
UCPOP

Gage Birchmeier

Background

● Most planners at the time had one of two limitations:
○ Only using STRIPS notation

○ Output is a totally ordered plan

● Learned previously about POP which uses STRIPS to give a partially ordered plan

Action Description Language (ADL)

● Expands on STRIPS to allow more features

● Existential (∃) and Universal (∀) Quantifiers

● Equality (=) and inequality (≠)

Introducing UCPOP

● Universal Conditional Partial Order Planner

● Uses ADL instead of STRIPS

● Produces a nonlinear plan

● Can solve more problems than POP because it uses ADL

● Allows for conditionals and quantifiers

How it works

● Very similar to POP algorithm from last time
● We must search through ground clauses to find goals, subgoals, and protect causal links

1. Terminate if there’s no more goals
2. Select a goal
3. Find an operator that gives the effect we’re looking for
4. Generate new subgoals
5. Protect causal links (Promotion, Demotion, Separation)
6. Recurse

Expanding quantifiers to get ground clauses

● When finding operators, subgoals, we need ground clauses rather than quantifiers

● The universal base ϒ gives us a way to expand quantifiers

● We can apply ϒ to this to receive the following:

Separation

● Another way besides promotion and demotion to protect causal links

● Given causal link rerrrr with threat S
k
, add {S

i
 < S

k
 < S

j
} as a constraint

● Two different ways to separate
○ Add more constraints on existential variables that cause the variables to not interfere thus removing the

threat

○ Create a new goal that will separate the conflicting variables when resolved

Briefcase Problem

● Two locations, Home (H) and Office (W)

● Three items, a Paycheck (P) and a dictionary (D), and a Briefcase (B)

● All three items start at home, with the Paycheck inside the Briefcase

● Operators:
○ MovB(M, L) which moves the briefcase and everything in it from location M to the location L

○ PutIn(I, L) which puts item I in the briefcase at the location L

○ TakeOut(I) which takes item I out of the briefcase

● Goal: leave the paycheck at home and take the briefcase and dictionary to the office

Briefcase Problem (Cont.)

● We select At(B, Office) as the first goal

● Then use MovB(?m1, office) to move the briefcase to the office

Briefcase Problem (Cont.)

● Next we select At(D, office) as a goal

● We recognize we can solve this with MovB, assuming the dictionary is in the briefcase

● In(D) gets added as a subgoal before MovB

Briefcase Problem (Cont.)

● Next we select At(P, home) as a goal

● This is part of the initial state of the system

● However this causal link is threatened by the MovB step since the paycheck is in the briefcase

● All items within the briefcase are moved

Briefcase Problem (Cont.)

● We add a new subgoal, ~In(P) to remove the paycheck from the briefcase

● This is solved by taking the paycheck out of the briefcase before moving it

Briefcase Problem (Cont.)

● We now select In(D) as a goal

● This is solved by putting the dictionary in the briefcase before moving it

● We now have two new goals, B and D must be at home

Briefcase Problem (Cont.)

● We can resolve these last two goals from the initial state of the problem

● ?m1 can be assigned home
● The plan is complete!

