
P
os
te
d
on

19
M
ar

20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
08
51
13
.3
52
02
30
1/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Planning Stories Neurally

Rachelyn Farrell1 and Stephen G Ware1

1University of Kentucky

March 19, 2024

Abstract

Symbolic planning algorithms and large language models have different strengths and weaknesses for story generation, suggesting

hybrid models might leverage advantages from both. Others have proposed using a language model in combination with a

partial order planning style algorithm to avoid the need for a handwritten symbolic domain of actions. This paper offers a

complementary approach. We use a state space planning algorithm to plan coherent multi-agent stories in symbolic domains,

with a language model acting as a guide to estimate which events are worth exploring first. We evaluate an initial implementation

of this method on a set of benchmark problems and find that the LLM’s guidance is helpful to the planner in most domains.

1

1

Planning Stories Neurally
Rachelyn Farrell and Stephen G. Ware

University of Kentucky

Abstract—Symbolic planning algorithms and large language
models have different strengths and weaknesses for story gen-
eration, suggesting hybrid models might leverage advantages
from both. Others have proposed using a language model in
combination with a partial order planning style algorithm to
avoid the need for a hand-written symbolic domain of actions.
This paper offers a complementary approach. We use a state
space planning algorithm to plan coherent multi-agent stories
in symbolic domains, with a language model acting as a guide
to estimate which events are worth exploring first. We evaluate
an initial implementation of this method on a set of benchmark
problems and find that the LLM’s guidance is helpful to the
planner in most domains.

Index Terms—narrative planning, story generation, language
models

I. INTRODUCTION AND RELATED WORK

Interactive narratives play an important role in many virtual
environments for entertainment and education. Ensuring the
narrative remains believable and well-structured as it adapts
to player input is a challenge that artificial intelligence and
machine learning techniques can help to address.

Early interactive narrative systems, like Tale-Spin [1], Uni-
verse [2], and Façade [3], used symbolic models of their story
domains. Characters, places, objects, and states are typically
represented in some form of predicate logic. Events have
preconditions which must be true before they can happen
and effects which change the narrative state. These systems
are primarily reactive, meaning they choose and commit to a
single action based on the narrative so far with minimal look-
ahead. The reactive approach scales well, and continues to be
a popular choice for modern interactive narratives like Prom
Week [4], Versu [5], Why Are We Like This? [6], and many
others.

There has also been considerable research on using AI
planning to ensure the structure of interactive stories. Plans
and planning offer a rich, formal, generative, symbolic model
of storytelling [7] that also uses predicate logic and events
with preconditions and effects. Planning algorithms have been
used to create many interactive narratives [8]–[11]. There
has also been considerable research on augmenting planning
algorithms with models of story structure [12]–[14]. Planning-
based systems differ from reactive systems by performing an
extensive backtracking search over the space of all possible
stories. This grants them a greater ability to ensure story
quality and structure, but it comes at the cost of scalability.
The space of all possible stories in a domain quickly becomes
too large to explore efficiently, limiting the applicability of
planning to large story worlds and prompting research into
fast narrative planning [15], [16].

With the recent explosion of research on deep learning and
large neural language models (LLMs), there have also been

many applications of language generators to storytelling. One
example among many is AI Dungeon [17], which mediates
the player’s natural language input to GPT-2 [18] to mimic
role-playing games. LLMs are generally used reactively, in
the sense that they do little or no search through the space
of possible stories, but generate and commit to the next word
of text based on the current context. While training LLMs is
expensive, text generation is relatively cheap. Unlike symbolic
reactive storytelling systems, LLMs can draw from a large
training set of characters, places, objects, and events without
requiring the user to define them by hand in advance. However,
while generated text can be coherent within a sliding window,
it is difficult to maintain global coherence or to generate a
goal-directed story with a language model alone [19]. Several
researches have worked to address these limitations with
respect to story generation [20]–[23].

One interesting method of achieving global story coherence
was proposed in Neural Story Planning [24]. It mimics a
partial order planning algorithm [25] that works backwards
from the end of the story. For the story goal, and for each
event, the system determines the preconditions that must be
met. For each precondition, it finds an existing event in
the story or adds a new event to the story which has an
effect that satisfies that precondition. The resulting story is
a causal network of events that improves coherence [26]. Its
key distinction from a traditional partial order planner is that,
rather than relying on a hand-authored symbolic domain of
events, the system prompts an LLM to determine preconditions
and to generate events which can satisfy them. The approach
thus combines the coherence of a planner with the on-demand
content generation of an LLM.

However, content generation is a double-edged sword. The
ability of LLMs to introduce new story elements can be an
advantage or a liability depending on the application. When
stories are told in text, as with AI Dungeon, there is little
cost to introducing new elements. However, many interactive
narratives take place in 3D virtual game-like environments
where art assets, animations, and dialog are fixed. The ability
of an LLM to introduce a dragon into a 3D game’s story,
however fitting it might be, is useless if the game does not have
a rigged and animated dragon model. There is preliminary
evidence that deep learning might eventually generate these
art assets on demand as well [27], but this technology is
in its infancy and raises significant ethical questions about
attribution [28]. Regardless, some authors might want to limit
a storytelling system to a fixed set of assets for aesthetic
purposes, and commercial virtual environments may impose
these limits to ease quality assurance.

We are interested in an approach complementary to Neural
Story Planning that we call Planning Stories Neurally: Using

2

a narrative planner with a hand-written symbolic domain,
we want to leverage the general knowledge and storytelling
capabilities of an LLM to guide the planner toward solutions
more efficiently. There are many ways we might achieve this.
For a preliminary analysis of this approach, we define an LLM-
based cost function for a uniform cost search. The planner
ranks available actions at each step by how closely they match
what the LLM says should happen next, given a description of
the story so far. We evaluate in several different story domains
whether the LLM’s suggestions are helpful to the planner in
two key ways: leading the planner towards the goal, and using
actions that make sense from the perspectives of the characters
who take them.

II. BACKGROUND

In forward state-space planning, actions are added onto the
ends of plans until a goal state is reached. Classically, a plan
that reaches a goal state is called a solution. Narrative planners
however impose additional constraints on solutions to ensure
that they meet certain desired narrative criteria, such as for
characters to act believably. Toward this end, a planner can
define characters as special kinds of entities that have goals
and can only participate in actions that contribute to achieving
their goals. We use the Sabre narrative planner [29], which
additionally models character beliefs, and ensures that the
plans or explanations used to justify a character’s actions are
consistent with their beliefs under limited observability.

For Sabre, a solution is a plan that 1) reaches a goal state and
2) contains only actions that are explained. A full definition
of action explainability in Sabre is given in the above cited
paper, but to summarize: An action is explained in general
when it is explained for each of its consenting characters—
the characters who are willing participants in the action. An
action is explained for a character when it is the next step
in some plan that achieves that character’s goals, according
to their beliefs. The existence of such a plan indicates that
the character will appear to be taking the action for a reason,
thus the action is explained for them. The planner tracks this
information during search by identifying when character goals
are achieved and propagating explanations backward, marking
that character’s prior actions as explained if they contributed
to the goal achievement.

To plan efficiently in large spaces, a planner needs to
consider possible actions in an intelligent order, prioritizing
those that are likely to lead to a solution. Classical planning
search heuristics estimate how close a given state is to a goal
state, and can be used to search classical planning problems
efficiently. But for narrative planning problems, reaching the
goal state is only one of the solution requirements, the other
being that actions are explained. A good narrative planning
heuristic, in addition to estimating the distance to the goal,
needs to estimate whether characters are acting believably
(at least according to the planner’s constraints). The Glaive
heuristic [15] does this by estimating distance to character
goals in addition to the story goal. However, it assumes full
observability, since Glaive does not model character beliefs,
and therefore does not perform well when Sabre’s limited
observability constraints are applied.

Sabre’s belief model and narrative planning in general
pose interesting challenges for search, and work toward more
efficient search strategies is ongoing [31]. We ultimately
envision an LLM-based heuristic used in combination with
an intelligent search algorithm, but at this stage we are not
attempting to implement a highly efficient search. Instead
we focus on evaluating whether an LLM has the capabilities
needed to be successful in a heuristic, and in what kinds of
domains. We define a cost function that uses LLM suggestions,
and compare it to a baseline cost function in a uniform-cost
search, because this provides the data to demonstrate how
helpful the suggestions are throughout a large part of the
problem space.

We aim to see whether an LLM, given everything the
planner knows about the story at a given point in a search,
can provide good suggestions for what should happen next.
A good suggestion, from the planner’s point of view, is an
action that can lead to a goal state and can be explained
for its characters. In the sections below, we define a cost
function that ranks actions using suggestions from an LLM,
and then examine in multiple story domains how effective the
suggestions are in terms of goal achievement (the number of
nodes visited to reach the first solution) and explainedness (the
ratio of explained to unexplained nodes visited during search).
We begin by summarizing the formal definitions of a Sabre
problem [29] below.

Problem Definition
A Sabre problem is defined as ⟨C,F,A, T, U, s0⟩, where:
• C is a set of characters: special entities which should

appear to have beliefs and intentions.
• F is a set of state fluents: Boolean, nominal, or numeric

properties whose values can change over time. Sabre
defines a host of logical literals and operations over these
fluents, including nested epistemic fluents representing
complex character beliefs.

• A is a set of actions: STRIPS-like [30] operators that
specify preconditions for when they can occur and effects
that change the world state afterward. Sabre actions also
define a set of consenting characters—those who are par-
ticipating in the action intentionally—and an observation
function to determine which characters are aware of the
action when it occurs.

• T is a set of triggers, which are like actions except that
they happen automatically. Whenever their preconditions
are satisfied in a state, their effects apply immediately.
Triggers do not have consenting characters or an obser-
vation function.

• U is a set of utility functions: expressions that define
preferences over states. This includes the author utility
function, which represents the states the planner should
attempt to reach (the story goal), and one utility function
for each character to represent their goals.

• s0 is the initial state, an assignment of a starting value for
every fluent in F and any wrong beliefs that characters
initially hold.

Given a problem so defined, the planner’s task is to find a plan,
or sequence of actions, that transforms the world from the

3

What is the
current state?

What can
happen next?

Choose next
action

State

Legal actions

current state +
“What could happen

next?”

legal actions

legal action
embeddings

Choose one
similar to suggestions

Suggested actions

Narrative Planner
Language Model

Text completion

suggested action
embeddings

Text embedding

Fig. 1. The narrative planner assigns costs to available actions based on suggestions generated with a large language model.

initial state into one in which 1) the author utility is improved
(the story goal achieved) and 2) all actions are explained for
their consenting characters.

III. METHOD

Our search process is illustrated in Figure 1. At each step
in the search, the planner describes the current state to a
language model, prompts it for what should happen next, and
then prioritizes actions that are more similar to the LLM’s
suggestions.

A. Describing the Current State

Each time the planner visits a node (a unique plan or story in
progress, starting with the empty plan), it begins by describing
the current state of the story world to an LLM and asking it
what the next step might be. In Figure 1, the top rectangle on
the left side represents this phase.

To describe the story’s current state in natural language,
the system must translate domain elements into natural lan-
guage sentences. We created a simple handwritten gram-
mar for each of the domains in Table I to accomplish
this. For example, in the Grandma domain, the fluent as-
signment location(Hero) = Cottage is converted into
the sentence “The hero is at the cottage.”, and the action
walk(Hero, Cottage, Crossroads) into “The hero walks to
the crossroads.”

Using these grammars, the planner builds a description of
the current state that comprises each of the elements listed
below. (The full text of this example is given in the Appendix.)

1) The initial state: “The hero is alive. The merchant is
alive. The guard is alive...”

2) Each character’s goals: “The hero wants to bring the
medicine to the cottage. The bandit wants to collect
valuable items...”

3) The names of the actions in the domain: “Characters can
walk, buy, loot, attack, rob, report, and take.”

4) The story goal: “The story must end with the hero either
being attacked or having the medicine at the cottage.”

5) The actions in the plan so far (unless this is the first):
“The story begins with the following steps: The mer-
chant walks from the market to the crossroads.” (page 2
of Appendix)

We combine this description with a prompt to suggest followup
actions, and send it to the LLM (first arrow in Figure 1).

B. Prompting for Suggestions

For the experiments discussed in this paper we used the
prompt text: “List n different actions that could happen next.
State each as a short sentence on its own line.” It is important
that we ask for more than one suggestion (n > 1) because
when the LLM is instructed to give only one suggestion, it
usually suggests something that would lead to a favorable
outcome for the protagonist. This has the result of always
guiding the planner in the same direction, and branches of
the space that are important get overlooked. Asking for two
different suggestions allows the LLM to suggest both good
and bad options. We use n = 2 as the default; we also tested
n = {3, 4} in three example domains and did not observe any
significant difference in performance compared to n = 2 (see
Section IV-B).

For our text completion model we used OpenAI’s gpt-3.5-
turbo (May 2023). We used a temperature of 0.3, and limited
responses to 25 tokens by default (increased when n > 2). We
did not fine-tune the model, but since our prompt ends with
a list of prior actions in the format we hope to generate, this
is essentially few-shot prompting (for all but the first node in
the search, when there are no prior events in the story). We
did not test our method with other models, although we hope
to do so in the future. We acknowledge that this will surely
involve some prompt re-engineering, as will attempting to use
any more recent version of gpt-3.5-turbo.

The response from the LLM is parsed into n suggestion
strings. For Step 1 of the Grandma Lose example (Appendix),
the LLM’s two suggestions are “The hero walks to the market”
and “The merchant buys the medicine”.

4

C. Comparing Actions

At this point the planner identifies all the actions that are
actually possible in the current state, translates them into nat-
ural language sentences using the grammars discussed above,
and sends each sentence to an LLM to get its embedding
vector (the second and third arrows in Figure 1). For all
text embeddings we used OpenAI’s text-embedding-ada-002
model. This was the only model for which OpenAI provided
access to text embeddings at the time.

The final step is to compare the text embeddings of the
legal actions with those of the suggested actions (the fourth
arrow). The actions that are good matches to any of the LLM’s
suggestions are the ones we want the planner to visit first. We
therefore assign lower costs to actions that are similar to a
suggestion, and higher costs to those that are not.

Given the embeddings of the legal actions and suggestions,
the planner calculates, for each action, a distance value that
measures its proximity to the suggestion closest to it. Let a
be an action and S a set of suggestions from the LLM output.
The minimum distance between a and S is calculated as:

DIST(a, S)← min
s∈S

(
1− 1 + COSIM(EM(a.NL), EM(s))

2

)

where a.NL is the natural language translation of the action
a (discussed in Section III-A) and the function EM() returns
the text embedding of the given string. The cosine similarity
COSIM() between each pair of embeddings is inverted and
scaled between 0 and 1 to avoid negative costs, and the
smallest distance value is returned. During search (Algorithm
1) this value is calculated for each of the possible actions
in a given state and actions with smaller minimum distances
are assigned lower step costs, causing the planner to prioritize
them.

Continuing with our previous example (Appendix), there
are 12 legal actions, including some that are explained and
necessary for most solutions (e.g. The hero walks from the
cottage to the crossroads), some that would lead to an ending
but are never going to be explained (e.g. The hero attacks
himself), some that can be explained but are irrelevant for the
story (e.g. The merchant reports seeing the bandit at the camp
to the guard) and many in between. As it happens, neither of
the suggested actions is directly possible at this moment: The
hero cannot walk straight to the market without first walking
to the crossroads, and the merchant cannot buy the medicine
because she already has it.1

Since none of the possible actions are a perfect match,
none will be given a cost of 0. In this case, the lowest cost
is 4, which is appropriately assigned to the very important
action, “The hero walks from the cottage to the crossroads”,
due to its similarity to the suggestion “The hero walks to the
market”. Another action which is also helpful (it is explained

1Informally, we noticed that the LLM often gives poor suggestions for the
initial call (when the plan is empty), as this example illustrates. Having at
least one step in the plan helps by prompting the LLM with some immediately
relevant context and with the expected format for actions; so its suggestions
for non-first steps tend to be more appropriate.

and leads to some solutions) is tied for the same cost: “The
merchant walks from the market to the crossroads”, based on
its similarity to “The merchant buys the medicine”. So even
though the LLM’s suggestions are not directly applicable in
this state, the planner does its best to follow the lead: The
hero walks somewhere, the merchant does something, etc. The
unhelpful actions mentioned above are assigned higher costs
(8 and 9) and will not be considered until much later in the
search, if at all.

D. Search

We now define an LLM-guided uniform cost search algo-
rithm, which we label LLM-UCS. Uniform cost search (UCS)
always visits the plan with the lowest cumulative action cost.
Breadth-first search is an example of UCS in which all actions
cost 1, so the cost of a plan is always equal to the plan’s length.
In LLM-UCS, the cost of a plan is the sum of the LLM-based
costs of each action in the plan. Thus, for example, a 5-step
plan which adheres closely to the LLM’s suggestions may be
visited sooner than a 3-step plan which does not.

Algorithm 1 LLM-Guided Uniform Cost Search
1: Let d be a depth limit, and z a precision constant (100 or

1,000).
2: Let STATE(π) denote the state reached by executing the

plan π starting from the initial state of p.
3: function LLM-UCS(problem p) ▷ Returns a solution, or

failure
4: π ← an empty plan (sequence of actions)
5: q ← an empty min-priority queue of plans
6: q.PUSH(π, cost = 0)
7: loop
8: π ← q.POP()
9: if STATE(π) |= p.goal and π is explained then

10: return π
11: else if LENGTH(π) + 1 ≤ d then
12: S ← PROMPTLLM(p, π)
13: for all a ∈ A do
14: if STATE(π) |= a.precondition then
15: cost(a)← ROUND

(
DIST(a, S) ∗ z

)
16: q.PUSH

(
π + a, cost(π) + cost(a)

)
17: if q.EMPTY() then return failure

The search process is formalized in Algorithm 1. Before
search begins, the planner grounds and simplifies the problem.
As a preprocessing step, we compute text embeddings for
all the grounded actions in the domain and store them in a
hash table along with the embeddings for all the suggestions
received from the LLM.

Beginning with an empty plan that costs 0 (line 6): If the
plan achieves the story goal and is explained, it is returned
as a solution (line 10). Here, p.goal is a disjunction of the
author’s goals—conditions in the author utility expression that
evaluate to a higher utility than the initial state. If the plan is
not a solution, the system prompts the LLM for suggestions
about what should happen next (line 12) using the prompt text
described earlier. Each action that is possible in the current

5

state (line 14) is then assigned a cost according to its minimum
distance with respect to the suggestions (line 15). Each new
plan (π + a) is added onto the search queue, with the cost of
the new action being added to the cost of the plan (line 16).
Search continues with the next lowest-cost plan in the queue,
until either a solution is returned (success), or the queue is
emptied (failure).

Normally, Sabre evaluates whether a node is explained (line
9) by checking if an explanation for that node has been found
in the current search. However, this search itself would not
necessarily find all the explanations needed, since it is only
considering actions that are possible (line 14). A full epistemic
search would also have to visit nodes that characters believed
were possible, even if they weren’t.2

To avoid missing crucial explanations, we instead evaluate
the check on line 9 using a lookup table of pre-recorded ex-
plained nodes. These were logged during a separate, complete
breadth-first search of each problem in our test suite (Table
I) using the given epistemic limit, and with both depth limits
increased by one in an effort to mark as many explained nodes
as possible (+1 atl and +1 ctl).

Problem Domain Size Configurations
|C| |F | |A| |T | u atl ctl el

Basketball 4 93 168 192 1 8 5 3

Bribery 3 25 27 0 1 2 2 1

Deer Hunter 3 42 28 76 1 10 5 1

Fantasy 4 85 76 141 2 9 3 3

Grandma Lose 4 96 800 952 1 5 4 2

Grandma Win 4 96 800 952 2 5 4 2

Hospital 4 67 102 196 1 10 6 3

Jailbreak Lose 3 46 106 54 1 7 7 2

Jailbreak Win 3 46 106 54 2 7 7 2

Raiders 3 29 35 66 1 7 4 2

Secret Agent 2 15 44 75 1 8 8 1

Snakebite 4 99 352 637 1 8 5 2

Space Lose 2 26 29 66 1 5 3 2

Space Win 2 26 29 66 4 5 3 2

Treasure 2 9 5 0 1 4 4 3

TABLE I
SABRE BENCHMARK PROBLEMS

A collection of benchmark problems for the Sabre narrative planner [32]

IV. EVALUATION

We evaluate our method on a set of narrative planning
benchmark problems collected from a variety of sources and
adapted to Sabre’s format [32]. Table I lists each problem
along with its size information (characters, fluents, actions,
and triggers after grounding) and the search configurations

2Characters who have incorrect beliefs can make plans which are actually
impossible, but which the planner still needs to find in order to explain their
actions. In Section V we discuss how our method can be extended to the
epistemic parts of the search as well, but this was not necessary to obtain
useful results from the current evaluation.

we used for it. The configurations were chosen manually for
each problem based on its known solutions, as specified in the
technical report.

The utility u sets the problem goal. Some problems have
multiple instances, such as Grandma Lose and Grandma Win,
having different criteria for the ending. For example, in the
“Win” variant of Grandma (u = 2), the hero must achieve his
goal, whereas in “Lose” (u = 1), he can be thwarted which is
a shorter plan. The author and character temporal limits, atl
and ctl, limit the length of plans that can be considered for
the author and characters, respectively. Finally, the epistemic
limit el limits the depth of epistemic nesting.

We searched each problem using LLM-UCS, stopping either
when the first solution is found or when the maximum node
limit is reached (5,000 nodes), recording all nodes visited. We
compare both the number of visited nodes, and the percent of
these nodes that are explained, to their respective baselines:
the node count and explained ratio of a complete breadth-first
search of the same problem space. (Baseline searches were
limited to 1 million nodes.) If the suggestions are generally
helpful for a given problem, LLM-UCS will visit significantly
fewer nodes on its way to the solution, and these will have a
higher explained ratio than the full space.

A. Results
Only two problems were affected by the node limits. Both

planners reached their limits before solving Snakebite, and
LLM-UCS reached its 5,000-node limit on Jailbreak Win
(though a solution exists at 186,707 nodes). We omit these
problems from our analysis. All other problems were solved
by both planners, but three were too small to show interesting
results: Bribery, Space Lose, and Treasure all had solutions
within 40 nodes, and LLM-UCS found it without significant
variation from the baseline on either metric. Table II shows
the results for the remaining 10 problems.

Problem Nodes Explained Visited Vis. Exp.

Deer Hunter 163,109 10% 2,300 ↓ 19% ↑

Grandma Win 95,894 39% 734 ↓ 68% ↑

Hospital 56,105 52% 532 ↓ 75% ↑

Fantasy 20,307 66% 640 ↓ 81% ↑

Jailbreak Lose 1,349 35% 2,851 ↑ 21% ↓

Grandma Lose 1,056 38% 37 ↓ 68% ↑

Raiders 1,051 37% 141 ↓ 39% ↑

Basketball 525 81% 31 ↓ 90% ↑

Space Win 327 65% 445 ↑ 59% ↓

Secret Agent 308 44% 60 ↓ 25% ↓

TABLE II
SEARCH RESULTS FOR LLM-UCS ON BENCHMARK PROBLEMS

Nodes is the number of nodes in the space for the given problem before the
first solution (i.e. breadth-first search), and Explained is the percent of these
nodes that are explained. Visited is the number of nodes LLM-UCS visited
before finding the solution, and Vis. Exp. is the percent of the visited nodes
that are explained. Arrows indicate the direction of change from the baseline.

Overall the results were positive: For 8 out of 10 problems,
the LLM-guided cost function significantly reduced the num-

6

ber of nodes visited by uniform-cost search; and for 7 out of 10
problems it visited explained nodes at a higher rate than their
base frequency, although the extent of this increase varied.

For all but one problem, the directions of change in ex-
plained ratio and number of nodes visited were inversely
correlated, as we expected. However this was not the case
for Secret Agent, in which LLM-UCS visited explained nodes
at a lower rate (25%) than they exist in the space (44%),
and yet still reached the solution in fewer nodes (60 from
308). Secret Agent is a single-agent pathfinding problem with
very few narrative properties; perhaps in this domain, visiting
explained nodes is less important than advancing the goal, so
the LLM’s suggestions were still helpful despite causing many
unexplained nodes to be visited.

Jailbreak Lose and Space Win were negative results in both
comparisons. For these problems, the LLM cost function had
the opposite effect from what we wanted. It caused the planner
to waste effort visiting unexplained nodes, and ultimately
found the solution later than the breadth-first search. We will
focus on these domains for future testing, but for now can only
speculate as to why the current methodology failed in these
cases. We will return to this discussion in Section V.

Barring these exceptions, it appears that LLMs do possess
the basic capabilities we are looking for—they can guide
the planner toward solutions, prioritizing explained nodes, in
a variety of story domains. This should not be taken too
generally. More experiments are needed to show whether this
methodology works similarly using different types of LLMs
or with different prompts or model parameters. More work
could also be done to improve the methodology in terms of
prioritizing explained nodes to a greater degree. This may be
achievable through simple prompt engineering. For example, if
the context were organized by character, which could be done
automatically, would this help the LLM frame their individual
perspectives and produce more believable suggestions?

B. Parameters

The method we defined in Section III takes two parameters,
n (the number of suggestions to ask for) and z (the precision
constant). The precision constant determines how many dec-
imal places we preserve of the cosine distance values when
rounding to assign action costs. Consider an example: The
set of distance values between each possible action and each
suggestion, for one step of an example search, range from
0.032 to 0.108. By default we preserve two decimal places
(z = 100), so in this case we assign costs ranging from 3 to
11. Preserving only one decimal place would reduce precision
unhelpfully (costs could only be 0 or 1 in this case). Preserving
three decimal places (z = 1000) would yield a much wider
range of costs (32...108) and thus a more precise ordering.

We compared n = [2, 3, 4] and z = [100, 1000] using 10
runs of each of three problems: Grandma Lose, Secret Agent,
and Raiders. Neither of the parameters had a significant impact
on the mean number of nodes visited or the mean percent of
explained nodes for any of these problems (using T-Tests).
We did however observe a greater variance between the 10
different runs (using F-Tests) in the Grandma Lose problem.

The variance in the number of nodes visited was affected by
both the number of suggestions (p < .001) and the precision
(p = .0089); while the variance in the percent of explained
nodes was affected by just the number of suggestions (p =
.0039). No variances were affected in the other two problems.

C. Limitations

The difference in performance across the various problems
is likely due to how well the different types of stories are rep-
resented in the LLM’s training data. An important distinction
between symbolic story planners and language-based story
generators is that planners treat words as arbitrary symbols and
are agnostic to their meaning, but word choice has significant
implications for language-based methods. As a stress-test we
converted the Grandma Lose problem into an unintuitive and
confusing domain with no clear genre or setting, by switching
the names of all the characters and renaming the items and
places. For example the protagonist’s goal, instead of “The
hero wants to have the medicine at the cottage”, is now stated
as “The bandit wants to have the dirt at the basketball court”,
while all underlying logic remains the same.

We ran the LLM-UCS search on both the original Grandma
Lose problem and this modified version, for 10 runs each,
and compared their results. (BFS solves both problems the
exact same way.) As we expected, performance decreased
drastically as a result of this modification: On average, LLM-
UCS solved the original problem in 28 nodes of which 75%
were explained; but on the modified problem it took an
average of 72 nodes with only 33% explained—lower than the
baseline of 38%. The LLM’s suggestions were significantly
less helpful for the version of the problem that subverts
common knowledge and genre expectations. This suggests that
the method may be of limited use for certain kinds of domains,
and underscores the importance of word choice in the domain
translation text.

The method also relies on a text-based similarity metric,
which does not always agree with semantic similarity in the
context of the story. For example, sentences A: “The guard
attacks the bandit” and B: “The guard attacks the hero”
have similar wording, but very different implications for the
story. Conversely, sentences C: “The hero runs away from the
merchant” and D: “The hero walks to the crossroads” may
describe the same action in the story, even though they are
worded very differently. This sometimes results in poor action-
suggestion matching. Future improvements to the similarity
measurements or matching algorithm may yield better results.

V. DISCUSSION

Symbolic story generation methods give creators fine-
grained control over what types of content can be included
in generated stories. Planning algorithms can reason over
large story spaces and make stronger quality assurances than
reactive methods which generate content based solely on
the current state. However, planning is expensive; narrative
planners either struggle to maintain character believability or
they use costly methods that do not scale as well as reactive
systems. In this work we seek to leverage the capabilities

7

of LLMs to make narrative planning more efficient while
preserving the advantages of symbolic approaches.

Toward our ultimate aim of incorporating LLM guidance
into efficient search heuristics, we present and evaluate a
simple action cost function that uses suggestions from LLM
queries to guide a narrative planner. For most of the benchmark
problems, the LLM’s suggestions were successful in helping
the planner prioritize believable actions and reach the solution
much earlier. This demonstrates that LLMs are capable of
estimating simultaneously whether an action leads toward a
goal and whether it is believable, two core capabilities needed
for a narrative planning heuristic.

The method did not work in two domains, Jailbreak and
Space. These will be useful test cases moving forward, and
a deeper analysis of the transcripts from their searches may
provide more insight into what happened. The failure may
stem from something structural about the domains. For ex-
ample, Jailbreak has a large branching factor compared to
other problems, meaning the planner always has a lot more
actions to choose from at any state. It is possible that this
affected performance in some way, although initial review of
the transcript does not indicate so. There are no similarly
obvious structural differences in Space compared to the rest
of the domains.

The failures could also be due to the wording used in our
domain translations. This seems to be the more likely culprit
in the case of Jailbreak. One of its actions has a much longer
translation than the rest, and this happens to be the first step in
the solution we are looking for.3 Since the prior steps in a story
are included in the prompt, they act as few-shot prompting,
causing the LLM to match their format in its response. If
one of the actions in the history has an extra long translation,
the LLM may attempt to give lengthier suggestions, which
is bad in two ways. Longer sentences add noise to all the
similarity measurements and are harder to match accurately.
Additionally, producing a long first suggestion can cause
the LLM to run out of tokens mid-sentence on the second
suggestion. The transcript confirms that this happened on at
least several occasions. The offending action is required for
the solution, so this issue may have systematically derailed
the search.

At this stage we have applied the technique only in the
“real” world (actions whose preconditions are satisfied), but it
could be extended into the epistemic parts of the search space
as well (actions whose preconditions are not satisfied, but
some character believes that they are). Specifically, whenever
the planner is considering a character’s plan, we can reframe
the prompt according to that character’s perspective: Rather
than describing the true initial state, the story goal, and all
the events that have happened so far, describe the current

3The original Jailbreak story begins with a prisoner stealing a pack of
cigarettes, which triggers the prison bully to threaten him and his friend,
setting off the entire chain of events. This effect of the steal action is simplified
in the planning domain: stealing the cigarettes directly results in the characters
being threatened. We translated the action as: “Ernest steals the cigarettes from
the cells. This angers the bully, who threatens to kill both Roy and Ernest.”
The side effect is important to the story and would not have been inferred from
just “Ernest steals the cigarettes from the cells”, so we thought it important
to state in the translation.

state according to that character’s beliefs, that character’s
goal, and only the events that the character observed when
they happened. Given this context, we would expect the
LLM’s suggestions to be helpful in guiding the planner toward
reasonable character plans, providing assistance in finding
usable explanations in much the same way as it helps find
solutions.

We did not fine-tune the LLM on the language of each do-
main mainly because we were interested in how well it would
perform without doing so. Fine-tuning is certainly a possibility
that could improve suggestion quality and allow more accurate
similarity measurements, but care should be taken to make sure
the LLM is not biased to repeat any specific actions provided
to it in this training. Further improvements worth considering
include other methods of ranking the possible actions based
on similarity. For example, it may be helpful to set a similarity
threshold and prune actions that are not sufficiently similar to
any suggestion.

VI. CONCLUSION

In this paper we argue that a large pre-trained language
model can improve the performance of a state space narrative
planning algorithm. Planners are excellent tools for interac-
tive narrative systems because they produce logically sound
and coherent stories that adhere to a handwritten symbolic
domain. Unfortunately planning does not scale well, and this
is especially true for recent methods that model complex
character beliefs. We have demonstrated that current large
language models are capable of providing helpful suggestions
to a planner—suggestions that guide the search both toward
the goal and through paths of valid nodes. We have also high-
lighted two benchmark problems in which the current method-
ology fails and suggested possible avenues for improvement.
We hope these results will inform future attempts to integrate
LLM guidance into more complex search strategies.

ACKNOWLEDGEMENT

This research was funded in part by the U.S. Department
of Defense.

REFERENCES

[1] J. R. Meehan, “TALE-SPIN, an interactive program that writes stories,”
in Proceedings of the 5th International Joint Conference on Artificial
Intelligence, 1977, pp. 91–98.

[2] M. Lebowitz, “Story-telling as planning and learning,” Poetics, vol. 14,
no. 6, pp. 483–502, 1985.

[3] M. Mateas and A. Stern, “Structuring content in the façade interactive
drama architecture,” in Proceedings of the 1st AAAI international con-
ference on Artificial Intelligence and Interactive Digital Entertainment,
2005, pp. 93–98.

[4] J. McCoy, M. Treanor, B. Samuel, A. A. Reed, M. Mateas, and
N. Wardrip-Fruin, “Social story worlds with Comme il Faut,” IEEE
Transactions on Computational Intelligence and Artificial Intelligence
in Games, vol. 6, no. 2, pp. 97–112, 2014.

[5] R. Evans and E. Short, “Versu–a simulationist storytelling system,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 2, pp. 113–130, 2013.

[6] M. Kreminski, M. Dickinson, M. Mateas, and N. Wardrip-Fruin, “Why
are we like this?: exploring writing mechanics for an AI-augmented
storytelling game,” in Proceedings of the international conference on
the Foundation of Digital Games, 2020.

8

[7] R. M. Young, “Notes on the use of plan structures in the creation
of interactive plot,” in Proceedings of the AAAI Fall Symposium on
Narrative Intelligence, 1999, pp. 164–167.

[8] M. Cavazza, F. Charles, and S. J. Mead, “Character-based interactive
storytelling,” IEEE Intelligent Systems special issue on AI in Interactive
Entertainment, vol. 17, no. 4, pp. 17–24, 2002.

[9] J. Porteous, M. Cavazza, and F. Charles, “Applying planning to in-
teractive storytelling: Narrative control using state constraints,” ACM
Transactions on Intelligent Systems and Technology, vol. 1, no. 2, pp.
1–21, 2010.

[10] J. Porteous, F. Charles, and M. Cavazza, “NetworkING: using character
relationships for interactive narrative generation,” in Proceedings of
the international conference on Autonomous Agents and Multi-Agent
Systems, 2013, pp. 595–602.

[11] B. Kartal, J. Koenig, and S. J. Guy, “User-driven narrative variation
in large story domains using monte carlo tree search,” in Proceedings
of the international conference on Autonomous Agents and Multi-Agent
Systems, 2014, pp. 69–76.

[12] R. M. Young, S. G. Ware, B. A. Cassell, and J. Robertson, “Plans and
planning in narrative generation: a review of plan-based approaches to
the generation of story, discourse and interactivity in narratives,” Sprache
und Datenverarbeitung, Special Issue on Formal and Computational
Models of Narrative, vol. 37, no. 1-2, pp. 41–64, 2013.

[13] S. G. Ware, R. M. Young, C. Stith, and P. Wright, “The Best Laid
Plans,” 2014. [Online]. Available: https://nil.cs.uno.edu/projects/blp/

[14] S. G. Ware, E. T. Garcia, M. Fisher, A. Shirvani, and R. Farrell, “Multi-
agent narrative experience management as story graph pruning,” IEEE
Transactions on Games, vol. 15, pp. 378–387, 2022.

[15] S. G. Ware and R. M. Young, “Glaive: a state-space narrative planner
supporting intentionality and conflict,” in Proceedings of the 10th AAAI
international conference on Artificial Intelligence and Interactive Digital
Entertainment, 2014, pp. 80–86.

[16] J. Teutenberg and J. Porteous, “Incorporating global and local knowledge
in intentional narrative planning,” in Proceedings of the 2015 interna-
tional conference on Autonomous Agents and Multiagent Systems, 2015,
pp. 1539–1546.

[17] M. Hua and R. Raley, “Playing with unicorns: AI dungeon and citizen
NLP,” Digital Humanities Quarterly, vol. 14, no. 4, 2020.

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
2019, accessed 25 May 2023.

[19] K. Valmeekam, M. Marquez, A. Olmo, S. Sreedharan, and S. Kambham-
pati, “Planbench: An extensible benchmark for evaluating large language
models on planning and reasoning about change,” in Thirty-seventh
Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023.

[20] L. Martin, P. Ammanabrolu, X. Wang, W. Hancock, S. Singh, B. Harri-
son, and M. O. Riedl, “Event representations for automated story gen-
eration with deep neural nets,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2018, pp. 868–875.

[21] L. Yao, N. Peng, R. Weischedel, K. Knight, D. Zhao, and R. Yan, “Plan-
and-write: towards better automatic storytelling,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2019, pp. 7378–7385.

[22] S. Goldfarb-Tarrant, T. Chakrabarty, R. Weischedel, and N. Peng, “Con-
tent planning for neural story generation with aristotelian rescoring,”
in Proceedings of the conference on Empirical Methods in Natural
Language Processing, 2020, pp. 4319–4338.

[23] H. Rashkin, A. Celikyilmaz, Y. Choi, and J. Gao, “PlotMachines:
outline-conditioned generation with dynamic plot state tracking,” in Pro-
ceedings of the conference on Empirical Methods in Natural Language
Processing, 2020, pp. 4274–4295.

[24] A. Ye, C. Cui, T. Shi, and M. O. Riedl, “Neural story planning,” arXiv
preprint arXiv:2212.08718, 2022.

[25] D. McAllester and D. Rosenblitt, “Systematic nonlinear planning,”
Massachusetts Institute of Technology Artificial Intelligence Laboratory,
Tech. Rep., 1991.

[26] T. Trabasso and L. L. Sperry, “Causal relatedness and importance of
story events,” Journal of Memory and language, vol. 24, no. 5, pp.
595–611, 1985.

[27] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis,
S. Fidler, M.-Y. Liu, and T.-Y. Lin, “Magic3d: high-resolution text-to-
3D content creation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 300–309.

[28] M. Heikkilä, “The algorithm: AI-generated art raises tricky questions
about ethics, copyright, and security,” MIT Technology Review, 2022,
accessed 25 May 2023. [Online]. Available: https://shorturl.at/iswxJ

[29] S. G. Ware and C. Siler, “Sabre: A narrative planner supporting intention
and deep theory of mind,” in Proceedings of the 17th AAAI International
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, 2021, pp. 99–106.

[30] R. E. Fikes and N. J. Nilsson, “STRIPS: a new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, no. 3, pp. 189–208, 1972.

[31] C. Siler and S. G. Ware, “Solution density and search strategy in
narrative generation,” IEEE Transactions on Games, vol. 14, no. 4, pp.
715–724, 2022.

[32] S. G. Ware and R. Farrell, “A collection of benchmark problems for the
Sabre narrative planner,” https://github.com/sgware/sabre-benchmarks/
blob/main/report.pdf, Narrative Intelligence Lab, University of Ken-
tucky, Tech. Rep., November 2023.

APPENDIX

9

STEP 1 PROMPT: ⟨inital state, character goals, action names, story goal, history⟩
The hero is alive. The merchant is alive. The guard is alive. The bandit is alive. The bandit is a criminal. The hero is at
the cottage. The merchant is at the market. The guard is at the market. The bandit is at the camp. The merchant has the
medicine. The hero has the hero’s coin. The bandit’s coin is in the chest. The guard has the guard’s sword. The bandit has
the bandit’s sword. The merchant has the merchant’s sword. There is a path between the crossroads and the cottage. There is
a path between the crossroads and the market. There is a path between the crossroads and the camp. The hero does not know
where the bandit is. The merchant does not know where the hero’s coin is. The merchant does not know where the bandit’s
coin is. The guard does not know where the bandit is. The bandit believes that the hero is at the crossroads. The hero wants
to bring the medicine to the cottage. The bandit wants to collect valuable items in the chest. The merchant wants coins and
is not willing to commit crimes. The guard wants to attack criminals. Characters can walk, buy, loot, attack, rob, report, and
take. The story must end with the hero either being attacked or having the medicine at the cottage. List two different actions
that could happen first. State each as a short sentence on its own line.

RESPONSE:
The hero walks to the market. [0.0193 -0.0196 -0.0155 0.0039 -0.0137 0.0044 -0.0111 ...]
The merchant buys the medicine. [0.0209 -0.0029 0.0037 -0.0149 -0.0398 0.0168 -0.0118 ...]

Cost Assigned Possible Action

4 walk(Merchant,Market,Crossroads)
The merchant walks from the market to the crossroads.

[0.0127 -0.0162 0.0027 0.0010 -0.0151 0.0071 -0.0062 ...]

4 walk(Hero,Cottage,Crossroads)
The hero walks from the cottage to the crossroads.

[0.0180 -0.0119 -0.0148 0.0068 -0.0066 0.0250 -0.0010 ...]

5 walk(Guard,Market,Crossroads)
The guard walks from the market to the crossroads.

[0.0212 -0.0166 0.0037 0.0006 0.0078 0.0180 -0.0087 ...]

6 walk(Bandit,Camp,Crossroads)
The bandit walks from the camp to the crossroads.

[0.0097 -0.0156 0.0103 -0.0057 -0.0126 0.0345 -0.0131 ...]

7 attack(Merchant,Merchant,Market)
The merchant attacks herself.

[-0.0208 -0.0121 -0.0026 -0.0045 -0.0171 0.0047 -0.0037 ...]

7 attack(Merchant,Guard,Market)
The merchant attacks the guard.

[-0.0029 -0.0182 0.0027 -0.0065 -0.0088 0.0301 -0.0049 ...]

8 attack(Hero,Hero,Cottage)
The hero attacks himself.

[-0.0196 -0.0050 -0.0066 0.0003 -0.0166 0.0147 -0.0175 ...]

8 attack(Guard,Merchant,Market)
The guard attacks the merchant.

[0.0018 -0.0228 0.0030 -0.0096 -0.0022 0.0345 -0.0107 ...]

9 report(Merchant,Camp,Market)
The merchant reports seeing the bandit at the camp to the guard.

[0.0097 -0.0198 0.0214 -0.0077 0.0015 0.0517 -0.0261 ...]

10 take(Bandit,BanditCoin,Chest,Camp)
The bandit takes the bandit’s coin from the chest.

[-0.0035 -0.0230 0.0241 -0.0225 -0.0286 0.0292 -0.0105 ...]

10 attack(Guard,Guard,Market)
The guard attacks himself.

[-0.0112 -0.0042 0.0143 -0.0048 0.0010 0.0363 -0.0211 ...]

10 attack(Bandit,Bandit,Camp)
The bandit attacks himself.

[-0.0229 0.0009 0.0227 0.0011 -0.0250 0.0339 -0.0185 ...]

10

STEP 2 PROMPT: ⟨inital state, character goals, action names, story goal, history⟩
The hero is alive. The merchant is alive. The guard is alive. The bandit is alive. The bandit is a criminal. The hero is at
the cottage. The merchant is at the market. The guard is at the market. The bandit is at the camp. The merchant has the
medicine. The hero has the hero’s coin. The bandit’s coin is in the chest. The guard has the guard’s sword. The bandit has
the bandit’s sword. The merchant has the merchant’s sword. There is a path between the crossroads and the cottage. There is
a path between the crossroads and the market. There is a path between the crossroads and the camp. The hero does not know
where the bandit is. The merchant does not know where the hero’s coin is. The merchant does not know where the bandit’s
coin is. The guard does not know where the bandit is. The bandit believes that the hero is at the crossroads. The hero wants
to bring the medicine to the cottage. The bandit wants to collect valuable items in the chest. The merchant wants coins and
is not willing to commit crimes. The guard wants to attack criminals. Characters can walk, buy, loot, attack, rob, report, and
take. The story must end with the hero either being attacked or having the medicine at the cottage. The story begins with the
following steps:

The merchant walks from the market to the crossroads.
List two different actions that could happen next. State each as a short sentence on its own line.

RESPONSE:
The guard follows the merchant to the crossroads. [0.0169 -0.0303 -0.0009 -0.0072 0.0020 0.0341 0.0042 ...]
The hero walks from the cottage to the crossroads. [0.0180 -0.0119 -0.0148 0.0068 -0.0066 0.0250 -0.0010 ...]

Cost Assigned Possible Action

0 walk(Hero,Cottage,Crossroads)
The hero walks from the cottage to the crossroads.

[0.0180 -0.0119 -0.0148 0.0068 -0.0066 0.0250 -0.0010 ...]

2 walk(Guard,Market,Crossroads)
The guard walks from the market to the crossroads.

[0.0212 -0.0166 0.0037 0.0006 0.0078 0.0180 -0.0087 ...]

3 walk(Merchant,Crossroads,Cottage)
The merchant walks from the crossroads to the cottage.

[0.0216 -0.0129 -0.0001 0.0071 -0.0102 0.0241 -0.0007 ...]

4 walk(Merchant,Crossroads,Market)
The merchant walks from the crossroads to the market.

[0.0153 -0.0176 0.0011 -0.0027 -0.0184 0.0035 -0.0092 ...]

4 walk(Merchant,Crossroads,Camp)
The merchant walks from the crossroads to the camp.

[0.0187 -0.0165 0.0045 -0.0037 -0.0140 0.0274 -0.0143 ...]

4 walk(Bandit,Camp,Crossroads)
The bandit walks from the camp to the crossroads.

[0.0097 -0.0156 0.0103 -0.0057 -0.0126 0.0345 -0.0131 ...]

8 take(Bandit,BanditCoin,Chest,Camp)
The bandit takes the bandit’s coin from the chest.

[-0.0035 -0.0230 0.0241 -0.0225 -0.0286 0.0292 -0.0105 ...]

8 attack(Hero,Hero,Cottage)
The hero attacks himself.

[-0.0196 -0.0050 -0.0066 0.0003 -0.0166 0.0147 -0.0175 ...]

8 attack(Guard,Guard,Market)
The guard attacks himself.

[-0.0112 -0.0042 0.0143 -0.0048 0.0010 0.0363 -0.0211 ...]

9 attack(Merchant,Merchant,Crossroads)
The merchant attacks herself.

[-0.0208 -0.0121 -0.0026 -0.0045 -0.0171 0.0047 -0.0037 ...]

9 attack(Bandit,Bandit,Camp)
The bandit attacks himself.

[-0.0229 0.0009 0.0227 0.0011 -0.0250 0.0339 -0.0185 ...]

