract spaces with projections in this same way, though our
abstraction ultimately differs by reinterpreting the subprob-
lems themselves as variables.

Decoupled search is a more contemporary method com-
parable to the top-down approach, partitioning the set of
variables to construct a “center” abstract space as well as
a number of “leaf” spaces (Gnad and Hoffmann 2018). The
center contains all the most critical details for search, while
the leaves are arranged such that they are decoupled from
each other and only ever influence the center component.
As a result, the search process only ever branches on central

transitions. This method has been formulated into a trans-
formative abstraction that generates a planning domain with
the leaf transitions embedded into a set of specialized vari-
ables (Speck and Gnad 2024). This is conceptually similar
to our method defining regions which factor out subproblem
transitions that do not impact external subproblems, though
our method does not prioritize any center.

The Fast Downward planner is also a notable instance
of successful abstraction, both in translating propositional
planning problems into a multi-value representation that
captures implicit dynamics in the problem, and for perform-
ing partial hierarchical decomposition for the causal graph
heuristic (Helmert 2006). Our method draws some inspira-
tion from Fast Downward and develops a representation of
the problem that captures the implicit dynamics present in a
low-level multi-value planning problem, but the similarity is
only in concept and not method.

Finally, the merge-and-shrink abstraction framework
presents a general approach for developing transformative
abstractions of state spaces (Helmert et al. 2014). Arriving
at an abstraction is a process of iterative merge steps that
join two existing abstractions together, and shrink steps that
reduce complexity by altering the state representation and
transition labels. Like our method, it begins with a parti-
tion of the problem variables into abstractions which con-
sider only a single variable, merges these, and then sepa-
rately alters the representation to remove information. As
originally introduced, it abstracts more aggressively due to
its focus on providing heuristic information. However, as it
is a framework, our approach can be cast in its terms: our
merging strategy groups abstractions by hand, the shrinking
strategy groups states that are similar with respect to the rest
of the problem, and labels are reduced when operators have
the same abstract reformulation.

Approach
We approach abstraction of a planning problem as a process
with the following steps:

1. Decompose the problem into groups of related facts,
reinterpreting them as subproblems.

2. Generate the state space associated with each subprob-
lem, identifying all potentially reachable combinations of
the subproblem facts and the transitions between them.

3. Identify regions of subproblem states which are equiva-
lent in their effect on all other subproblems.

4. Generate the abstract problem by using subproblems as
state variables, and subproblem regions as values. Retain
abstract operators which transition between regions.

The results of this process are dependant on precisely
what facts are treated as related and used to form subprob-
lems. This may be manually defined, but a constructive ap-
proach is also possible—first dividing the problem such that
each state variable is used to create a subproblem (closely
resembling a domain transition graph) and then identifying
groups of subproblems to combine. We used this construc-
tive approach, the details of which are discussed later in this
section, under the heading Identifying Subproblems.

37

Figure 1: The initial state in Grid Grandma. Grandma’s location is represented by a house. The inventory of each character is
shown: Tom has a coin, the Merchant has a sword and a potion, the Bandit has a sword and a coin, and the Knight has a sword.

Story Domain
Our approach targets stories described by low-level events
interacting with a highly granular state—as is often the case
with games. In service of this, the experimental problem we
use is an adaptation of the “Save Grandma” narrative plan-
ning domain used by Ware et al. (2022) for a single-agent,
grid world environment we call “Grid Grandma”.

Grid Grandma has five characters: Tom (the player), his
Grandma, a Bandit, a Knight, and a Merchant. There are six
items: TomsCoin, BanditsCoin, MerchantsSword, BanditsS-
word, KnightsSword, and the Potion. The low-level state
features include the health, grid row, grid column, criminal
status, threatened status, armed status, and held item for ev-
ery character; as well as who has each item, the state of trade
between Tom and the Merchant, and which NPCs Tom is ad-
jacent to. Figure 1 depicts most of the story’s initial state.

The actions available to the player allow Tom to hold or
stow items; to heal, pay, slash, strike, or threaten an NPC
depending on what he is holding; to select an item to buy
or take an item from an NPC; and to move in the cardinal
directions. Finally, NPCs can attack Tom if they are armed,
but take no other actions. Valid, complete stories are those
in which Grandma is revived, or Tom is slain.

Tiny Grandma Grid Grandma is used for the results and
other information later in the paper. For figures and exam-
ples in the rest of this section, we present “Tiny Grandma”,
which removes the Knight and Bandit and their items, places
remaining characters on a 3x3 grid (see figure 2), and uses
two values (Alive and Dead) to represent character health.

Domain Representation
We base our domain representation on the SAS+ formal-
ism for classical planning problems (Bäckström and Nebel
1995), with minor adjustments.2 A planning problem Π =
⟨V ,O, s0, s⋆⟩ is a tuple where:

• V is a set of state variables. Each variable v ∈ V is as-
sociated with a domain Dv . Together these describe the
set of all facts in the problem FΠ = {(v, x)|v ∈ V , x ∈
Dv}. For a given set of facts f we write vars(f) to de-
note the set of all variables among those facts.

• A situation t is a set of facts such that no variable appears
twice (but no variables need appear at all). We may write
t[v] to denote the value associated with the variable v in
the situation t. A state s is a situation in which every
variable in the domain appears exactly once.

• O is a set of operators represented by a triple of situations
⟨pre,post,prv⟩ (representing pre-, post-, and prevail-
conditions respectively.
Operators describe the potential to transition from a
source state to a target state. pre indicates facts which
must hold in the source, but not the target. post indicates
facts which must hold in the target, but not the source.
prevail indicates facts which must hold in both states.
These situations are restricted by the following rules:

2Facts are introduced as variable-value pairs, partial states are
redefined slightly and renamed to situations for the sake of clar-
ity, the initial state must be fully specified, and no operator may
introduce a fact for a previously undefined variable.

38

Figure 2: The initial state of the Tiny Grandma domain.
Grandma’s location is represented by her house, Tom has
a coin, and the Merchant has a sword and a potion.

1. vars(pre) = vars(post)

2. ∀v ∈ vars(pre),pre[v] ̸= post[v]

3. vars(pre) ∩ vars(prv) = ∅
Essentially, pre and post describe the state change, and
prv describes additional fixed requirements.
Given an operator o we write pre(o), post(o), and
prv(o) to denote each situation. Additionally, given an
operator o and a pair of situations s and t such that
(pre(o) ∪ prv(o)) ⊆ s, (post(o) ∪ prv(o)) ⊆ t and
s− pre(o) = t− post(o), we say that o can be applied
in s to yield t, a relationship which we denote as s o−→ t.

• s0 is a state describing the initial state of the problem,
and s⋆ describes the goal situation.

For example, the effects of move actions in Tiny Grandma
are represented by operators. The situations describing these
use the following state variables and associated values, with
abbreviations representing each fact given parenthetically:

• health(Tom): Alive (A), Dead (D)
• column(Tom): 0 (X:0), 1 (X:1), 2 (X:2)
• row(Tom): 0 (Y:0), 1 (Y:1), 2 (Y:2)
• trade(Tom, Merchant): Trading (T), Not Trading (N)
• criminal(Tom): False (I), True (C)

Each move action is represented by multiple operators. The
operators that describe moving left X:1 to X:0 are:

1. o1 = ⟨{X:1}, {X:0}, {A, Y:1}⟩
2. o2 = ⟨{X:1}, {X:0}, {A, Y:0, N}⟩
3. o3 = ⟨{X:1, T, I}, {X:0, N, C}, {A, Y:0}⟩
4. o4 = ⟨{X:1, T}, {X:0, N}, {A, Y:0, C}⟩
Consider operators o1 and o2. pre(o1) and pre(o2) require
that Tom’s column position (X) is 1; post(o1) and post(o2)
describe the effect of the movement, putting him in a state
where X is 0. The prevail-condition prv(o1) requires that
Tom is alive (A) and his row position (Y) is 1, while prv(o2)
requires that A holds, Y is 0, and Tom is not trading with the
Merchant (N). These facts must be true, but don’t change.

o1 captures the story event where Tom moves to the left
without being next to the Merchant, while o2 represents
when Tom moves to the left away from the Merchant with-
out being in a trade. o3 and o4 represent the consequences of
Tom moving away from the Merchant to the left after having
selected an item. This ends the trade and causes Tom to be
considered a criminal (o3) unless he already was one (o4).

A planning problem Π is has a state space SΠ, a graph
with vertexes representing the initial state and any state that
can be reached from it by sequential application of opera-
tors, and an edge (s, t) for every pair of vertexes s, t such
that s o−→ t. The nature of low-level domains, where oper-
ators make small adjustments to a potentially large number
of state features, gives rise to a very large state space. Tiny
Grandma, with 19 state variables (46 facts), has a state space
of 2,582 vertexes and 10,240 edges. Grid Grandma, with 32
variables (98 facts), produces a graph with 2,242,343 ver-
texes and 9,390,133 edges. Even seemingly small problems
like these can benefit from abstraction—they can be over-
whelming when every detail looks equally important.

Decomposition
For a planning problem Π, the decomposition network is a
group of interconnected subproblems defined by a partition
of FΠ into k sets, FN = F0, F1, ..., Fk−1. This definition
allows us to derive additional information for the network:
• For each set of subproblem facts Fi, Oi is an associ-

ated set of local operators which only cause transitions
confined within Fi. That is, Oi = {o|o ∈ O,pre(o) ⊂
Fi ∧ post(o) ⊂ Fi}

• ON = O −
⋃

Fi∈FN
Oi is the set of global operators.

That is, it is the set of all operators that change facts in
multiple subproblems at the same time.

We denote the subproblem defined by a set Fi ∈ FN as
πi = ⟨Vi,ON

i , s0,i, s⋆,i⟩, where:
• Vi = vars(Fi)

• ON
i = Oi ∪ {o|o ∈ ON , pre(o) ∩ Fi ̸= ∅}

• si,0 = s0 ∩ Fi

• si,⋆ = s⋆ ∩ Fi

Just as a Π gives rise to the state space SΠ, each subprob-
lem πi defines a situation space Sπi . In this context, the rules
for application are relaxed: only the facts in Fi are consid-
ered when evaluating if an operator applies to a situation in
Sπi

and determining what it yields. This relaxation ensures
that the situation space contains any situation that might oc-
cur in the problem, though it may contain some that never
occur in practice. Edges in the situation space are labeled
with the ignored parts of the operator—for an operator o,
an edge will have a condition given by prv(o) − Fi. If o is
a global operator, the edge is also labeled with side-effects
described by ⟨pre(o)− Fi,post(o)− Fi⟩.

For example, three possible subproblems relevant to Tiny
Grandma, and their associated facts, are as follows:
• X: {X:0, X:1, X:2}
• Y: {Y:0, Y:1, Y:2}
• X∪Y: {X:0, X:1, X:2, Y:0, Y:1, Y:2}

39

X∪Y

X

0 1 2

A,Y:0,NA - health(Tom) = Alive

X:n - column(Tom) = n

Y:n - row(Tom) = n

N - trade(Tom, Merchant) = None

T - trade(Tom, Merchant) = Trading

C - criminal(Tom)

(pre → post) - nonlocal change

0,0 1,0

0,1 1,1 2,1

1,2 2,2

A,N

A

A

A

Y

0

1

2

A,Y:0 (T,I→N,C)

A,Y:0,C (T→N)

A,Y:1

A,Y:0

A,Y:1

A,Y:2
A,Y:1,N

A,Y:1 (T,I→N,C)

A,Y:1,C (T→N)

A,X:0

A,X:1

A
,X

:1
,N

A
,X

:2
,N

A,X:2

A
,X

:2
 (

T
,I

→
N

,C
)

A
,X

:2
,C

 (
T

→
N

)

A
,X

:1
 (

T
,I

→
N

,C
)

A
,X

:1
,C

 (
T

→
N

)

A,C (T→N)

A (T,I→N,C)

A

A

A
,N

A (T,I→N,C)

A,C (T→N)

A

A
,C

 (
T

→
N

)

A
 (

T
,I

→
N

,C
)

A
,C

 (
T

→
N

)

A
 (

T
,I

→
N

,C
)

A,X:1

A

A,N

A,NA

Figure 3: The situation spaces for the subproblems X, Y, and X∪Y. Edges due to local operators are solid, and dashed for global
ones. In either case, the edges are marked with appropriate conditions. For clarity, local edges which have the same condition
are condensed into bidirectional edges where possible. For each subproblem, vertexes are colored to denote the regions that are
induced by the rest of the problem (not pictured).

Figure 3 shows the resulting situation spaces for each sub-
problem. While a naı̈ve combining of the situations from X
and Y would result in nine situations, access to more infor-
mation results in identifying the seven reachable situations,
accounting for the positions (0,2) and (2,0) being occupied
by Grandma and the Merchant.

Abstraction
Conceptually, the conditions on edges in a situation space
represent the ways in which transitions in a subproblem de-
pend on other subproblems in the network. To determine if
a transition is valid, we must “observe” the state of the sub-
problems containing the facts the condition checks. To avoid
mistakes, the way each subproblem interacts with the rest
must be tracked. Conversely, a subproblem that is not heav-
ily observed does not need to expose as much information

to the network—more detail can be ignored. It is this fun-
damental relationship that allows us to abstract information
away without risking the introduction of obtrusive errors.

For a subproblem πi, we identify situations that can be
safely grouped into abstract regions by considering the rela-
tionship of each situation to every operator in the rest of the
network. If we assume that the facts of the situation are true
and doing so does not make that operator impossible by con-
flicting with any of the situations the operator describes, then
the operator is considered available (along with any transi-
tion it is responsible for). After considering every situation
of the subproblem in this way, the situations are grouped into
regions according to which transitions they make available.
Subproblem situations which satisfy part or all of the goal
are treated as enabling a special END transition.

Consider the difference between X and X∪Y in figure 3.

40

In X, transition between X:0 and X:1 is impossible if Y:2
is true, and transition between X:1 and X:2 is impossible if
Y:0 is true. If Y:1 is true, then the state of Y does not pre-
vent transition between those situations at all. The detailed
observation of Y that is required to navigate X results in ev-
ery situation in Y appearing different. We need three regions
to represent three situations—no abstraction is possible.

However, by combining X and Y into X∪Y, the external
observations between these two subproblems are tracked in-
ternally instead. The external observations that remain in the
rest of the problem are such that some transitions are only
available in the situations {X:1,Y:0} and {X:2,Y:1} (posi-
tions adjacent to the Merchant), and others are only available
in the situations {X:0,Y:1} and {X:1,Y:2} (positions adja-
cent to Grandma). This allows the seven situations in X∪Y
to be represented as three abstract regions.

Abstract regions form the basis of our reinterpretation of
the decomposition network as an abstract planning problem.
For a decomposition FN of the problem Π, the abstract prob-
lem ΠN = ⟨VA, λ,OA, σ0, σ⋆⟩ is a tuple such that:

• The set of abstract variables VA = {v0, v1, ..., vk−1}
where k = |FN | and vi is a unique symbol representing
πi. We denote the region associated with a subproblem
situation t as ρ(t). For each abstract variable vi ∈ VA,
the domain Dvi = {ρ(t)|t ∈ Sπi}. In other words, each
subproblem is used as an abstract state variable, and the
regions of that subproblem are used as abstract values.

• The lifting function λ maps states and situations from Π
to abstract states and situations in ΠN . Given a state s,
λ(s) = {(vi, ρ(s ∩ Fi))|vi ∈ VA}. That is, the facts for
the abstract state are derived by identifying the matching
situation in each subproblem, then producing the abstract
fact associated with that situation in that subproblem.
The lifting function applies differently in the case of a
situation. Since a situation is not fully specified, it may
hold in multiple subproblem situations. As such, for a sit-
uation t the lifting function λ(t) yields a set of abstract
facts which associate an abstract fact with multiple val-
ues. To manage this, for a set of facts u we write poss(u)
to denote the set of all situations that can be derived by
removing abstract facts until u is a situation.

• The set of abstract operators OA is obtained by consider-
ing each operator from the original problem. For each op-
erator o ∈ O, OA contains an operator ⟨tpre, tpost, tprv⟩
for each tpre ∈ poss(pre(o)), tpost ∈ poss(post(o)),
and tprv ∈ poss(prv(o)), if tpre ̸= tpost

• The abstract state initial state σ0 = λ(s0).

• The abstract goal situation σ⋆ = λ(s⋆). (Regions are de-
rived so goal situations in a subproblem share a region.)

In the abstract problem for Tiny Grandma, the subprob-
lem X∪Y hides the low-level detail of grid row and column,
instead representing the conceptual states of Tom’s position
as “adjacent to Grandma” (G), “adjacent to Merchant” (M),
and “elsewhere” (E). Even if we expand the underlying grid
in Tiny Grandma, the abstract problem always represents po-
sition with these three values.

As a result, the initial state will now contain the abstract
fact G and no facts from X and Y, and we reinterpret the
operators used earlier as:

1. o1 = ⟨{E}, {G}, {A}⟩
2. o2 = ⟨{M}, {E}, {A, N}⟩
3. o3 = ⟨{M, T, I}, {E, N, C}, {A}⟩
4. o4 = ⟨{M, T}, {E, N}, {A, C}⟩
The goal situation is unchanged.

Identifying Subproblems
The problem of identifying ideal subproblems for a given
problem is fundamental to the pursuit of useful abstractions.
In this section, we present the informal considerations which
lead to the partition of facts used for Grid Grandma.

In general the ideal subproblem is isolated, having only
a minimal impact on the rest of the problem as it is navi-
gated. In our model, these impacts are considered in terms
of observations and regions. Observations from outside of a
subproblem divide it into regions such that moving from one
region to another represents the potential for a negative inter-
action. Considering this, an exemplary isolated subproblem
should group many situations into a few (ideally contiguous)
regions. Regions are determined by observations, so the in-
tuitive approach is to seek groupings of facts that will reduce
the number of unique observations present in the network.

In Grid Grandma, the subproblem of grid navigation ex-
emplifies this circumstance. Due to obstacles on the map, the
operators which change Tom’s grid row frequently observe
the grid column, and vice versa. This relationship of mutual
dependency produces a large number of external observa-
tions for both subproblem—observations that become inter-
nal if these subproblems are combined. The state variables
which track adjacency are not heavily observed, but they are
the only other source of observations of row and column
both. Combined, the 32 facts related to these six state vari-
ables form the Adj subproblem, with 56 situations that are
grouped into 5 regions. (The Adj subproblem is analagous
to the X∪Y subproblem depicted in figure 3).

Another use for abstractions is to make implicit dynamics
between state variables explicit. If a subproblem is small, it
is possible to completely enumerate all interactions between
those facts and all possible states that subproblem may take
on. Identifying the possible states of a subproblem, and all
impossible states by extension, can provide information that
makes the rest of the problem easier to understand or solve.

In Grid Grandma, this intuition lead to forming four sub-
problems, each composed from facts relevant to one of the
characters in the problem. The Prog subproblem combines
facts about Grandma’s health with the location of the Potion.
TStat combines Tom’s health and armed status with the lo-
cation of the MerchantsSword, as well as details about the
Merchant’s condition. BStat and KStat respectively com-
bine the Bandit’s and Knight’s health and other conditions
with the location of each character’s sword. Each of these
subproblems captures dependencies between the facts, re-
sulting in subproblems that are still of a manageable size
while condensing more information about the problem.

41

Domain Subproblems Situations Regions
GG-Base 32 98 85
GG-Adj 27 122 59
GG-Prog 26 121 58
GG-TStat 20 125 52
GG-BStat 16 125 49
GG-KStat 12 125 44
GG-Coins 11 126 45

Table 1: Details about the domain network after each sub-
problem has been created, listing total number of subprob-
lems, subproblem situations, and subproblem regions in
each the network.

Domain States Endings Edges
Grid Grandma 2,242,343 4,369 9,390,133
GG-Base 461,658 2,353 1,625,311
GG-Adj 92,027 1,562 298,051
GG-Prog 92,027 1,562 298,051
GG-TStat 57,840 802 149,008
GG-BStat 49,944 802 124,972
GG-KStat 40,440 802 109,504
GG-Coins 40,440 802 10,504

Table 2: Details about the state space for the original prob-
lem, as well as the the state space for the abstract problem
after each subproblem has been created.

Finally, we considered similar use-cases of state variables
as a motivation to group them into a subproblem. Since re-
gions are a determination of what can be accomplished out-
side of a subproblem based on the internal state, grouping
facts which contribute to enabling similar operators has the
potential to widen the associated region. This lead us to join
the facts about the location of the two coins, TomsCoin and
BanditsCoin, into the single subproblem Coins.

Results
We reached the final abstract graph by grouping each set of
identified subproblem facts in turn. We provide an identifier
for each of the following:
1. GG-Base: the default partition in which each set of sub-

problem facts is the set of all facts associated with a
single state variable, corresponding directly with domain
transition graphs.

2. GG-Adj: as (1), but with the facts associated with the
state variables for grid row, grid column, and Tom’s ad-
jancency to each NPC grouped together.

3. GG-Prog: as (2), but with the facts for Grandma’s health
and the Potion location grouped together.

4. GG-TStat: as (3), but with the facts for Tom’s health,
Tom’s armed status, the MerchantsSword’s location, and
the Merchant’s health, armed status, threatened status,
and held item grouped together.

5. GG-BStat: as (4), but with the facts for the BanditsS-
word’s location, and the Bandit’s armed status, threat-
ened status, health, and held item grouped together.

6. GG-KStat: as (5), but with the facts for the KnightsS-
word’s location, and the Knight’s armed status, threat-
ened status, health, and held item grouped together.

7. GG-Coins: as (6), but with the facts associated with the
location of TomsCoin and BanditsCoin grouped together.

Key information about the each decomposition network is
given in table 1: number of subproblems, the number of sit-
uations across all subproblems, and the number of abstract
regions across all subproblems. Table 2 gives details about
the size of each state space associated with the abstract prob-
lem for each network, as well for the original problem.

The primary benefit of finding good combinations of sub-
problem facts, especially ones which isolate subproblems, is
conveyed through decreases in the total number of regions.
As seen in the Adj subproblem, this benefit may come at the
cost of inflating the number of situations internal to that sub-
problem. As long as the subproblem’s situation space does
not become unwieldy to generate fully, this cost should be
seen as minor—at 56 situations total, Adj is still very small.

The subproblems that lead to reductions in the size of
the state space were Adj (86.6%), TStat (37.2%), BStat
(13.7%), and KStat (19%). These were associated with de-
creases in the number of regions by 26, 6, 3, and 5 respec-
tively. It should also be noted that even the abstract do-
main derived from the default network was associated with
a 69.5% reduction from the size of the raw state space.

The reduction in unique endings in the default network,
as well as the networks after forming Adj, and TStat rep-
resent some of the summary power of our approach. Since
regions hide information that is only internally important,
the abstract problem presents states that only differ in terms
of that minutiae as equivalent. For example, in the original
problem there are three positions from which Tom can heal
Grandma. As a result, there are three versions of every end-
ing where Tom heals Grandma, varying only by position.
The Adj subproblem hides irrelevant position information,
so these endings (and others) are equivalent. The base ab-
straction reduces the number of endings by 46.1% by hiding
some information about health values and which sword Tom
is holding. By abstracting precise positions, Adj reduces the
number of endings by another 33.6%. By abstracting infor-
mation about the Merchant’s health and threatened status,
TStat reduces it by a further 48.7%.

Overall, the final abstract state space is 1.8% of the size of
the original state space, and it reduces the number of endings
that are considered unique by 81.6%.

To understand the impact of the problem on plan lengths,
we consider the following specific stories:

1. Tom buys the Potion and heals Grandma.
2. Tom is slain by the Bandit.
3. Tom steals the Potion and heals Grandma.
4. Tom steals the Potion and is defeated by the Knight.
5. Tom buys the MerchantsSword, defeats the Bandit, uses

her coin to buy the Potion, and heals Grandma.
6. Tom buys the MerchantsSword, slays the Merchant,

steals the Potion, and heals Grandma.

42

Original Problem Abstract Problem

move down change Adj to Elsewhere

move down (x3)

change Adj to Merchant
move right (x4)

move down (x3)

move right (x2)

hold TomsCoin hold TomsCoin

pay Merchant pay Merchant

select MerchantsSword select MerchantsSword

slash Merchant

change TStat to MDeadslash Merchant

slash Merchant

take Potion take Potion

stow MerchantsSword stow MerchantsSword

move left change Adj to Elsewhere

move left

change Adj to Grandma
move up (x3)

move left (x4)

move up (x4)

hold Potion hold Potion

Figure 4: A depiction of a plan in the low-level problem and
the corresponding events in the abstract problem.

The 6th story is shown in detail in figure 4, with the associ-
ated abstract events.

The shortest plans for producing these stories are:

1. 30 low-level actions; 8 abstract events.
2. 18 low-level actions; 3 abstract events.
3. 28 low-level actions; 6 abstract events.
4. 18 low-level actions; 6 abstract events.
5. 71 low-level actions; 18 abstract events.
6. 36 low-level actions; 12 abstract events.

Stories 2 and 4 are tied for the shortest low-level plans that
reach an ending of the story. Story 3 is the shortest story in
which Tom heals Grandma.

By condensing sequences of movement actions and at-
tacks, the length of plans are significantly reduced, and the
events that replace sequences of small changes instead sum-
marize the change at a higher level of abstraction.

Conclusions
In this paper, we argued for reexamining the potential that
transformative abstraction methods have in the context of
plan-based representations of narrative, and proposed crite-
ria to consider in evaluating such methods.

We described a model that builds on existing ideas of us-
ing decomposition to break a planning problem into smaller
subproblems, but 1) ultimately derives an abstract planning
problem which can be planned within without considering
the original problem, and 2) incorporates a novel approach
to deriving abstract symbols by considering the potential for
interactions between subproblems.

We also showed that the abstract problem that our method
constructs is significantly smaller than the original prob-
lem in terms of the number of vertexes and unique endings
present in terms of the state spaces each problem represents.
We also showed that the length of the plans that represent
key stories in the original problem are represented by signif-
icantly shorter plans in the abstract problem.

The results of this paper represent a first step in the goal
of providing robust abstraction of planning problems with a
focus on supporting narrative planning.

Future Work
This paper lays groundwork that we anticipate expanding
on by experimenting with more problems drawn from ex-
isting computational narratives, incorporating further con-
siderations useful for narrative planning, and evaluating our
abstraction in terms of how human subjects perceive it.

This paper presents the results of early development of
this model on a problem written to serve as a low-level
model of an existing narrative planning problem. We plan
to experiment with this approach on low-level domains that
exist “in the wild”, adapting our approach and expanding
our methods to be more generally applicable. In particular,
we plan to develop planning domain versions of narratives
drawn from interactive fiction, emergent-narrative story gen-
eration systems, and narrative-focused video games.

We plan to expand on the approach in this paper by in-
corporating concepts such as character goals and long-term
consequences of events. In addition to potentially guiding
behavior, character goals enable a better understanding of
the interactions between characters, allowing us to recog-
nize and respond to the potential for conflict or cooperation.
By incorporating character goals into our model, we might
produce an abstract problem and additionally model a “con-
flict space” that describes the way that character goals relate
to the abstract problem and each other. Similarly, we may
also model the ways that events in a narrative conflict with
the other events that might have happened instead, leading
to a better representation of the problem in terms of the long
term impact of choices between these events.

Finally, we briefly mentioned the connection between
plan-based narratives and the mental process of narrative-
sensemaking. We plan to investigate abstraction of narrative
planning problems in terms of this relationship. We hope to
discover if the methods of abstraction that prove fruitful in
terms of our proposed evaluation targets are also methods of
abstraction that seem familiar or reasonable to human sub-
jects. We also hope to explore an approach to abstraction that
attempts to specifically model how humans process narrative
information into abstract hierarchies.

43

References
Abel, D.; Arumugam, D.; Lehnert, L.; and Littman, M.
2018. State abstractions for lifelong reinforcement learning.
In International Conference on Machine Learning, 10–19.
PMLR.
Allen, C.; Parikh, N.; Gottesman, O.; and Konidaris, G.
2021. Learning Markov State Abstractions for Deep Re-
inforcement Learning. CoRR, abs/2106.04379.
Bacchus, F.; and Yang, Q. 1994. Downward refinement and
the efficiency of hierarchical problem solving. Artif. Intell.,
71(1): 43–100.
Bäckström, C.; and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence, 11(4): 625–
655.
Bagaria, A.; Senthil, J.; Slivinski, M.; and Konidaris, G.
2021. Robustly Learning Composable Options in Deep Re-
inforcement Learning. In Proceedings of the 30th Int. Joint
Conf. on Artificial Intelligence.
Bai, A.; Srivastava, S.; and Russell, S. 2016. Markovian
State and Action Abstractions for MDPS via Hierarchi-
cal MCTS. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’16,
3029–3037. AAAI Press. ISBN 9781577357704.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research, 24: 581–621.
Cardona-Rivera, R. 2020. Foundations of a computational
science of game design: Abstractions and tradeoffs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 16, 167–174.
Cardona-Rivera, R. E.; Price, T.; Winer, D.; and Young,
R. M. 2016. Question answering in the context of stories
generated by computers. Advances in Cognitive Systems, 4:
227–245.
Cardona-Rivera, R. E.; and Young, R. M. 2019. Desiderata
for a computational model of human online narrative sense-
making. In Working notes of the 2019 AAAI Spring Sympo-
sium on Story-enabled Intelligence.
Cheong, Y.-G.; and Young, R. M. 2015. Suspenser: a story
generation system for suspense. IEEE Transactions on Com-
putational Intelligence and Artificial Intelligence in Games,
7(1): 39–52.
Diamanti, M.; and Thue, D. 2019. Automatic abstraction
and refinement for simulations with adaptive level of detail.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 15,
17–23.
Eger, M.; and Martens, C. 2017. Practical specification of
belief manipulation in games. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 13, 30–36.
Georgievski, I.; and Aiello, M. 2014. An overview
of hierarchical task network planning. arXiv preprint
arXiv:1403.7426.

Gnad, D.; and Hoffmann, J. 2018. Star-topology decoupled
state space search. Artificial Intelligence, 257: 24–60.

Hayes, B.; and Scassellati, B. 2016. Autonomously
constructing hierarchical task networks for planning and
human-robot collaboration. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), 5469–
5476. IEEE.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM (JACM), 61(3): 1–63.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research, 22: 215–278.

Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From Skills to Symbols: Learning Symbolic Representa-
tions for Abstract High-Level Planning. Journal of Artificial
Intelligence Research, 61: 215–289.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
Unified Theory of State Abstraction for MDPs. In Interna-
tional Symposium on Artificial Intelligence and Mathemat-
ics, AI&Math 2006, Fort Lauderdale, Florida, USA, January
4-6, 2006.

Menache, I.; Mannor, S.; and Shimkin, N. 2002. Q-Cut -
Dynamic Discovery of Sub-Goals in Reinforcement Learn-
ing. In Proceedings of the 13th European Conf. on Machine
Learning, ECML ’02, 295–306.

Pateria, S.; Subagdja, B.; Tan, A.-h.; and Quek, C. 2021. Hi-
erarchical Reinforcement Learning: A Comprehensive Sur-
vey. ACM Comput. Surv., 54(5).

Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Transactions on Intelligent Systems
and Technology (TIST), 1(2): 1–21.

Riedl, M. O.; and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research, 39: 217–268.

Sebastia, L.; Onaindia, E.; and Marzal, E. 2006. Decom-
position of planning problems. Ai Communications, 19(1):
49–81.

Shirvani, A.; and Ware, S. G. 2020. A formalization of emo-
tional planning for strong-story systems. In Proceedings of
the 16th AAAI international conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 116–122.

Shirvani, A.; Ware, S. G.; and Farrell, R. 2017. A possible
worlds model of belief for state-space narrative planning. In
Proceedings of the 13th AAAI international conference on
Artificial Intelligence and Interactive Digital Entertainment,
101–107.

Simsek, O.; and Barto, A. 2007. Betweenness centrality as
a basis for forming skills. Technical report, University of
Massachusetts, Department of Computer Science.

44

Speck, D.; and Gnad, D. 2024. Decoupled Search for the
Masses: A Novel Task Transformation for Classical Plan-
ning. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 34, 546–554.
Stolle, M. 2004. Automated Discovery of Options in Rein-
forcement Learning. Master’s thesis, McGill University.
Stolle, M.; and Precup, D. 2002. Learning Options in Rein-
forcement Learning. In Proceedings of the 5th Int. Symp. on
Abstraction, Reformulation, and Approximation, 212–223.
Springer.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and Semi-MDPs: A Framework for Temporal Ab-
straction in Reinforcement Learning. Artificial Intelligence,
112(1–2): 181–211.
Teutenberg, J.; and Porteous, J. 2013. Efficient intent-based
narrative generation using multiple planning agents. In
Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, 603–610.
Ware, S. G.; Garcia, E. T.; Fisher, M.; Shirvani, A.; and
Farrell, R. 2022. Multi-agent narrative experience manage-
ment as story graph pruning. IEEE Transactions on Games.
(forthcoming).
Ware, S. G.; and Siler, C. 2021. Sabre: A Narrative Planner
Supporting Intention and Deep Theory of Mind. In Proceed-
ings of the 17th AAAI International Conference on Artificial
Intelligence and Interactive Digital Entertainment, 99–106.
Ware, S. G.; and Young, R. M. 2014. Glaive: a state-space
narrative planner supporting intentionality and conflict. In
Proceedings of the 10th AAAI international conference on
Artificial Intelligence and Interactive Digital Entertainment,
80–86.
Young, R. M.; Pollack, M. E.; and Moore, J. D. 1994. De-
composition and Causality in Partial-order Planning. In
AIPS, 188–194.

45

