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Abstract—Symbolic planning algorithms and large language
models have different strengths and weaknesses for story gen-
eration, suggesting hybrid models might leverage advantages
from both. Others have proposed using a language model in
combination with a partial order planning style algorithm to
avoid the need for a hand-written symbolic domain of actions,
or generating these domains from natural language input. This
paper offers a complementary approach. We propose to use
a state space planning algorithm to plan coherent multi-agent
stories using hand-written symbolic domains, but with a language
model acting as a guide to estimate which events are worth
exploring first. We present an initial evaluation of this approach
on a set of benchmark narrative planning problems.

Index Terms—narrative planning, story generation, language
models

I. INTRODUCTION AND RELATED WORK

Interactive narratives play an important role in many virtual
environments for entertainment and education. Ensuring the
narrative remains believable and well-structured as it adapts
to player input is a challenge that artificial intelligence and
machine learning techniques can help to address.

Early interactive narrative systems, like Tale-Spin [1], Uni-
verse [2], and Façade [3], used symbolic models of their story
domains. Characters, places, objects, and states are typically
represented in some form of predicate logic. Events have
preconditions which must be true before they can happen
and effects which change the narrative state. These systems
are primarily reactive, meaning they choose and commit to a
single action based on the narrative so far with minimal look-
ahead. The reactive approach scales well, and continues to be
a popular choice for modern interactive narratives like Prom
Week [4], Versu [5], Why Are We Like This? [6], and many
others.

There has also been considerable research on using AI
planning to ensure the structure of interactive stories. Plans
and planning offer a rich, formal, generative, symbolic model
of storytelling [7] that also uses predicate logic and events
with preconditions and effects. Planning algorithms have been
used to create many interactive narratives [8]–[11]. There
has also been considerable research on augmenting planning
algorithms with models of story structure [12]–[14]. Planning-
based systems differ from reactive systems by performing an
extensive backtracking search over the space of all possible
stories. This grants them a greater ability to ensure story
quality and structure, but it comes at the cost of scalability.
The space of all possible stories in a domain quickly becomes
too large to explore efficiently, limiting the applicability of

planning to large story worlds and prompting research into
fast narrative planning [15], [16].

With the recent explosion of research on deep learning and
large neural language models (LLMs), there have also been
many applications of language generators to storytelling. One
example among many is AI Dungeon [17], which mediates
the player’s natural language input to GPT-2 [18] to mimic
role-playing games. LLMs are generally used reactively, in
the sense that they do little or no search through the space
of possible stories, but generate and commit to the next word
of text based on the current context. While training LLMs is
expensive, text generation is relatively cheap. Unlike symbolic
reactive storytelling systems, LLMs can draw from a large
training set of characters, places, objects, and events without
requiring the user to define them by hand in advance. However,
while generated text can be coherent within a sliding window,
it is difficult to maintain global coherence or to generate
a goal-directed story with a language model alone. Several
researchers have worked to address these limitations with
respect to story generation [19]–[22].

One interesting method of achieving global story coherence
was proposed by Ye et al. [23] It mimics a partial order
planning algorithm [24] that works backwards from the end
of the story. For the story goal, and for each event, the
system determines the preconditions that must be met. For
each precondition, it finds an existing event in the story or
adds a new event to the story which has an effect that satisfies
that precondition. The resulting story is a causal network of
events that improves coherence [25]. Its key distinction from
a traditional partial order planner is that, rather than relying
on a hand-authored symbolic domain of events, the system
prompts an LLM to determine preconditions and to generate
events which can satisfy them. Another method was proposed
by Kelly et al. [26] It uses an LLM to generate symbolic
story domains based on input text from example stories. The
generated domains are then solved using the Glaive narrative
planner to produce new stories, which are then converted
into natural language with the LLM. These neurosymbolic
story generation approaches both combine the coherence of
a planner with the on-demand content generation of an LLM.

However, content generation is a double-edged sword. The
ability of LLMs to introduce new story elements can be an
advantage or a liability depending on the application. When
stories are told in text, as with AI Dungeon, there is little
cost to introducing new elements. However, many interactive
narratives take place in 3D virtual game-like environments
where art assets, animations, and dialog are fixed. The ability
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of an LLM to introduce a dragon into a 3D game’s story,
however fitting it might be, is useless if the game does not have
a rigged and animated dragon model. There is preliminary
evidence that deep learning might eventually generate these
art assets on demand as well [27], but this technology is
in its infancy and raises significant ethical questions about
attribution [28]. Regardless, some authors might want to limit
a storytelling system to a fixed set of assets for aesthetic
purposes, and commercial virtual environments may impose
these limits to ease quality assurance.

We are interested in an approach that maintains the use of a
human-authored symbolic domain and the story quality assur-
ances afforded by narrative planners like Sabre [29] which
conduct extensive backtracking search to guarantee action
explainability. In line with the LLM-Modulo framework [30],
which suggests LLMs can be useful as idea generators to aid in
planning and reasoning tasks, we aim to leverage the general
knowledge and storytelling capabilities of an LLM to guide
the planner toward solutions more efficiently. In particular we
are concerned with the space explosion introduced by Sabre’s
belief model, which tracks arbitrarily nested theory of mind
in order to improve character believability. In this work we
explore whether the latent knowledge embedded in LLMs can
effectively serve as a believability estimate, something that
existing search heuristics lack.

II. BACKGROUND

In forward state-space planning, actions are added onto the
ends of plans until a goal state is reached. Classically, a plan
that reaches a goal state is called a solution. Narrative planners
however may impose additional constraints on solutions to
ensure that they meet certain desired narrative criteria, such
as for characters to act believably. Toward this end, a planner
can define characters as special kinds of entities that have
goals and can only participate in actions that contribute to
achieving their goals. We use the Sabre narrative planner,
which additionally models character beliefs, and ensures that
the plans or explanations used to justify a character’s actions
are consistent with their beliefs under limited observability.

For Sabre, a solution is a plan that 1) reaches a goal state and
2) contains only actions that are explained. For a full definition
of action explainability we refer the reader to the Sabre
paper, but to summarize: An action is explained in general
when it is explained for each of its consenting characters—
the characters who are willing participants in the action. An
action is explained for a character when it is the next step
in some plan that achieves that character’s goals, according
to their beliefs. The existence of such a plan indicates that
the character will appear to be taking the action for a reason,
thus the action is explained for them. The planner tracks this
information during search by identifying when character goals
are achieved and propagating explanations backward, marking
that character’s prior actions as explained if they contributed
to the achievement of the goal in a way that is consistent with
the character’s beliefs.

To plan efficiently in large spaces, planners need to consider
actions in an intelligent order that prioritizes those that are

likely to lead to a solution. Search algorithms like A* can
solve classical planning problems efficiently by accurately
estimating how close a given state is to a goal state. However,
for Sabre, reaching the goal state is not sufficient to qualify
a plan as a solution; additional work must be done to ensure
that the actions are believable for the characters. It is this
additional work that classical planners fail to estimate; i.e.
the likelihood that a plan will become explained. A good
Sabre heuristic needs to be able to estimate whether characters
are acting believably. The Glaive heuristic [15] does this for
Glaive, by estimating distance to character goals in addition
to the story goal. However, it assumes full observability, since
Glaive does not model character beliefs, and therefore does not
perform well when Sabre’s limited observability constraints
are applied.

Sabre’s belief model significantly increases the size of the
search space because the planner needs to consider not only
the actions that are possible, but also those that characters
believe to be possible, since this might explain their actions.
While we ultimately envision an LLM-based heuristic used in
combination with an intelligent search algorithm, at this stage
it is not clear what the ideal search algorithm for Sabre would
even be [31], nor how best to handle theory of mind questions
with LLMs. To begin this line of research, we evaluate whether
story suggestions made by an LLM tend to reflect believable
behavior according to Sabre’s model, and discuss how domain
modeling and prompt text decisions can affect this.

We present a search algorithm that explores the space of a
narrative planning problem by eliciting suggestions from an
LLM for what should happen next in each different scenario,
and attempting to follow this guidance. This algorithm is
meant to be somewhat thorough, rather than efficient, so that
we can collect data from a large part of the problem space
and analyze it according to character believability. Like a
classical planner, but unlike Sabre, this method considers only
the actions that are actually possible from the current state. We
believe it is valuable to study how the LLM behaves in this
part of the space before we approach the added complication
of epistemic nodes and theory of mind (though we discuss our
plans for this in Section V).

Problem Definition

We begin by summarizing the formal definitions of our
planning problem. A Sabre problem [29] is defined as
⟨C,F,A, T, U, s0⟩, where:

• C is a set of characters: special entities which should
appear to have beliefs and intentions.

• F is a set of state fluents: Boolean, nominal, or numeric
properties whose values can change over time. Sabre
defines a host of logical literals and operations over these
fluents, including nested epistemic fluents representing
complex character beliefs.

• A is a set of actions: STRIPS-like [32] operators that
specify preconditions for when they can occur and effects
that change the world state afterward. Sabre actions also
define a set of consenting characters—those who are
participating in the action intentionally and must have a
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Fig. 1. The narrative planner compares available actions based on suggestions generated with a large language model. Source code for this is available on
GitHub (https://github.com/rac7hel/planning-stories-neurally).

reason for doing so—as well as an observation function
to determine which characters are aware of the action
when it occurs.

• T is a set of triggers, which are like actions except that
they happen automatically. Whenever their preconditions
are satisfied in a state, their effects apply immediately.
Triggers do not have consenting characters or an obser-
vation function.

• U is a set of utility functions: expressions that define
preferences over states. This includes the author utility
function, which represents the states the planner should
attempt to reach (the story goal), and one utility function
for each character to represent their goals.

• s0 is the initial state, an assignment of a starting value for
every fluent in F and any wrong beliefs that characters
initially hold.

Given a problem so defined, the planner’s task is to find a
plan, or sequence of actions, that transforms the world from
the initial state into one in which the author utility is improved
(the story goal achieved) and all actions are explained for their
consenting characters.

III. METHOD

In this section we define the search method used for our
study, a simple uniform-cost search algorithm with an LLM-
based cost function. The process is illustrated in Figure 1.
At each step in the search, the planner (Sabre) describes the
current story context to an LLM (gpt-3.5-turbo, May 2023),
prompting it to suggest what happens next. The planner then
prioritizes its available actions based on their similarity to the
suggestions, where similarity is determined by comparing the
LLM embeddings of the legal and suggested actions.

A. Story Context Description

Each node visited by Sabre corresponds to some unique
story in the problem space (a sequence of actions to be taken
from the initial state of the problem). At each step during

search, our augmented planner begins by creating a natural
language description of the current context using the following
information (see Appendix for the full text of this example):

1) The initial state: “The hero is alive. The merchant is
alive. The guard is alive...”

2) Each character’s goals: “The hero wants to bring the
medicine to the cottage. The bandit wants to collect
valuable items...”

3) The names of the actions in the domain: “Characters can
walk, buy, loot, attack, rob, report, and take.”

4) The story goal: “The story must end with the hero either
being attacked or having the medicine at the cottage.”

5) The history (actions that have already happened, if
any): “The story begins with the following steps: The
merchant walks from the market to the crossroads.” (The
example is for the first step in the story, so history is
empty.)

We created handwritten grammars for each of the Sabre
benchmark domains because we wanted to ensure that these
translations accurately reflect the domain model for this ex-
periment. In practice this step could also be automated.

B. Prompt for Suggestions

The story context description is then combined with a
prompt to suggest followup actions. There are other ap-
proaches we could have taken to elicit guidance for the planner
from the LLM. For example, we could have asked it to rank
all the available actions, or to produce a numeric estimate
for the goodness or believability of an action. These would
produce output that the planner could more readily use, but it
would be much less reliable because LLMs are not equipped
to handle complex reasoning. Our method leaves the reasoning
to the planner and avoids over-burdening the LLM, asking it
to do only the task it was designed for, namely predicting what
comes next.

That said, there is a slight complication we have to account
for. If we only ask the LLM for one suggestion at a time
(e.g. “What should happen next?”), then it will prefer a
specific story arc based on its training, usually one that favors
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the story’s protagonist. If the planner always veers toward
favorable endings, it can fail to explore critical parts of the
space (e.g. the outcomes that explain the antagonist’s actions).
Asking the LLM for two different suggestions forces it to
produce an alternative to its favored response, and allows the
planner to pursue multiple branches of the space.

We use the prompt text:
List n different actions that could happen next.

State each as a short sentence on its own line.
where n > 1; by default n = 2. We also tested n = {3, 4} in
three example problems (Grandma Lose, Secret Agent, and
Raiders) and did not observe any significant difference in
performance.

We used OpenAI’s gpt-3.5-turbo (May 2023) for all text
completion tasks, limiting the response to 25 tokens (when
n = 2), and using a temperature of 0.3. We did not fine-tune
the model, but since our context description ends with a list
of prior actions in the format we hope to generate, this is
essentially few-shot prompting. The only exception is the root
node, which represents the empty plan, where there are no
prior events in the story.

C. Cost Function

The response from the LLM is parsed into n suggestion
strings. For Step 1 of the Grandma Lose example (Appendix),
the two suggestions are “The hero walks to the market” and
“The merchant buys the medicine”. At this point the planner
identifies all the available actions, translates them into natural
language sentences using the grammars discussed earlier, and
obtains LLM embedding vectors for all sentences. The GPT
model at the time of this study did not provide access to
text embeddings; we used OpenAI’s text-embedding-ada-002
model (May 2023) for all embedding requests.

The text embeddings of the legal actions are then compared
with those of the suggested actions. Actions that are good
matches to any of the LLM’s suggestions are the ones we
want the planner to visit first. Therefore lower costs should
be assigned to actions that are similar to any suggestion,
and higher costs to those that are not. Let a ∈ A be one
of the grounded actions in the domain; and let S be a set
of suggestion strings from the LLM output. We define the
distance between a and its closest match in S as:

d(a, S)← min
s∈S

(
1− 1 + COSSIM(EM(a.NL), EM(s))

2

)
where a.NL is the natural language translation of the action
a (discussed in Section III-A) and the function EM() returns
the text embedding of the given string. The cosine similarity
COSSIM() between each pair of embeddings is inverted and
scaled between 0 and 1 to avoid negative costs, and the
smallest distance value is returned. During search (Algorithm
1), actions with smaller distances are assigned lower step costs,
causing the planner to prioritize them.

We use a constant scaling factor z to preserve some number
of decimal places when rounding these cosine distance values
to assign action costs. By default we preserve two decimal

places (z = 100). Consider an example: The set of distance
values between each possible action and each suggestion,
for one step of an example search, range from 0.032 to
0.108. Preserving two decimal places means we assign costs
ranging from 3 to 11. Preserving only one (z = 10) would
reduce precision unhelpfully (costs could only be 0 or 1).
Preserving three (z = 1000) would yield a much wider range
of costs (32...108) and thus a more precise ordering. When we
compared z = {100, 1000} in three problems (Grandma Lose,
Secret Agent, and Raiders), we did not observe a significant
difference between the number of nodes visited or the percent
of nodes that were explained.

Continuing with the example in the Appendix, there are
12 possible actions, including some that are explained and
necessary for most solutions (e.g. The hero walks from the
cottage to the crossroads), some that would lead to an ending
but are never going to be explained (e.g. The hero attacks
himself), some that can be explained but are irrelevant for the
story goal (e.g. The merchant reports seeing the bandit at the
camp to the guard) and many in between.

As it happens, neither of the suggested actions is possible
at this moment: The hero cannot walk directly to the market
because it is only connected to his cottage via the crossroads,
so he would have to walk there first; and the merchant cannot
buy the medicine because she is the merchant---she can’t buy
from herself! As this example illustrates, the LLM often gives
poor suggestions for the very first call, when the history is
empty. Having at least one action in the history helps by
prompting it with the expected format for actions and some
immediately relevant context.

Since none of the possible actions are a perfect match,
none will be given a cost of 0. In this case, the lowest cost
is 4, which is appropriately assigned to the very important
action, “The hero walks from the cottage to the crossroads”,
due to its similarity to the suggestion “The hero walks to the
market”. Another action which is also helpful (it is explained
and leads to some solutions) is tied for the same cost: “The
merchant walks from the market to the crossroads”, based
on its similarity to “The merchant buys the medicine”. So
even though the LLM’s suggestions are not applicable in this
state, the planner does its best to follow them (the hero walks
somewhere, the merchant does something). In this case, the
unhelpful actions mentioned above are assigned higher costs
(8 and 9) and will not be considered until much later in the
search, if at all.

D. Search
We now define the GPT-guided uniform cost search algo-

rithm, which we label UCS GPT. Uniform cost search (UCS)
always visits the plan with the lowest cumulative action cost.
Breadth-first search is an example of UCS in which all action
costs are 1, so the cost of a plan is always equal to the plan’s
length. In UCS GPT, the cost of a plan is the sum of the
GPT-based costs of the actions in the plan. Thus, longer plans
which adhere closely to the suggestions can be visited sooner
than short plans which do not.

The search process is formalized in Algorithm 1. Before
search begins, the planner grounds and simplifies the problem.
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Algorithm 1 GPT-Guided Uniform Cost Search
1: Let MAX DEPTH be a depth limit, A the set of domain

actions, and z a precision constant (default 100).
2: STATE(π) denotes the state reached by executing the plan

π starting from the initial state of p.
3: function UCS GPT(problem p) ▷ Returns a solution, or

failure
4: π ← an empty plan (sequence of actions)
5: q ← an empty min-priority queue of plans
6: q.PUSH(π, cost = 0)
7: loop
8: π ← q.POP()
9: if STATE(π) |= p.goal and π is explained then

10: return π
11: else if LENGTH(π) + 1 ≤ MAX DEPTH then
12: S ← PROMPTLLM(p, π)
13: for all a ∈ A do
14: if STATE(π) |= a.precondition then
15: cost(a)← ROUND

(
d(a, S) ∗ z

)
16: q.PUSH

(
π + a, cost(π) + cost(a)

)
17: if q.EMPTY() then return failure

As a preprocessing step, we compute text embeddings for
all the grounded actions in the domain and store them in a
hash table. This table is also used for storing the suggestion
embeddings during search to avoid making redundant calls to
the LLM. If a suggestion has already been encountered we
simply use its stored embedding, otherwise we call the LLM
for its embedding and store it in the table for future reference.

Beginning with an empty plan that costs 0 (line 6): If the
plan achieves the story goal and is explained, it is returned
as a solution (line 10). Here, p.goal is a disjunction of the
author’s goals—conditions in the author utility expression that
evaluate to a higher utility than the initial state. If the plan is
not a solution, the system prompts the LLM for suggestions
about what should happen next (line 12) using the prompt text
described earlier. Each action that is possible in the current
state (line 14) is then assigned a cost according to its distance
to the suggestions (line 15). Each new plan (π + a) is added
onto the search queue, with the cost of the new action being
added to the cost of the plan (line 16). Search continues with
the next lowest-cost plan in the queue, until either a solution
is returned (success), or the queue is emptied (failure).

E. Termination

Normally, Sabre evaluates whether a node is explained (line
9) by checking if an explanation for that node has been
found in the current search. However, since this search is
only considering actions that are possible (line 14), it would
not necessarily find all the explanations needed to identify
solutions. To ensure that solutions are identified correctly here,
the check on line 9 instead uses a precomputed lookup table
of all explained nodes, which were logged during a previous
search.

IV. EVALUATION

We argue that Sabre wastes effort when it visits nodes that
are not explainable (or, actions that don’t make sense for the
characters who take them, given the context of the story).
We consider it good when the planner visits any node that
ultimately becomes explained, and bad when it visits nodes
that do not. It is impossible to completely predict whether or
not a node will ever become explained, because the planner
can search indefinitely and may at some future point discover
new explanations for earlier actions. We must use an estimate
to measure explainability; for this study we consider an action
“explained” if it has become explained after a complete search
of one depth higher than the depth of the first solution. For
each of the benchmark problems listed in Table I we ran a
complete search of one depth higher than the solution depth,
recording all explained nodes. These logs were used both to
terminate the uniform cost searches, as discussed above, and
to count the explained nodes visited by all the searches.

We test whether GPT’s suggestions caused the planner to
visit a higher ratio of explained to unexplained nodes com-
pared to a baseline cost function which visits them arbitrarily.
The baseline (UCS 1) is a uniform-cost search with a cost
function of 1, i.e. breadth-first search. UCS 1 breaks ties
deterministically based on the order in which the actions are
provided in the domain, so we use an average over 10 runs,
randomly shuffling the action order each time. Importantly,
we also limited UCS 1 to only the possible nodes, so UCS 1
and UCS GPT explore the exact same problem space. The
“explainedness” of the baseline search estimates the overall
ratio of explained to unexplained nodes that UCS GPT could
have visited. We can also measure progression toward the
story goal by comparing the number of nodes visited by each
method. Certainly breadth-first search is not a difficult baseline
to beat, but we find these results valuable because they show
the GPT cost function doing both of the things we need it to
do simultaneously.

Sabre unfortunately cannot visit only the possible nodes; it
is burdened with verifying explanations on its own, so it must
also visit “epistemic” nodes, representing actions characters
believe to be possible. In the results presented below, UCS 1
and UCS GPT visit significantly fewer nodes than Sabre
because Sabre has a larger space to explore; we are not
suggesting these algorithms could replace Sabre. We include
these numbers in the table because they are informative; they
demonstrate how much extra work Sabre must do to account
for characters’ wrong beliefs and impossible plans, and how
the ratio of explained to unexplained nodes changes in the
epistemic parts of the search space.

We searched each problem using UCS GPT, stopping either
when a solution is found or when a maximum node limit
is reached (5,000 nodes), recording all nodes visited. The
node limit was necessary because some of these problems are
extremely large and it would have been too costly to make all
the OpenAI API calls needed to finish the search. For the same
reason, we did not run multiple UCS GPT searches for each
problem and average them together, as would have been ideal.
We take this data only as preliminary evidence for how the
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search might go, acknowledging that running it again would
produce somewhat different results. UCS 1 and Sabre searches
were limited to 1 million nodes and averaged over 10 runs.

A. Benchmarks

We use a set of narrative planning benchmark problems
collected from a variety of sources and adapted to Sabre’s
format [33]. Table I lists the problems along with size informa-
tion. Some problems have multiple instances, such as Grandma
Lose and Grandma Win, which have different criteria for the
story ending. For example, in the “Win” variant of Grandma,
the planner only accepts solutions where the hero achieves his
goal; in the “Lose” variant it also accepts stories where the
hero is thwarted instead.

Problem Characters
|C|

Fluents
|F |

Actions
|A|

Triggers
|T |

Solution
Depth

Basketball 4 93 168 192 3

Bribery 3 25 27 0 2

Deer
Hunter

3 42 28 76 6

Fantasy 4 85 76 141 5

Grandma
Lose

4 96 800 952 3

Grandma
Win

4 96 800 952 5

Hospital 4 67 102 196 4

Jailbreak
Lose

3 46 106 54 4

Jailbreak
Win

3 46 106 54 6

Raiders 3 29 35 66 6

Secret
Agent

2 15 44 75 8

Snakebite 4 99 352 637 8

Space
Lose

2 26 29 66 2

Space
Win

2 26 29 66 5

Treasure 2 9 5 0 4

TABLE I
SABRE BENCHMARK PROBLEMS

A collection of benchmark problems for the Sabre narrative planner. We use
the default configurations for each problem according to the technical report
[33]. The problems are available on GitHub (https://github.com/sgware/sabre-
benchmarks).

B. Results

Only two problems were affected by the node limits. All
three planners reached their limits before solving Snakebite,
and UCS GPT reached its 5,000-node limit on Jailbreak Win.
We omit these problems from the analysis. Table II shows the
search results for the remaining 13 problems.

We expected that Sabre wastes a lot of effort by visiting
many unexplained nodes, particularly in epistemic parts of the
space. We can now support this claim with data. Compared

Problem Planner Nodes Visited Explained

Basketball
Sabre 4,050,435 8.1%

UCS 1 1,262 16.6%
UCS GPT 31 90.3%

Bribery
Sabre 39 10.3%

UCS 1 91 9.9%
UCS GPT 39 12.8%

Deer Hunter
Sabre 96,310 4.4%

UCS 1 62,688 9.1%
UCS GPT 2,300 19.4%

Fantasy
Sabre 80,654 48.9%

UCS 1 75,106 62.5%
UCS GPT 640 81.4%

Grandma Lose
Sabre 15,307 11.6%

UCS 1 1,155 36.9%
UCS GPT 37 67.6%

Grandma Win
Sabre 5,963,346 1.9%

UCS 1 92,218 36.3%
UCS GPT 734 68.1%

Hospital
Sabre 335,016 14.4%

UCS 1 75,746 51.2%
UCS GPT 532 74.8%

Jailbreak Lose
Sabre 211,775 38.9%

UCS 1 12,305 24.3%
UCS GPT 2,851 21.1%

Raiders
Sabre 9,691 1.6%

UCS 1 1,513 32.7%
UCS GPT 141 39.0%

Secret Agent
Sabre 780 23.1%

UCS 1 326 43.9%
UCS GPT 60 25.0%

Space Lose
Sabre 63 48.9%

UCS 1 14 85.7%
UCS GPT 6 83.3%

Space Win
Sabre 2,913 11.5%

UCS 1 1,280 65.1%
UCS GPT 445 59.3%

Treasure
Sabre 125 32.1%

UCS 1 22 59.1%
UCS GPT 10 80.0%

TABLE II
SEARCH RESULTS FOR UCS GPT ON BENCHMARK PROBLEMS

The number of Nodes Visited by each planner for each problem, and the
percent of those visited which are Explained. Sabre includes all epistemically
accessible nodes and uses an A* heuristic search. We ran the searches with
three different heuristics (the HSP additive and max heuristics [34] and the
Fast Forward heuristic [35]), each averaged over 10 runs. The table shows
the average of the three heuristics since there was no single best for all the
problems. UCS 1 is the baseline breadth-first search, and UCS GPT is the
GPT-guided uniform cost search—both limited to non-epistemic nodes.

to the non-epistemic space (UCS 1), a Sabre search typically
visits a lower percentage of explained nodes—the only excep-
tions are Bribery (which is very small), and Jailbreak. This
demonstrates why we need a way to estimate the believability
of actions. There is a significant amount of search effort we
could save by accurately estimating believability within one of
the A* heuristics. Moreover, using LLM guidance appears to
be a plausible direction for doing so. For most of the problems,
UCS GPT visited a higher percentage of explained nodes than
UCS 1, and in all cases it reached the goal sooner. This
indicates that the GPT cost function was guiding the planner
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both toward the solution and through paths of explained nodes.
For some problems, UCS GPT did not visit a higher ratio of

explained nodes than the baseline. These were Jailbreak, Se-
cret Agent, and Space (both variants). Secret Agent resembles
a single-agent pathfinding problem and has very few narrative
properties. One character must navigate through several rooms,
find essential items, and arrive at the other character’s location.
The believability of these actions mostly comes down to
whether or not a particular path is valid; and as we know,
LLMs are not logical problem-solvers. The LLM approach to
heuristics may not be especially helpful for story domains like
this. On the other hand, this is the type of problem that A*
should be most capable of solving on its own. It would be
interesting to see how well A* handles scaling this problem
up with more than two characters, since each character adds
more epistemic nodes.

Space happens to be the only one of the benchmark domains
that contains any actions with no consenting characters. It has
two such actions, both of which are required for the solution
in both problems: The surface begins to erupt, and later
The surface erupts. Though these are actions in the planning
sense, the term action generally implies that someone is doing
something. Since we instructed GPT to suggest “actions” that
could happen next, it may have prioritized character actions
over occurrences like weather events. It still suggested them
eventually, but it might have done so earlier if the instruction
had been to suggest “actions or events” instead.

Jailbreak is the most contrived domain. It was designed to
fit a highly specific set of stories with minimal branching,
and contains several actions with effects that would be better
modeled as separate actions. For example, one action is A
guard confiscates the cigarettes from Ernest and sends him
to the gym for punishment duties, and another is Roy steals
the cigarettes from the kitchen. This angers the bully, who
threatens to kill both Roy and Ernest. Though the translation
of the action includes these details, this translation only
appears in the prompt when the action is in the node’s history.
Otherwise they are referred to only as “confiscate” and “steal”,
so the LLM would have no way of knowing these extra effects
would immediately apply. This may have limited the LLM’s
ability to predict how the ending of the story would be reached.

However, this also suggests a simpler explanation for Jail-
break, due to the fact that these actions have unusually long
translations. Since actions in the node’s history act as few-
shot prompting, when these actions appeared in the history it
sometimes caused the LLM to make lengthier suggestions than
it normally would. The problem is that we limited the number
of response tokens based on an assumption for how long a
typical action sentence would be. When the LLM made a long
suggestion first, it would sometimes run out of tokens mid-
sentence on its second suggestion; the incomplete suggestion
would then be difficult to match. In fact the shortest solution
contains “steal” as the first action, so this issue certainly added
a lot of noise and potentially derailed the search.

Jailbreak is also unique in that the Sabre search outperforms
the baseline explainedness. It also has a larger branching
factor than the other problems, meaning the planner usually
has more available actions to choose from. It is possible

that this disproportionately affected the uniform-cost searches
compared to A*, but we would need a deeper investigation
into this domain to say for sure.

Barring these exceptions, the LLM method appears to do
what we hoped it would. Take Basketball for example. In a
space of roughly 1,200 nodes, UCS GPT bee-lined to the
solution in only 31, and it clearly did so by prioritizing
believable actions, since 90% of the nodes it visited were
explained. By contrast, Sabre gets lost in the weeds for over 4
million nodes in this problem, indicating that it fails to prior-
itize believable actions and wastes significant effort exploring
nodes that cannot lead to solutions. This type of problem
demonstrates the motivation for our work, and although we
have yet to incorporate LLM guidance into a true search
heuristic, our results indicate that this would be a promising
direction.

V. DISCUSSION

The difference in performance across the various problems
is likely due to how well the different types of stories
are represented in the LLM’s training data. An important
distinction between symbolic story planners and language-
based story generators is that planners treat words as arbitrary
symbols and are agnostic to their meaning, but word choice
has significant implications for language-based methods. The
semantic concepts represented in the domain and the words
used to describe them are key to accessing the right knowledge
from the LLM.

In line with others who found that LLM performance
deteriorates when arbitrary symbols are used instead of rel-
evant names [30], we found that UCS GPT performs much
worse when we obfuscate the semantics of the story world
in our translations. We modified Grandma Lose by switching
character names and renaming places and items, to suggest
multiple genres and settings. For example, the protagonist’s
goal, instead of The hero wants to have the medicine at
the cottage, becomes The bandit wants to have the dirt
at the basketball court—with all underlying logic the same
as the original problem. On average, UCS GPT solved the
original problem in 28 nodes with 75% explained, but on the
obfuscated problem it took 72 nodes with only 33% explained,
which is even lower than the baseline of 37%. The LLM sends
the search toward unhelpful nodes that are not going to become
explained, because its model of the story world is different
from the planner’s. For our approach to be successful, words
used in the domain translations should imply a consistent genre
and setting, and should have clear and unambiguous meaning
that is accurately modeled in the domain.

We are encouraged by these results, but they should not
be taken too generally. More experiments would be needed
to show whether this methodology works similarly using
different types of LLMs or with different prompts or model
parameters. There are also many ways the method could
be improved in terms of prioritizing explained nodes to a
greater degree. Simple prompt engineering could possibly
yield better results. For example, the context description could
be organized by character; this might help the LLM frame the
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characters’ individual perspectives and produce more believ-
able suggestions.

One limitation of this method is that it relies on a text-
based similarity metric, which does not always agree with
semantic similarity in the context of the story. For example, the
sentences The guard attacks the bandit and The guard attacks
the hero have similar wording, but very different implications
for the story. Conversely, the sentences The hero runs away
from the merchant and The hero walks to the crossroads
may reference the exact same action in the story, but they
are worded quite differently and may not get recognized as
matching by the algorithm we use here. Improvements to
the similarity measurements or the matching algorithm might
improve the method’s performance overall.

There are other methods we could have tried for ranking
the possible actions based on their similarity. For example, it
might have been helpful to set a similarity threshold and prune
actions that were not sufficiently similar to any suggestion.
We also did not fine-tune the LLM on the language of each
domain, mainly because we were interested in how well it
would perform without doing so. Fine-tuning is certainly a
possibility that could improve suggestion quality and allow
more accurate similarity measurements, but care should be
taken to make sure the LLM is not biased to repeat any specific
actions provided to it in this training.

At this stage we have applied the LLM’s guidance only in
the “real” world of the story—actions whose preconditions are
satisfied. In a full Sabre search, actions whose preconditions
are not satisfied, but some character believes that they are,
must also be explored. When this happens, Sabre keeps track
of which character the node “belongs to”, meaning the planner
is considering the action on behalf of this character. What this
means in practice is that the planner uses the character’s beliefs
instead of the real state when evaluating things in this node—
things like whether future actions will be possible, or whether
other characters will be willing to participate in them. Since
the node belongs to a character, it is irrelevant whether these
things are actually true; it only matters whether that character
believes they are.

A simple modification of the technique used here could
account for these situations: Whenever the planner is consid-
ering a node from the perspective of a character, we could just
reframe the context description according to that character’s
perspective, otherwise prompting the LLM the same way. So,
rather than describing the true initial state, we would describe
the initial state according to that character’s beliefs; instead
of the story goal, use that character’s goal; and instead of
including all the events that have happened so far in the history,
we would use only the events that the character observed when
they happened. All of this information is readily available to
the planner. Given this modified context, we would expect the
resulting suggestions to lead the planner toward reasonable
character plans. This would help the planner find usable
explanations in much the same way as the current method
helped it find solutions.

VI. CONCLUSION

Symbolic story generation methods give creators fine-
grained control over what types of content can be included
in generated stories. Planning algorithms can reason over
large story spaces and make stronger quality assurances than
reactive methods which generate content based solely on the
current context. However, planning is expensive; narrative
planners either struggle to maintain character believability or
they use costly methods that do not scale as well as reactive
systems. This is especially true for recent methods that model
complex character beliefs.

In this work we explored the possibility of using a large pre-
trained language model to improve the performance of a state
space narrative planning algorithm. We demonstrated that GPT
is capable of providing helpful suggestions to Sabre, guiding
its search both toward the goal and through paths of valid
nodes. For the majority of the benchmark problems, the GPT-
guided search fared much better than the baseline because
it was able to leverage the LLM’s built-in knowledge about
stories, genres, settings, people, etc. to make good guesses
about which nodes to explore first. There were exceptions, but
we believe these are not prohibitive, and that careful domain
modeling and accurate language can mitigate most of the
problems we encountered. We hope these results will inform
future attempts to integrate LLM guidance into more complex
search strategies.
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