
Uninformed Search

Stephen G. Ware

CS 463G

Grid World

• Initial State: Square T

• Actions: Up, Right, Down, Left

• Transition: Move to new square

• Goal: Square C

• Cost: 1 unit per action

• Performance: Minimize cost

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Search in Grid World

We are trying to find a path from T to C.

What is “a node?”

• Option 1: A node is path, e.g. {T, P, O}
• The solution is already a path.
• There are infinitely many paths.

• Option 2: A node is a single grid square, e.g. P
• Need to reconstruct the path after finding a solution.
• There are only 𝑛 squares.

Search in Grid World

We are trying to find a path from T to C.

What is “a node?”

• Option 1: A node is path, e.g. {T, P, O}
• The solution is already a path.
• There are infinitely many paths.

• Option 2: A node is a single grid square, e.g. P
• Need to reconstruct the path after finding a solution.
• There are only 𝑛 squares.
• A square means “there is a path from T to this square.”

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
If F is empty, return failure.
Choose a node n to remove from F.
If n is a solution, return n.
Add n to V.
For every successor s of n not in V:
Add s to F.

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {}

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {}

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {}
F = {T}

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {}
F = {T}

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {}
F = {T}

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {}
F = {}
n = T

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {}
F = {}
n = T

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {}
F = {}
n = T

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T}
F = {}
n = T

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T}
F = {}
n = T

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T}
F = {P}
n = T

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T}
F = {P,X}
n = T

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T}
F = {P,X}

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T}
F = {X}
n = P

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T}
F = {X}
n = P

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T,P}
F = {X}
n = P

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

V is visited, initially empty.
F is the frontier, with start.
Loop:
 If F is empty, return failure.
 Choose a node n to remove from F.
 If n is a solution, return n.
 Add n to V.
 For every successor s of n not in V:
 Add s to F.

V = {T,P}
F = {X,O}
n = P

= Visited = Frontier

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P

Frontier:
X,O

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O

Frontier:
X,N

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N

Frontier:
X,S

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S

Frontier:
X,V,R

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R

Frontier:
X,V,Q

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q

Frontier:
X,V,M,U

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M

Frontier:
X,V,U,K

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K

Frontier:
X,V,U,F,L

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K,L

Frontier:
X,V,U,F,G

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K,L,G

Frontier:
X,V,U,F,B,H

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K,L,G,B

Frontier:
X,V,U,F,H,A,C

Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K,L,G,B

Frontier:
X,V,U,F,H,A

Goal found!

Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Uninformed Search

• Breadth First Search

• Depth First Search

• Iterative Deepening Depth First Search

• Uniform Cost Search

• Bidirectional Search

Breadth First Search

When choosing a node from the frontier…

always choose the node at the end of the shortest path.

i.e. always choose the node closest to the start.

i.e. always extend the shortest path.

i.e. search as broadly as possible.

Breadth First Search

Visited:

Frontier:
T

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T

Frontier:
P,X

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P

Frontier:
X,O

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X

Frontier:
O,W

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O

Frontier:
W,N

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W

Frontier:
N,V

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N

Frontier:
V,S

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V

Frontier:
S

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Notice we did not add
a second copy of S.

Breadth First Search

Visited:
T,P,X,O,W,N,V,S

Frontier:
R

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R

Frontier:
Q

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q

Frontier:
M,U

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M

Frontier:
U,K

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U

Frontier:
K

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,
K
Frontier:
F,L

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,
K,F
Frontier:
L,A,G

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,
K,F,L
Frontier:
A,G

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,
K,F,L,A
Frontier:
G,B

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,
K,F,L,A,G
Frontier:
B,H

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,
K,F,L,A,G,B
Frontier:
H,C

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,
K,F,L,A,G,B,H
Frontier:
C,I

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,
K,F,L,A,G,B,H
Frontier:
C,I

Goal found!

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Breadth First Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Breadth First Search

1. Let V be the set of visited nodes, empty.
2. Let F be a queue, initially containing

only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Breadth First Search

1. Let V be the set of visited nodes, empty.
2. Let F be a queue, initially containing

only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F unless s is already in F.

Breadth First Search

What can we say about the path discovered?

It is the shortest possible path (i.e. optimal).

Complexity of BFS

Given a graph with n nodes and e edges,

• What is the time complexity?

O(n+e)

• What is the space complexity?

O(n)

Complexity of BFS

In practice, most search spaces are too large to
explore fully, so we don’t know n or e.

Instead, imagine that each node has b successors
(i.e. a branching factor of b).

If the shortest path to the solution is d steps, what is
the time complexity of BFS?

O(b+b2+b3+…+bd) = O(bd)

Complexity of BFS

In practice, most search spaces are too large to
explore fully, so we don’t know n or e.

Instead, imagine that each node has b successors
(i.e. a branching factor of b).

If the shortest path to the solution is d steps, what is
the space complexity of BFS?

O(bd-1+bd) = O(bd)

Depth First Search

When choosing a node from the frontier…

always choose the node at the end of the longest path.

i.e. always choose the node farthest from the start.

i.e. always extend the longest path.

i.e. search as deeply as possible.

Depth First Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:

Frontier:
T

Depth First Search

Visited:
T

Frontier:
P,X

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X

Frontier:
P,W

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W

Frontier:
P,V

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V

Frontier:
P,S

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S

Frontier:
P,N,R

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R

Frontier:
P,N,Q

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q

Frontier:
P,N,M,U

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U

Frontier:
P,N,M

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U

Frontier:
P,N,M

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M

Frontier:
P,N,K

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K

Frontier:
P,N,F,L

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L

Frontier:
P,N,F,G

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L,G

Frontier:
P,N,F

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L,G

Frontier:
P,N,F,B

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L,G

Frontier:
P,N,F,B,H

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

We have found a
Longer path to F.

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L,G

Frontier:
P,N,B,H,F

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L,G,F

Frontier:
P,N,B,H,A

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L,G,F,
A
Frontier:
P,N,H,B

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L,G,F,
A,B
Frontier:
P,N,H,C

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

Visited:
T,X,W,V,S,R,Q,U,M,K,L,G,F,
A,B
Frontier:
P,N,H

Goal found!

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Depth First Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Depth First Search

1. Let V be the set of visited nodes, empty.
2. Let F be a stack, initially containing

only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Depth First Search

1. Let V be the set of visited nodes, empty.
2. Let F be a stack, initially containing

only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Put s at the top of F.

Recursive Depth First Search

1. Let V be the set of visited nodes, empty.
2. Call DFS(V,start);
3. Function DFS(V,n):
4. If n is a solution, return n.
5. Add n to V.
6. For every successor s of n not in V:
7. Call DFS(V,s).
8. If no solution was found, fail.

Uses the operating system’s stack for the frontier.

Depth First Search

• If the search space is infinite, when will DFS fail?

It may run forever!

• Does DFS return the shortest path like BFS?

No!

• So why use DFS at all?

Complexity of DFS

Given a state space in which…

• each node has b successors,

• the shortest path to the solution has d steps,

• the longest path in the space is m long

What is the time complexity of DFS?

O(bm)

Complexity of DFS

Given a state space in which…

• each node has b successors,

• the shortest path to the solution has d steps,

• the longest path in the space is m long

• the space graph can be treated like a tree

(i.e. no repeats or we don’t use V to track them)

Complexity of DFS

Given a state space in which…

• each node has b successors,

• the shortest path to the solution has d steps,

• the longest path in the space is m long

• the space graph can be treated like a tree

What is the space complexity of DFS?

O(bm)

Complexity of DFS

Given a state space in which…

• each node has b successors,

• the shortest path to the solution has d steps,

• the longest path in the space is m long

• the space graph can be treated like a tree

What is the space complexity of recursive DFS?

O(m)

In Practice

Because of its low memory requirements, depth first
search is often the starting place for many search
algorithms.

… and there’s a way to address the time problem!

Iterative Deepening Search

Used when DFS is desirable, but the space may be
infinite (or contain very long paths we want to avoid).

Modify DFS to never go deeper than a given limit n.

Start with n=1, then n=2, then n=3, etc. until a solution
is found or n becomes infeasible.

DFS is a kind of iterative deepening where n start at ∞.

Iterative Deepening Search

ID DFS means repeating DFS over and over with
higher depth limits. This means repeating work.
How does that affect its run time?

If the solution is at depth 0: O(1)

If the solution is at depth 1: O(1+b)

If the solution is at depth 2: O(1+b+b2)

If the solution is at depth 3: O(1+b+b2+b3)

Iterative Deepening Search

ID DFS means repeating DFS over and over with
higher depth limits. This means repeating work.
How does that affect its run time?

If the solution is at depth 0: O(1)

If the solution is at depth 1: O(b)

If the solution is at depth 2: O(b2)

If the solution is at depth 3: O(b3)

Iterative Deepening Search

ID DFS means repeating DFS over and over with
higher depth limits. This means repeating work.
How does that affect its run time?

If the solution is at depth 0: O(b0)

If the solution is at depth 1: O(b1)

If the solution is at depth 2: O(b2)

If the solution is at depth 3: O(b3)

Iterative Deepening Search

ID DFS means repeating DFS over and over with
higher depth limits. This means repeating work.
How does that affect its run time?

If the solution is at depth d: O(bd)

Asymptotically, the same as breadth first search!

Uniform Cost Search

Used when not every step has the same cost (i.e. roads
have different lengths).

A generalization of BFS, but instead of always
expanding the shortest path (e.g. fewest roads), we
always expand the lowest cost path (e.g. fewest miles).

Also known as Dijkstra’s Algorithm when you run it
for the whole graph, rather than a single destination.

Grid World

• Initial State: Square T

• Actions: Up, Right, Down, Left

• Transition: Move to new square

• Goal: Square C (for goal)

• Cost: 1 after ; 2 after

• Performance: Minimize cost

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:

Frontier:
T=0

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T

Frontier:
P=1, X=1

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P

Frontier:
X=1, O=2

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X

Frontier:
O=2, W=2

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O

Frontier:
W=2, N=3

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W

Frontier:
N=3, V=3

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N

Frontier:
V=3, S=5

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V

Frontier:
S=5

We found a lower
cost path to S.

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V

Frontier:
S=4

We found a lower
cost path to S.

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S

Frontier:
R=5

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R

Frontier:
Q=6

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q

Frontier:
M=7, U=7

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M

Frontier:
U=7, K=8

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U

Frontier:
K=8

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,K

Frontier:
F=9, L=9

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,K,
F
Frontier:
L=9, A=10, G=10

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,K,
F,L
Frontier:
A=10, G=10

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,K,
F,L,A
Frontier:
G=10, B=11

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,K,
F,L,A,G
Frontier:
B=11, H=12

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,K,
F,L,A,G,B
Frontier:
H=12, C=12

Uniform Cost Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,X,O,W,N,V,S,R,Q,M,U,K,
F,L,A,G,B
Frontier:
H=12

Goal found!

Uniform Cost Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Uniform Cost Search

1. Let V be the set of visited nodes, empty.
2. Let F be a min priority queue, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F with its cost as the key.

(or decrease key of s if it is in F)

Bidirectional Search

Search gets exponentially harder as it gets deeper.

Improvement: Run two searches simultaneously, one
starting at the start and one starting at the goal.
When their frontiers intersect, a path has been
found.

Only works if we can move backwards.

Only works if we know which goal state is the end.

	Slide 1: Uninformed Search
	Slide 2: Grid World
	Slide 3: Search
	Slide 4: Search in Grid World
	Slide 5: Search in Grid World
	Slide 6: Search
	Slide 7: Search
	Slide 8: Search
	Slide 9: Search
	Slide 10: Search
	Slide 11: Search
	Slide 12: Search
	Slide 13: Search
	Slide 14: Search
	Slide 15: Search
	Slide 16: Search
	Slide 17: Search
	Slide 18: Search
	Slide 19: Search
	Slide 20: Search
	Slide 21: Search
	Slide 22: Search
	Slide 23: Search
	Slide 24: Search
	Slide 25: Search
	Slide 26: Search
	Slide 27: Search
	Slide 28: Search
	Slide 29: Search
	Slide 30: Search
	Slide 31: Search
	Slide 32: Search
	Slide 33: Search
	Slide 34: Search
	Slide 35: Search
	Slide 36: Search
	Slide 37: Search
	Slide 38: Search
	Slide 39: Uninformed Search
	Slide 40: Breadth First Search
	Slide 41: Breadth First Search
	Slide 42: Breadth First Search
	Slide 43: Breadth First Search
	Slide 44: Breadth First Search
	Slide 45: Breadth First Search
	Slide 46: Breadth First Search
	Slide 47: Breadth First Search
	Slide 48: Breadth First Search
	Slide 49: Breadth First Search
	Slide 50: Breadth First Search
	Slide 51: Breadth First Search
	Slide 52: Breadth First Search
	Slide 53: Breadth First Search
	Slide 54: Breadth First Search
	Slide 55: Breadth First Search
	Slide 56: Breadth First Search
	Slide 57: Breadth First Search
	Slide 58: Breadth First Search
	Slide 59: Breadth First Search
	Slide 60: Breadth First Search
	Slide 61: Breadth First Search
	Slide 62: Breadth First Search
	Slide 63: Breadth First Search
	Slide 64: Breadth First Search
	Slide 65: Breadth First Search
	Slide 66: Complexity of BFS
	Slide 67: Complexity of BFS
	Slide 68: Complexity of BFS
	Slide 69: Depth First Search
	Slide 70: Depth First Search
	Slide 71: Depth First Search
	Slide 72: Depth First Search
	Slide 73: Depth First Search
	Slide 74: Depth First Search
	Slide 75: Depth First Search
	Slide 76: Depth First Search
	Slide 77: Depth First Search
	Slide 78: Depth First Search
	Slide 79: Depth First Search
	Slide 80: Depth First Search
	Slide 81: Depth First Search
	Slide 82: Depth First Search
	Slide 83: Depth First Search
	Slide 84: Depth First Search
	Slide 85: Depth First Search
	Slide 86: Depth First Search
	Slide 87: Depth First Search
	Slide 88: Depth First Search
	Slide 89: Depth First Search
	Slide 90: Depth First Search
	Slide 91: Depth First Search
	Slide 92: Depth First Search
	Slide 93: Depth First Search
	Slide 94: Recursive Depth First Search
	Slide 95: Depth First Search
	Slide 96: Complexity of DFS
	Slide 97: Complexity of DFS
	Slide 98: Complexity of DFS
	Slide 99: Complexity of DFS
	Slide 100: In Practice
	Slide 101: Iterative Deepening Search
	Slide 102: Iterative Deepening Search
	Slide 103: Iterative Deepening Search
	Slide 104: Iterative Deepening Search
	Slide 105: Iterative Deepening Search
	Slide 106: Uniform Cost Search
	Slide 107: Grid World
	Slide 108: Uniform Cost Search
	Slide 109: Uniform Cost Search
	Slide 110: Uniform Cost Search
	Slide 111: Uniform Cost Search
	Slide 112: Uniform Cost Search
	Slide 113: Uniform Cost Search
	Slide 114: Uniform Cost Search
	Slide 115: Uniform Cost Search
	Slide 116: Uniform Cost Search
	Slide 117: Uniform Cost Search
	Slide 118: Uniform Cost Search
	Slide 119: Uniform Cost Search
	Slide 120: Uniform Cost Search
	Slide 121: Uniform Cost Search
	Slide 122: Uniform Cost Search
	Slide 123: Uniform Cost Search
	Slide 124: Uniform Cost Search
	Slide 125: Uniform Cost Search
	Slide 126: Uniform Cost Search
	Slide 127: Uniform Cost Search
	Slide 128: Uniform Cost Search
	Slide 129: Uniform Cost Search
	Slide 130: Uniform Cost Search
	Slide 131: Bidirectional Search

