Logical Inference

Stephen G. Ware
CS 463G

/ Narrative
i/ Intelligence

% University of
7 ntetigence Kentucky

Outline

e Unification

* Resolution theorem proving

Unification

A substitution is a list of variable equivalencies in
the form: {x/t}, where x is a variables and ¢ is a term.

Remember, a term can be:

A constant (i.e. this variable has this value)

* A function (i.e. this variable has this value)

A variables (i.e. two variables have the same value)

Unification

A unifier is a substitution which makes two
predicate logic expressions the same.

Expression 1: pit(x) A adjacent(x,y) — breeze(y)
Expression 2: pit(C1) A adjacent(C1,B1) — breeze(B1)
Unifier: {x/C1,y/B1}

If we substitute the values in the unifier into Expression 1:

Expression 3: pit(x) A adjacent(x,y) — breeze(y)

(the same as Expression 1)

Unification

A unifier is a substitution which makes two
predicate logic expressions the same.

Expression 1: pit(x) A adjacent(x,y) — breeze(y)
Expression 2: pit(C1) A adjacent(C1,B1) — breeze(B1)
Unifier: {x/C1,y/B1}

If we substitute the values in the unifier into Expression 1:

Expression 3: pit(C1) A adjacent(C1,y) = breeze(y)

Unification

A unifier is a substitution which makes two
predicate logic expressions the same.

Expression 1: pit(x) A adjacent(x,y) — breeze(y)
Expression 2: pit(C1) A adjacent(C1,B1) — breeze(B1)
Unifier: {x/C1,y/B1}

If we substitute the values in the unifier into Expression 1:

Expression 3: pit(C1) A adjacent(C1,B1) — breeze(B1)

(the same as Expression 2)

Unification

If a unifier can be found, we say the two expressions
unify.

The process of finding a unifier for two expressions
is called unification.

Unitying Expressions

To unify two expressions X and Y:
If the expressions have different predicates, fail.

If the expressions have different arity, fail.

Unify the terms of the expressions.

Unifying Terms

To unify two terms X and Y:

If either X or Y is a variable:
Let V be the variable and U be the other.
If V has a value W, unify W and U.
Else if U is a function and V occurs in U, fail.
Else set V = U.

Else if X and Y are constants:
If X and Y are the same constant, succeed.
If X and Y are different constants, fail.

Else if X and Y are functions of the same name and arity:

Unify the parameters of X and Y.
Else fail.

Unification Example 1

Exp 1: pit(x)

Exp 2: breeze(y)

Unifier: {}

Unification Example 1

Exp 1: pit(x)
I Different predicates.
Exp 2: breeze(y)

Unifier: fail

Unification Example 2

Exp 1: adjacent(x)

Exp 2: adjacent(y, z)

Unifier: {}

Unification Example 2

Exp 1: adjacent(x) arity=1
I Different arity.

Exp 2: adjacent(y, z) arity =2

Unifier: fail

Unification Example 3

Exp 1: adjacent(x, C1)

Exp 2: adjacent(B1,y)

Unifier: {}

Unification Example 3

Exp 1: adjacent(x, C1)
I Set x = B1
Exp 2: adjacent(B1,y)

Unifier: {x/B1}

Unification Example 3

Exp 1: adjacent(x,C1)

I Sety =C1
Exp 2: adjacent(B1,y)

Unifier: {x/B1,y/C1}

Unification Example 3

Exp 1: adjacent(x, C1)

Exp 2: adjacent(B1,y)

Unifier: {x/B1,y/C1}

Success!

Unification Example 4

Exp 1: adjacent(x, C1)

Exp 2: adjacent(y, B1)

Unifier: {}

Unification Example 4

Exp 1: adjacent(x, C1)

I Setx =y
Exp 2: adjacent(y, B1)

Unifier: {x/y}

Unification Example 4

Exp 1: adjacent(x,C1)
I C1 and B1 are different constants.
Exp 2: adjacent(y, B1)

Unifier: fail

Unification Example 5

Exp 1: adjacent(above(x), x)

Exp 2: adjacent(y,y)

Unifier: {}

Unification Example 5

Exp 1: adjacent(above(x), x)

I Set y = above(x).

Exp 2: adjacent(y,y)

Unifier: {y/above(x)}

Unification Example 5

Exp 1: adjacent(above(x), x)
Set x = y.
Exp 2: adjacent(y,y)

Unifier: {y/above(x), x/v}

Unification Example 5

Exp 1: adjacent(above(x), x)

Set x = above(x).
x occurs in above(x)!

Exp 2: adjacent(y,y)

Unifier: fail

Resolution

The process of resolution provides a simple way to
perform logical inference with any logical
statements in conjunctive normal form (i.e. all
logical statements).

first clause second clause

A A
A\ 4

4 A\
X, V-V, VIA(Y, V- VYV aZ)

(XyV-VX; VY V- VY)

Resolution

The process of resolution provides a simple way to
perform logical inference with any logical
statements in conjunctive normal form (i.e. all
logical statements).

complimentary literals

1 \

X, V-V, VALV VY vV —Z)

(XyV-VX; VY V- VY)

Resolution

The process of resolution provides a simple way to
perform logical inference with any logical
statements in conjunctive normal form (i.e. all
logical statements).

X,V VX, VIIA(Y, V- VYV aZ)
(XyV--VX; VY V- VY)
\. J

result

Resolution

Why does resolution work?
e If Z is true, then the first clause is true.

* It Z is true, =7 is false, so one of Y; V -V Y; must
be true.

* Since one of Y; V -+ V Y; must be true, the result
must be true.

Xy V-vX;vZ) (YLV--VY;VaZ)

(X, V-VX; VY V-V Y))

Resolution

Why does resolution work?

* It Z is false, then —Z is true, so the second clause is
lrue.

* It Z is false, one of X; V ---V X; must be true.

* Since one of X; V ---V X; must be true, the result
must be true.

Xy V-vX;vZ) (YLV--VY;VaZ)

(XyV--VX; VY V- VY)

Proof by Resolution

Again, we use prootf by contradiction.

To prove something true, we add its negation to the
knowledge base and demonstrate that this is
unsatisfiable.

Then we apply resolution until we derive the empty
clause (which we know must be false).

Proof by Resolution

Knolwedge Base:

Vx —breeze(x) — (Vy adjacent(x,y) — —mit(y))

Vx —stench(x) — (Vy adjacent(x,y) — ﬂwumpus(y))
Vx —pit(x) A =wumpus(x) — safe(x)

breeze(B1)

—stench(B1)

stench(A2)

N S N N~

—breeze(A2)
Query safe(B2)

Proof by Resolution

Knolwedge Base:
1. Vx —breeze(x) — (Vy adjacent(x,y) — —mit(y))

2. Vx —stench(x) — (Vy adjacent(x,y) — ﬂwumpus(y))
3. Vx —pit(x) A =wumpus(x) — safe(x)

4. breeze(B1)
5.
6.
/.

Not shown:

* adjacent(A1,A2)
* adjacent(A2,A3)
* adjacent(A3,A4)

* etc...

—stench(B1)
stench(A2)
—breeze(A2)

Query: safe(B2)

Proof by Resolution

Knowledge Base: (in CNF)
1. breeze(a) vV —~adjacent(a,b) V —pit(b)
stench(c) V madjacent(c,d) V =wumpus(d)

pit(e) V wumpus(e) V safe(e)
breeze(B1)

—stench(B1)

stench(A2)

—breeze(A2)

Query: safe(B2)

N S LR N

Proof by Resolution

Knowledge Base:

1. breeze(a) vV —~adjacent(a,b) V —pit(b)
2. stench(c) vV —~adjacent(c,d) V awumpus(d)
3. pit(e) Vwumpus(e) V safe(e)

4. breeze(B1)

5. —stench(B1)

6. stench(A2)

/.
8.

—breeze(A2)
—safe(B2)

Proof by Resolution

Clause 3: pit(e) V wumpus(e) V safe(e)
Clause 8: —safe(B2)

Clause 9:

Unifier = {}

Proof by Resolution

Clause 3: pit(e) V wumpus(e) V safe(e)
Clause 8: —safe(B2)

Clause 9:

Unifier = {e/B2}

Proof by Resolution

Clause 3: pit(e) V wumpus(e) V safe(e)
Clause 8: —safe(B2)
Clause 9: pit(B2) V wumpus(B2)

Unifier = {e/B2}

Proof by Resolution

Clause 3: pit(e) V wumpus(e) V safe(e)
Clause 8: ﬂsa/’ie (B2)
Clause 9: pit(B2) V wumpus(B2)

N Notice in the resulting clause that
Unifier = {e/B2] the unifier has been substituted.

Proof by Resolution

Clause 9: pit(B2) V wumpus(B2)
Clause 1: breeze(a) V madjacent(a,b) V —pit(b)
Clause 10:

Unifier = {}

Proof by Resolution

Clause 9: pit(B2) V wumpus(B2)
Clause 1: breeze(a) V madjacent(a,b) V —pit(b)
Clause 10:

Unifier = {b/B2}

Proof by Resolution

Clause 9: pit(B2) V wumpus(B2)
Clause 1: breeze(a) V madjacent(a,b) V —pit(b)

Clause 10: wumpus(B2) V breeze(a) V —adjacent(a, B2)

Unifier = {b/B2}

Proof by Resolution

Clause 10: wumpus(B2) V breeze(a) V —adjacent(a, B2)
Clause 2: stench(c) V madjacent(c,d) V =-wumpus(d)

Clause: 11:

Unifier = {}

Proof by Resolution

Clause 10: wumpus(B2) V breeze(a) V —adjacent(a, B2)
Clause 2: stench(c) V madjacent(c,d) Vv —=wumpus(d)

Clause: 11:

Unifier = {d/B2}

Proof by Resolution

Clause 10: wumpus(B2) V breeze(a) V —adjacent(a, B2)
Clause 2: stench(c) V madjacent(c,d) V =-wumpus(d)

Clause: 11: breeze(a) V ~adjacent(a, B2) V stench(c) V ~adjacent(c, B2)

Unifier = {d/B2}

Proof by Resolution

Clause: 11: breeze(a) V ~adjacent(a, B2) V stench(c) V ~adjacent(c, B2)
Clause 7: =breeze(A2)

Clause 12:

Unifier = {}

Proof by Resolution

Clause: 11: breeze(a) V ~adjacent(a, B2) V stench(c) V ~adjacent(c, d)
Clause 7: =breeze(A2)
Clause 12:

Unifier = {a/A2}

Proof by Resolution

Clause: 11: breeze(a) V ~adjacent(a, B2) V stench(c) V ~adjacent(c, B2)
Clause 7: =breeze(A2)

Clause 12: —adjacent(A2,B2) V stench(c) V —~adjacent(c, B2)

Unifier = {a/A2}

Proof by Resolution

Clause 12: —adjacent(A2,B2) V stench(c) V —~adjacent(c, B2)
Clause 5: —stench(B1)
Clause 13:

Unifier = {}

Proof by Resolution

Clause 12: —adjacent(A2,B2) V stench(c) V =~adjacent(c, B2)
Clause 5: —stench(B1)
Clause 13:

Unifier = {c/B1}

Proof by Resolution

Clause 12: —adjacent(A2,B2) V stench(c) V —~adjacent(c, B2)
Clause 5: —stench(B1)
Clause 13: madjacent(A2,B2) V =adjacent(B1,B2)

Unifier = {c/B1}

Proof by Resolution

Clause 13: madjacent(A2,B2) V madjacent(B1,B2)
Clause not shown: adjacent(A2, B2)
Clause 14:

Unifier = {}

Proof by Resolution

Clause 13: —adjacent(A2,B2) V madjacent(B1,B2)
Clause not shown: adjacent(A2, B2)
Clause 14:

Unifier = {}

Proof by Resolution

Clause 13: madjacent(A2,B2) V madjacent(B1,B2)
Clause not shown: adjacent(A2, B2)
Clause 14: —adjacent(B1,B2)

Unifier = {}

Proof by Resolution

Clause 14: —adjacent(B1,B2)
Clause not show: adjacent(B1, B2)
Clause 15:

Unifier = {}

Proof by Resolution

Clause 14: —adjacent(B1,B2)
Clause not show: adjacent(B1, B2)
Clause 15:

Unifier = {}

Proof by Resolution

Clause 14: —adjacent(B1,B2)
Clause not show: adjacent(B1, B2)

Clause 15: O

Unifier = {}

Proof by Resolution

Clause 14: —adjacent(B1,B2)
Clause not show: adjacent(B1, B2)
Clause 15: o0 Q.E.D.

Unifier = {}

Value of Resolution

Unlike logic programming...

Resolution is sound, meaning it only deduces true
statements.

When paired with any complete search algorithm,
resolution is also complete, meaning it will
eventually deduce a statement that is logically
equivalent to any entailed statement.

Decidability

Given a first order predicate logic knowledge base and a
query, can we prove whether or not the query is
entailed?

If it is entailed, resolution will succeed and answer “yes.”

If it is not entailed, resolution may run forever and
return no answer.

The question of entailment for FOPL is semidecidable.

Semidecidability

Consider this knowledge base:
 child(y,x) = ancestor(x,y)

* ancestor(x,y) A ancestor(y,z) — ancestor(x, z)

Suppose we have the function father(x), which
represents a person's father.

We want to know if Adam is your ancestor.

Semidecidability

We want to know if Adam is your ancestor.

Adam might be father(x)
or he might be father(father(x))
or he might be father(father(father(x)))...

If he is your ancestor, eventually we will find him.

If not, we will keep nesting forever.

	Default Section
	Slide 1: Logical Inference
	Slide 2: Outline
	Slide 3: Unification
	Slide 4: Unification
	Slide 5: Unification
	Slide 6: Unification
	Slide 7: Unification
	Slide 8: Unifying Expressions
	Slide 9: Unifying Terms
	Slide 10: Unification Example 1
	Slide 11: Unification Example 1
	Slide 12: Unification Example 2
	Slide 13: Unification Example 2
	Slide 14: Unification Example 3
	Slide 15: Unification Example 3
	Slide 16: Unification Example 3
	Slide 17: Unification Example 3
	Slide 18: Unification Example 4
	Slide 19: Unification Example 4
	Slide 20: Unification Example 4
	Slide 21: Unification Example 5
	Slide 22: Unification Example 5
	Slide 23: Unification Example 5
	Slide 24: Unification Example 5
	Slide 25: Resolution
	Slide 26: Resolution
	Slide 27: Resolution
	Slide 28: Resolution
	Slide 29: Resolution
	Slide 30: Proof by Resolution
	Slide 31: Proof by Resolution
	Slide 32: Proof by Resolution
	Slide 33: Proof by Resolution
	Slide 34: Proof by Resolution
	Slide 35: Proof by Resolution
	Slide 36: Proof by Resolution
	Slide 37: Proof by Resolution
	Slide 38: Proof by Resolution
	Slide 39: Proof by Resolution
	Slide 40: Proof by Resolution
	Slide 41: Proof by Resolution
	Slide 42: Proof by Resolution
	Slide 43: Proof by Resolution
	Slide 44: Proof by Resolution
	Slide 45: Proof by Resolution
	Slide 46: Proof by Resolution
	Slide 47: Proof by Resolution
	Slide 48: Proof by Resolution
	Slide 49: Proof by Resolution
	Slide 50: Proof by Resolution
	Slide 51: Proof by Resolution
	Slide 52: Proof by Resolution
	Slide 53: Proof by Resolution
	Slide 54: Proof by Resolution
	Slide 55: Proof by Resolution
	Slide 56: Proof by Resolution
	Slide 57: Proof by Resolution
	Slide 58: Value of Resolution
	Slide 59: Decidability
	Slide 60: Semidecidability
	Slide 61: Semidecidability

