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Abstract 
A growing number of applications seek to incorporate 
automatically generated narrative structure into interactive 
virtual environments. In this paper, we evaluate a 
representation for narrative structure generated by an 
automatic planning system by 1) mapping the plans that 
control plot into conceptual graphs used by QUEST, an 
existing framework for question-answering analysis that 
includes structures for modeling a reader's narrative 
comprehension and 2) using methods originally employed 
by QUEST’s developers to determine if the plan structures 
can serve as effective models of the understanding that 
human users form after viewing corresponding stories 
played out within a virtual world. Results from our analysis 
are encouraging, though additional work is required to 
expand the plan language to cover a broader class of 
narrative structure. 

Introduction   
Detailed, immersive 3D virtual environments are 
increasingly commonplace in applications ranging from 
entertainment to social interaction to education and 
training. While many of these virtual environments include 
a narrative, the interaction within them is generally 
prescripted with little dynamic capability. Recent work 
(André, Rist, & Müller, 1998, Cavazza, Charles & Mead, 
2002, Young & Riedl, 2003) seeks to develop algorithms 
that dynamically generate narratives for such 
environments. To date, however, there has been little effort 
to verify that the computational structures created to 
control interactive narratives correspond to mental models 
formed by people when comprehending activity within 
conventional story worlds (e.g., narrative texts). 
 We are currently developing Mimesis, a system that will 
automatically generate an internal description of the 
actions 
composing a narrative’s plot, then use that representation 
to 
drive the action of characters within a 3D gaming 
environment (Young and Riedl, 2003). The action 
sequences used in Mimesis are automatically created by an 
artificial intelligence (AI) planning system called DPOCL 
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(Young, Pollack & Moore, 1994), described briefly in the 
following section. The research we describe here seeks to 
measure the correspondence between the data structures 
that Mimesis generates to represent plot and the mental 
models that people form when observing the action 
sequences as they are played out within the 3D story 
world. 
 To evaluate the correspondence between DPOCL plans 
and the mental models that users of our system form 
regarding an unfolding narrative, we first defined a 
mapping from DPOCL elements onto a subset of the 
conceptual graph structures that model narrative defined 
by Graesser, et al, in their work on QUEST, a 
psychological model of question answering (Graesser & 
Clark, 1985, Graesser & Franklin, 1990). Next, we 
generated a DPOCL plan capable of driving a story within 
our virtual environment and, using the mapping, 
determined the graph structure corresponding to the plan.  
 We then had human subjects view a video of the plan as 
it executed within a 3D virtual world, and asked them to 
rate the appropriateness of answers to questions regarding 
the story they had viewed. Their ratings were compared to 
QUEST’s ratings of the same answers, a technique similar 
to that used in the evaluation of the QUEST algorithms 
themselves (Graesser, Lang, & Roberts, 1991). The results 
of the small-scale study are encouraging, indicating a 
strong correspondence between a number of features of 
both plans and the intended mental models users form. 

Background 

DPOCL Plan Structure 
 
In this work, we represent the action that unfolds within a 
narrative-oriented virtual environment using a plan, a data 
structure completely characterizing the actions that occur 
in the story and the specification of the role that characters, 
objects and locations play in those actions. Plans and the 
planning systems that produce them have been widely 
studied in artificial intelligence research, though they are 
typically are used to describe specifications of real-world 
action sequences.   
 The plan structures we employ are those produced by 
the DPOCL planner (Young, Pollack and Moore, 1994). 
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DPOCL plans are composed of steps corresponding to the 
actions that occur in a story; DPOCL uses the approach 
used by STRIPS (Fikes & Nilsson, 1971) to represent 
individual actions. 
 In DPOCL, each step is defined by a set of 
preconditions, the conditions in the world that must hold 
immediately prior to the step’s execution in order for the 
step to succeed, and a set of effects, the conditions in the 
world that are altered by the successful execution of the  
action. In addition to a set of steps, a DPOCL plan contains 
a set of temporal constraints defining a partial temporal 
ordering on the execution of the plan’s steps and a set of 
causal links connecting pairs of steps. Two steps s1 and s2 
are connected by a causal link with associated condition c 
just when c is an effect of s1 and a precondition of s2 and 
the establishment of c by s1 is used in the plan to ensure 
that c holds at s2. Further, DPOCL plans contain 
information about the hierarchical structure of a plan, 
similar to the representation used by hierarchical task 
network (HTN) planners (Sacerdotti, 1977). In DPOCL, 
each abstract step in a plan is connected to a set of more 
primitive steps that represent a sub-plan for achieving the 
abstract action’s effects. Overall, DPOCL plans contain a 
fair amount of causal, hierarchical and temporal structure. 
This structure is added by the planning algorithm in order 
to guarantee that a plan is sound, that is, that, when 
executed, the plan is guaranteed to achieve it’s goals. 
Recent work (Ratterman, et al, 2002, Young, 1999) 
suggests that this structure as well as the techniques used 
by the DPOCL algorithm to create it, make for effective 
models of human plan reasoning. 

The QUEST Knowledge Structure 
Graesser has developed a framework for representing the 
cognitive structures built by readers while reading texts 
(Graesser & Clark, 1985). Graesser’s model is based on 
conceptual graph structures, which contain concept nodes 
and connective arcs. These graphs, referred to here as 
QUEST knowledge structures (QKSs), are used to describe 
the reader’s conception of a narrative text and related 
general knowledge (Graesser & Clark, 1985). QKSs can be 
combined and traversed in order to make predictions 
relating to an idealized reader’s conception of a text 

(Graesser & Clark, 1985; Graesser & Franklin, 1990; 
Graesser & Hemphill, 1991; Graesser, Lang & Roberts, 1991).  
 A QKS consists of “statement” nodes connected by 
directed arcs. Both nodes and arcs are typed based on their 
meaning and purpose. Below is a short description of the  
statement nodes and relational arcs; the references above 
provide a complete discussion. 
 Statement nodes contain individual pieces of data within 
a QKS. Statement nodes contain either a simple sentence 
(e.g. of the form <subject> <verb> <simple predicate>) 
or any number of combinations of such sentences (e.g. “x 
saw P1” where P1 = <subject> <verb> <simple 
predicate>). These statement nodes are categorized into 
state, event, goal, style, and concept nodes. A state node 
describes a part of the world-state that can be assumed to 
remain true unless explicitly changed. An event node 
describes the changing of a state, with or without intention. 
Goal nodes describe the desire of an agent, although such 
goals do not have to be conscious. Any action taken 
intentionally has a corresponding goal and node. 
 Relational arcs connect statement nodes within the QKS, 
and by doing so describe how the narrative data 
represented within the QKS are cognitively linked. The six 
arc types that are crucial to event-oriented storytelling are 
displayed and described in Table 1 (1991). These arcs 
focus on events and the reasoning of characters, which 
constitute most of basic story telling. 

Comparing Computational and Cognitive 
Structures 
To determine whether or not DPOCL plans are cognitively 
plausible models of a user’s understanding of a narrative 
controlled by those same plans, we developed a mapping 
from the DPOCL plan representation onto an existing, 
well-understood cognitive model, namely Graesser’s QKS. 
We then tested whether a correspondence existed between 
the user’s responses to questions about the plan-based 
QKS and the responses of the QUEST model. The 
mapping from DPOCL to QKS and the specifics of the 
experiment to determine the model’s effectiveness are 
described below. 

 
Table 1: QUEST Knowledge Structure (QKS) Arc Types 

Arc Type Description (A -> B) Narrative Structure Equivalent 

Consequence A causes or enables B Actions have effects, which are state changes.  Events cannot yet 
cause other events. 

Implies A implies B, semi-logical reasoning Syllogistic reasoning is outside of scope, goal equivalency is 
handled through causal links from actions to goal states 

Reason B is a reason or motive for A 
B is a superordinate goal of  A 

Causal links – basic plan components – embody reasons for 
actions 

Outcome B specifies whether or not the goal A is achieved In simple plan sctructures, goals are always achieved 

Initiate  A initiates or triggers the goal in B Not covered (plans for future coverage) 

Manner B specifies the manner in which A occurs Not covered (plans for future coverage) 
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Mapping a DPOCL Plan Structure to a QKS 
The translation of plans to QKSs is not straightforward due 
to the expressivity of the QKS and the relative rigidity of 
plan structures. As noted, plan structures only have one 
type of arc (the causal link) and one type of node (the plan 
step) compared to Graesser’s many. D espite these 
difficulties, it is possible to map a standard DPOCL plan 
structure into a simple yet functional QKS. Figure 1 
describes the algorithm to perform this task. The resulting 
QKS is regularly structured, and is related in form and 
content to what Graesser calls a goal-oriented substructure 
(Graesser & Clark, 1985). 
 This mapping relies on the idea that many of Graesser’s 
arc types have a simple corollary within DPOCL. Table 1 
shows a listing of each arc type and its equivalent (or lack 
thereof) in a standard plan structure. This initial mapping 
includes only outcome, consequence, and reason arcs. The 
generated QKS is also limited to the actions of a single 
character, which makes for a relatively simplistic narrative. 
Future work will seek to expand the DPOCL plan 
representation and the mapping algorithm to address these 
limitations. 
 

Experimental Evaluation 
We wish to test whether the QKS generated by the 
automatic mapping from a DPOCL plan can be used as an 
effective means of predicting the “goodness of answers” 
(GOA) to why, how, and “what enabled” questions 
regarding the story that the plan describes. If QUEST’s 
predictor variables perform as expected, it would be a 
strong indication that DPOCL plan structures can serve as 
an effective model of an idealized user's understanding of 
the narrative. The hypotheses and methods we use are 

modeled after Graesser’s own tests of the QUEST 
algorithm’s predictive ability (Graesser, Lang, & Roberts 
1991): Participants watch a video, rate the goodness of 
answers (GOA) to questions about that video, and their 
responses are compared to the QUEST algorithm’s 
predictions. 

QUEST Predictor Variables 
Goodness of answer (GOA) ratings are key to Graesser’s 
validation of the QUEST model, and obtaining estimates 
of these ratings is the purpose of the QUEST predictor 
variables. There are three major predictor variables which 
are correlated to the goodness of an answer: an arc search 
procedure, the structural distance between the question and 
answer nodes, and constraint satisfaction. Their numeric 
values are calculated for a question/answer pair, and can 
then be used to predict human GOA ratings, or the 
likelihood that an answer will be produced when asked a 
given question (Graesser & Hemphill, 1991; Graesser, 
Lang, & Roberts, 1991; Golding, Graesser & Millis, 1990).  
 The arc search procedure differs depending on the 
question category. In all cases, certain types of arcs are 
traversed in certain directions starting from the question 
node. If a node can be reached via those arcs, it is 
considered to pass the arc search procedure, and receives a 
value of 1. Otherwise, it receives a value of 0.  
 The structural distance measures the number of arcs that 
must be traversed to reach the answer node from the 
question node. If a legal path is found using the 
appropriate arc search procedure, then the shortest legal 
path length is used. Otherwise, the shortest path length is 
used.  
 The constraint satisfaction measurement is an averaging 
of several variables including argument overlap, temporal 
compatibility, planning compatibility, plausibility, and 
causal strength. The value ranges from 0 to 1. For a 
complete description, see Graesser, Lang, & Roberts 
(1991). 

 

Method 
Participants. 15 computer science undergraduates from 
NC State University were given course extra credit 
participating in this study. The participants were randomly 
assigned into one of three subject groups. Each group was 

Let n be the number of top-level goals of plan P and m be the 
number of steps in P, then 
 
1.  Create a total ordering o for the m steps in P consistent with 
P’s partial ordering over its steps. 
2.  For each of P’s top-level goals gi, i = 1, .., n, convert  gi  into a 
goal node Gi. 
3.  For each plan step  sj  in P, starting with the last step in o 

 3.1  Convert  sj  into a goal node Gj and an event node  Ej 
 3.2  Link  Gj  to  Ej  with an outcome arc 
 3.3  For each effect e of sj, add a state node S listing e and link 
Ej to S  by a consequence arc 

4.   For each causal link in P connecting two steps s1 and  s2 with  
      condition c, connect the state node S created for s1 and c in 3.3 
to the event node E createad for step s2 in 3.2 
5.   Number the nodes based on the total order o, using a depth-
first  algorithm for numbering sub-plan goals 
6.   For each causal link in P connecting two steps s1 and  s2, find 
the  goal nodes G1 and G2 created for s1 and  s2 in 3.2.  If G1 has a    
lower node number than  G2, connect  G1 to  G2 with a reason arc. 

 
Figure 1: Mapping a plan structure to QUEST 

 

Table 2: A Sample Training Session Guide 
 

You are in a long hall, called the “lava room”.  Look around 
with the mouse to see what is in the lava room.  In this training 
session, your job is to raise and then cross the bridge across the 
lava, which is now lowered.  To raise and lower the bridge, 
you must use your hand on the hand symbol on the left-hand 
wall.  The hand symbol is close to the lava on the same side as 
the power switch.  The hand symbol for operating the bridge 
does not appear and the bridge does not work unless the power 
is on.  You can turn on the power by using your hand on the 
yellow power switch.  Cross the raised bridge to complete this 
training session. 
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asked to rate answers in one of three different categories: 
answers to “how”, “why”, or “what enabled” questions. 
Materials. Participants first completed five training 
sessions within a virtual environment in order to 
familiarize themselves with the rules for action within the 
story world. Each training session required a subject to 
control a character via the mouse and keyboard. 
Participants were required to use their character to 
successfully perform a task composed of individual actions 
that also made up the story plans they would later observe 
being executed. Table 2 contains one training session 
guide, and Fig. 2 contains DPOCL step descriptions 
defined in the story world. 
 The 3D story world in which participants interacted 
modeled a four-room section of a spaceship. Rooms were  
connected by airlock doors, elevators and drawbridges 
with simple touch-activated controls. Actions in the story 
world typically had several preconditions and effects (e.g., 
the power must be on in order for a machine to process 
raw materials into medical supplies, pressing the 
drawbridge control button raises or lowers the bridge).  
 After the participants completed the five training 
sessions, they were shown a video that showed the 
execution of a DPOCL plan by a character acting in the 
same environment. The story involved the character 
processing raw materials into medical supplies and 
delivering them into another room. The video was derived 
from a plan with 20 actions; using our mapping algorithm 
this plan expanded into a 71 node QKS with 23 event/goal 
pairs and 25 state changes. 
 

Name: 
   RaiseBridge(Bridge) 
Preconditions: 
   Lowered(Bridge) 
   PowerOn(Ship) 
Effects: 
   Raised(Bridge) 

Name: 
   CrossBridgeEast(Bridge) 
Preconditions: 
  Not(Lowered(Bridge)) 
  In(EastLavaRoom) 
Effects: 
  In(WestLavaRoom) 

 
Figure 2: DPOCL Operators for the RaiseBridge and 

CrossBridge Actions 
 
  Seven event nodes and three state nodes from this 
QKS were chosen from the QKS as the basis for ten 
questions posed to the participants. The seven chosen 
event nodes were “cross the bridge,” “raise the lift,” “close 
the door from the medicine room to the hallway,” “get the 
keycard,” “turn on the power,” “go from the lift to the 
elevated area,” and “exit the lift into the medicine room.” 
The three chosen state nodes were “have the medicine’s 
ingredients,” “the keycard door was open,” and “the door 
from the hallway to the lava room was open.” These nodes 
were turned into the appropriate questions by putting 
“Why did the protagonist,” or “how did the protagonist,” 
or “what enabled the protagonist to,” etc., in front of the 
node’s description. 
 For each question node, 16 answer nodes were chosen, 
leading to 160 question/answer pairs. In Graesser’s 

experiment, he used answers previously given to related 
questions in a previous experiment as a pool from which to 
draw his answer nodes. However, we did not have such a 
resource. Because Graesser’s earlier experiments showed 
that the structural distance between the question and 
answer nodes was a key factor in determining the goodness 
of an answer and it was a straightforward measure, we 
picked at random eight nodes with a structural distance of 
three or less, and eight other nodes from throughout QKS.  
 Similar to Graesser’s study, nodes that were part of a 
goal/event pair were described as a goal (e.g. “because she 
wanted to open the door”), if the event described in the 
answer occurs after the event described in the question 
node and as an event (e.g. “because she opened the door) 
otherwise. Answer nodes that described state changes were 
described as goals (e.g., “because she wanted the door to 
be open”) if they had not happened yet, and as states 
(“because the door was open”) otherwise. These 
descriptions were chosen order to give every action in the 
story its best chance of being rated as a good answer. The 
answer nodes were described in the same was for every 
phrasing of question, with the exception that “Because” 
was placed in front of the answers to why questions. 
Twelve answer nodes were thrown out because their 
wording did not follow these rules exactly, meaning that 
148 question/answer pairs are used for all further analysis. 
Procedure. The participants proceeded through the 
training sessions at their own pace. When they completed 
all five training sessions, they were told that they would be 
shown a video that took place in a similar world to the one 
they had just been working in. They were given the 
following back story, in order to express the initial goals of 
the narrative: “The video shows a woman who wants to 
bring some medicine from the medicine room to the small 
final room on the other side of the keycard door.” They 
were told they could watch the video as many times as they 
wanted to, and that they should watch it carefully as they 
would be asked questions about it afterwards. 
 After the participants were finished with the video, it 
was explained that they would be rating answers to 
questions about the video they had just seen. The 
difference between good answers and bad answers was 
explained as described in Graesser, Lang, & Roberts 
(1991). However, no practice 
items were given. Participants rated the answers on a 
fourpoint scale, where answers could be a) bad answer to 
the question, b) possibly an acceptable answer, c) 
moderately good answer, or d) very good answer. 
Participants were timed as in Graesser’s studies (Graesser, 
Lang, & Roberts, 1991) in order to preserve the format of 
the experiment, but those numbers were not used in our 
analysis. 
Predictor Variables. Graesser used seven predictor 
variables with QUEST in order to examine whether the 
three main components of the QUEST algorithm were 
significant predictors of goodness of answer (GOA) 
ratings. However, the four auxiliary predictor variables are 
not relevant or calculable for this study. Therefore we 
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examined only the three central components of QUEST: 
the arc search procedure, structural distance, and constraint 
satisfaction. These components are described below. 
 Arc search procedure. Answers receive a 1 if there is at 
least one legal path to an answer using Graesser’s arc 
search procedures for goal hierarchies, and a 0 otherwise. 
Because state nodes play a larger role in plan structures 
converted to QKSs, subordinate state changes were 
included in the arc search procedure wherever Graesser 
included subordinate actions. The mean arc-search 
procedure ratings were .22, .12, and .57 for why-, how- 
and enable- questions respectively (SD=.41, .32, .49). 
 Structural Distance denotes the number of arcs between 
nodes in the QKS. The shortest path found using the arc-
search procedure was used if one existed; otherwise the 
shortest path was used. Structural distance was predicted to 
be negatively correlated with GOA scores. The mean 
structural distance score was 3.75 (SD=1.50). 
 Constraint Satisfaction is a complex variable that 
measures the argument overlap, temporal compatibility, 
planning compatibility, plausibility, and causal strength of 
an answer node. For a complete description, see Graesser, 
Lang, & Roberts (1991). Graesser had experts calculate 
these values; we estimated them computationally. These 
estimations were possible given the extra information 
about relationships contained within the plan structure. 
Argument overlap (AO) was derived from plan structures: 
if the a subset of the objects listed in the plan action for the 
question node where in the action for the answer node, 
then the answer received a 1 for this value. Temporal (TC) 
compatibility received a 1 if the answer was a goal node 
with a lower number, a 1 if the answer was a state change 
node that had not been negated by later state changes, a .5 
if the answer were the directly previous or next action and 
a 0 otherwise. Planning compatibility and plausibility were 
assumed to be 1 and left out of final calculations because 
we involve only a single actor, and all of our answer nodes 
are considered plausible. 
 Causal strength was the combination of four factors: 
temporality, operativity, necessity, and sufficiency. 
Temporality (T) was 1 if the answer node had a lower 
number than the question node. Operativity (O) was 
considered equivalent to temporal compatibility above. 
Necessity (N) was 1 if the answer node was a state node 
and fulfilled a precondition for the question’s related 
action, or if the answer node was an action and some effect 
of the action was such a state node. Sufficiency (S) was 1 
if the answer was a goal node for which a precondition 
would be filled by taking the action listed in the question. 
 These numbers were combined to create constraint 
satisfaction score between 1 and 0 as follows: (AO + TC. + 
(T x O x ((N + S) / 2)))/3. The mean constraint satisfaction 
score was .43 (SD=.20). In general, the mean scores for all 
three predictor variables were not as high in our study as in 
Graesser’s (by QUEST’s criteria, our answers were 
poorer). This is most likely due to the different method 
used to select answer nodes. 

Results 
A multiple regression analysis was run to determine the 
effects of the three predictor variables, and a second test 
was run to determine the effects of interactions between 
the three variables. Graesser’s earlier analyses predict that 
the regression equations will show a significant positive 
coefficient for arc-search procedures and constraint 
satisfaction and a significant negative coefficient for 
structural distance. Graesser’s analyses also predict a 
significant interaction between arc-search and structural 
distance as well as between constraint satisfaction and 
structural distance. 
 Table 3 shows the standardized regression coefficients 
(β-weights) for each predictor variable. The table shows 
that arc-search and structural distance are important factors 
for all three question types. Structural distance is shown to 
be important only for enable questions.  
 

Table 3: β-Weights of Predictors of Goodness of Answer 
(GOA), Segregated by Question Category 

 

Predictor variable Wh
y How Enable 

Arc Search .40s .69s .22i 

Structural Distance -.11 -.02 -.25s 

Constraint 
Satisfaction .34s .30s .28s 

R2 .41 .64 .29 
Note: s = significant at p < .05 for 

question/answer pair. 
 

 We performed a second multiple regression analysis 
with the four possible interactions between the predictor 
variables added. A possible interaction was found between 
arc search and structural distance for enable questions 
F(1,148) = 16, p < .06. Adding in this interaction increased 
the variance explained (R2) from .29 to .31. No other 
interaction was found between the predictor variables. 
 Mean GOA ratings for why-, how- and enable- 
questions       were calculated to check for ceiling or floor 
effects. The mean ratings for why-, how- and enables- 
questions were 1.66, 1.8, and 1.4 respectively, with 
standard deviations of .76, .88, and .62. These GOA scores 
are slightly more restrictive than Graesser’s, who had 
means 1.99, 2.07, and 2.32 with standard deviations of .87, 
.80, and .85. This restricted range is likely due to the 
different method we used to select answer nodes, which 
was described in the materials section. 

Discussion 
In this study, we examined how well Graesser’s QUEST 
model worked when the knowledge structure on which the 
algorithm was applied was automatically generated from a 
plan structure, all predictor variables were computed 
without human input, and the narrative was shown in a 
video instead of given in text. Despite the deviation from 
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Graesser’s original design, two out of three of Graesser’s 
QUEST components (arc search and constraint 
satisfaction) proved to significantly predict goodness of 
answers (GOA) (p < .05). 
 Structural distance was not shown to be a significant 
predictor for how and why questions, while in Graesser’s 
study it was shown to be inversely related to GOA for all 
three question types. This discrepancy could be due to 
several factors. First, Graesser’s β-weights for structural 
distance were small (-.16, -.13, -.13 for why-, how- and 
enable- questions); it could be that our sample size (N=15, 
N=5 for each question type) is too small to measure this 
effect. Second, it could be that Graesser’s distance 
measures were correlated to the way answer nodes were 
chosen, and that this effect did not appear in our analysis 
due to our different method. Finally, our QKS covers only 
one actor’s plan. Structural distance could only be a factor 
across multiple plans or between different actors. 
 No significant interactions were found between the three 
predictor variables (p < .05). It should be noted that the 
interactions found in Graesser’s work all involved distance 
-- not a statistically significant predictor variable in two 
out of three question types. Thus, it is not surprising that 
there should be no significant interactions for these 
question types. In contrast, structural distance was found to 
be a statistically significant predictor in enable questions, 
and there is a possible interaction between arc search and 
structural distance (p < .06). However, because of the 
nature of the interaction and the small sample size, we did 
not analyze this possibility further. 
 The variance explained by Graesser’s QUEST 
components was smaller in our study than in Graesser’s. 
Our average R2 was 44.6, whereas Graesser’s was 57.6. 
The variance explained for enable questions was 29%, as 
opposed to Graesser’s 55%. The same factors that made 
structural distance less important may also have affected 
the overall effectiveness of QUEST’s algorithm. 

Conclusions and Future Work 
One long-term goal of our research is to define a 
cognitively plausible structure for representing a viewer’s 
understanding of a story that a) can be generated 
automatically and b) is expressive enough to be used to 
control a virtual environment. The results provided here 
are encouraging; the data indicate that DPOCL plan 
structures can be mapped automatically onto a QUEST 
knowledge structure, and that the resulting QUEST 
components are satisfactory initial predictors of GOA 
ratings for why-, how- and enable- questions in their new 
environment. 

 Conclusions and Future Work 
This paper was supported by NSF CAREER Award  
# 0092586. 

References 
André, E., Rist, T., & Müller, J. (1998). Integrating 
reactive and scripted behaviors in a life-like presentation 
agent. In Proceedings of the 2nd International Conference 
on Autonomous Agents (pp. 261-268). 
 
Cavazza, M., Charles, F. & Mead, S., (2002) Planning 
characters' behaviour in interactive storytelling. In Journal 
of Visualization and Computer Animation 13(2): 121-131.  
 
Fikes, R., Nilsson, N., (1971) STRIPS: A New Approach 
to the Application of Theorem Proving to Problem 
Solving. In the Proceedings of IJCAI, pages 608-620.  
 
Graesser, A.C., Clark, L.F., (1985). Structures and 
procedures of implicit knowledge. Norwood NJ: Ablex.  
 
Graesser, A.C, Franklin, S. P. (1990). Quest: A cognitive 
model of question answering. Disc. Processes, 13,279-303.  
 
Graesser, A. C., & Hemphill, D. (1991). Question 
answering in the context of scientific mechanisms. Journal 
of Memory and Language, 30. 186-209. 
 
Graesser, A.C., Lang, K. L. & Roberts, R.M., (1991). 
Question answering in the context of stories. Journal of 
Experimental Psychology: General, 120, 254-277.. 
 
Graesser, A.C., Singer, M., & Trabasso, T. (1994). 
Constructing inferences during narrative text 
comprehension. Psycological. Review, 101, v.3, 371-395. 
 
Rattermann, M. J., Spector, L., Grafman, J., Levin, H. and 
Harward, H. Partial and total-order planning: evidence 
from normal and prefrontally damaged populations, in 
Cognitive Science, vol. 25, issue 6, pages 941-975. 
 
Sacerdoti, E. (1977) A Structure for Plans and Behavior. 
Elsevier, New York. 
 
Young, R. M, Pollack, M., & Moore, J. (1994) 
Decomposition and causality in partial-order planning, in 
Proceedings of the Second International Conference on AI 
and Planning Systems, Chicago, IL, pages 188-193. 
 
Young, R. M. & Riedl, M. (2003) Towards an Architecture 
for Intelligent Control of Narrative in Interactive Virtual 
Worlds, in the Proceedings of IUI, January, 2003.  
 
Young, R. M. (1999) Using Grice’s Maxim Of Quantity 
To Select The Content Of Plan Descriptions. Artificial 
Intelligence, no 115, 215-256 
 
 

390    NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION   


