
Model Checking

Stephen G. Ware

CS 463G

Logical Inference

Given a knowledge base of known facts, can we
derive new facts? Such facts are said to be entailed
by the knowledge base.

Wumpus World

• The player, who can
navigate the grid world

• The wumpus, who will
eat the player if the player
blunders into its square

• Bottomless pits

• A chest of goldA B C D

4

3

2

1

Wumpus World

• When adjacent to the
wumpus, the player
detects a stench.

• When adjacent to a pit,
the player detects a
breeze.

• When in the square with
the gold, the player
detects a glimmer.

A B C D

4

3

2

1

Wumpus World

Actions:

• Move N, S, E, W

• Grab the treasure

A B C D

4

3

2

1

Propositional Representation

Propositions:

• 𝐵𝐴1 = “There is a breeze at A1.”

• 𝐵𝐵1 = “There is a breeze at B1.”

• 𝑃𝐶1 = “There is a pit at C1.”

• 𝑃𝐴2 = “There is a pit at A2.”

• 𝑃𝐵2 = “There is a pit at B2.”

… and so on

Knowledge Base + Sensing

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

… and so on

• ¬𝐵𝐴1

• 𝐵𝐵1

Events:

The player begins at square
A1 and senses no breeze.

The player moves to square
B1 and senses a breeze.

Possible Worlds

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

… and so on

• ¬𝐵𝐴1

• 𝐵𝐵1

Possible Worlds

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

… and so on

• ¬𝐵𝐴1

• 𝐵𝐵1

Possible Worlds

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

… and so on

• ¬𝐵𝐴1

• 𝐵𝐵1

Possible Worlds

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

… and so on

• ¬𝐵𝐴1

• 𝐵𝐵1

Possible Worlds

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

… and so on

• ¬𝐵𝐴1

• 𝐵𝐵1

Possible Worlds

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

… and so on

• ¬𝐵𝐴1

• 𝐵𝐵1

• ¬𝑃𝐴2

• 𝑃𝐵2 ∨ 𝑃𝐶1

Logical Entailment

A fact is logically entailed by a knowledge base if it
is true in every possible world.

Computational Deduction

How can we replicate this logical inference
procedure on a computer using a simple knowledge
representation and a reusable algorithm?

Begin by putting everything into a common format,
such as conjunctive normal form (CNF).

Then, explore assignments of true or false to
variables until we find one that works.

Model Checking

A model is an assignment (or partial assignment) of
truth values to all the propositional variables for a
problem.

The goal of model checking is to find a model which
satisfies all the known facts in the world.

Model checking is very similar to constraint
satisfaction problem solving.

Propositional Satisfiability

Given a logical expression in CNF and a model, we
say that the model satisfies the expression if the
expression can be reduced to true.

Interesting historical fact: Propositional SAT was the
first problem proven to be NP-complete and is the
basis on which all NP-completeness proofs rest.

Wumpus in CNF

Knowledge Base:
𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

Remember: (𝑥 𝑦) ((𝑥 → 𝑦) ∧ (𝑦 → 𝑥))

Wumpus in CNF

Knowledge Base:
𝐵𝐴1 → 𝑃𝐴2 ∨ 𝑃𝐵1 ∧ 𝑃𝐴2 ∨ 𝑃𝐵1 → 𝐵𝐴1 ∧

𝐵𝐵1 → 𝑃𝐵2 ∨ 𝑃𝐶1 ∧ 𝑃𝐵2 ∨ 𝑃𝐶1 → 𝐵𝐵1

Remember: 𝑥 ∧ 𝑦 ∧ 𝑧 𝑥 ∧ 𝑦 ∧ 𝑧

Wumpus in CNF

Knowledge Base:
𝐵𝐴1 → 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝑃𝐴2 ∨ 𝑃𝐵1 → 𝐵𝐴1 ∧
𝐵𝐵1 → 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝑃𝐵2 ∨ 𝑃𝐶1 → 𝐵𝐵1

Remember: (𝑥 → 𝑦) (¬𝑥 ∨ 𝑦)

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
¬ 𝑃𝐴2 ∨ 𝑃𝐵1 ∨ 𝐵𝐴1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
¬ 𝑃𝐵2 ∨ 𝑃𝐶1 ∨ 𝐵𝐵1

Remember: 𝑥 ∨ 𝑦 ∨ 𝑧 𝑥 ∨ 𝑦 ∨ 𝑧

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
¬ 𝑃𝐴2 ∨ 𝑃𝐵1 ∨ 𝐵𝐴1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
¬ 𝑃𝐵2 ∨ 𝑃𝐶1 ∨ 𝐵𝐵1

Remember: ¬(𝑥 ∨ 𝑦) (¬𝑥 ∧ ¬𝑦)

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

¬𝑃𝐴2 ∧ ¬𝑃𝐵1 ∨ 𝐵𝐴1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧

¬𝑃𝐵2 ∧ ¬𝑃𝐶1 ∨ 𝐵𝐵1

Remember: 𝑥 ∧ 𝑦 ∨ 𝑧 𝑧 ∨ 𝑥 ∧ (𝑧 ∨ 𝑦)

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧ 𝐵𝐴1 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧

𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧ 𝐵𝐵1 ∨ ¬𝑃𝐶1

Remember: 𝑥 ∧ (𝑦 ∧ 𝑧) 𝑥 ∧ 𝑦 ∧ 𝑧

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧
𝐵𝐴1 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧
𝐵𝐴1 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Each of these is a
disjunctive clause.

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧
𝐵𝐴1 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Together, they form
a conjunction of
disjunctive clauses…
a CNF expression!

Wumpus in CNF

Equivalent SAT file for Project 2:

(and (or (not BA1) PA2 PB1)

(or BA1 (not PA2))

(or BA1 (not PB1))

(or (not BB1) PB2 PC1)

(or BB1 (not PB2))

(or BB1 (not PC1)))

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧
𝐵𝐴1 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Is this initial set of facts
(before any sensing
occurs) satisfiable? In
other words, does it
allow at least one
possible world?

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧
𝐵𝐴1 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 =?
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

Try to find an
assignment of T/F
to the variables
which reduces all
clauses to T.

Wumpus in CNF

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧
𝐵𝐴1 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 =?
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

Each clause is a
disjunction. Only
one variable in it
needs to be true.
As soon as one
variable in the
clause is T, the
whole clause is T.

Wumpus in CNF

Knowledge Base:
¬𝐹 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐹 ∨ ¬𝑃𝐴2 ∧
𝐹 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

Each clause is a
disjunction. Only
one variable in it
needs to be true.
As soon as one
variable in the
clause is T, the
whole clause is T.

Wumpus in CNF

Knowledge Base:
𝑇 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐹 ∨ ¬𝑃𝐴2 ∧
𝐹 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

Each clause is a
disjunction. Only
one variable in it
needs to be true.
As soon as one
variable in the
clause is T, the
whole clause is T.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
𝐹 ∨ ¬𝑃𝐴2 ∧
𝐹 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

Each clause is a
disjunction. Only
one variable in it
needs to be true.
As soon as one
variable in the
clause is T, the
whole clause is T.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
𝐹 ∨ ¬𝑃𝐴2 ∧
𝐹 ∨ ¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

When we know a
literal is F, we can
remove it from
the clause,
because it cannot
help to make it T.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
¬𝑃𝐴2 ∧
¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

When we know a
literal is F, we can
remove it from
the clause,
because it cannot
help to make it T.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
¬𝑃𝐴2 ∧
¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

If ever a clause
becomes F, we
know the model
cannot satisfy the
expression.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
¬𝑇 ∧
¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 = 𝑇
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

If ever a clause
becomes F, we
know the model
cannot satisfy the
expression.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
𝐹 ∧
¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 = 𝑇
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =?

If ever a clause
becomes F, we
know the model
cannot satisfy the
expression.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
𝐹 ∧
¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 = 𝑇
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =? We need to

backtrack and try
a different value
for PA2.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
¬𝑃𝐴2 ∧
¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =? We need to

backtrack and try
a different value
for PA2.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
¬𝐹 ∧
¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 = 𝐹
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =? We need to

backtrack and try
a different value
for PA2.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
𝑇 ∧
¬𝑃𝐵1 ∧
¬𝐵𝐵1 ∨ 𝑃𝐵2 ∨ 𝑃𝐶1 ∧
𝐵𝐵1 ∨ ¬𝑃𝐵2 ∧
𝐵𝐵1 ∨ ¬𝑃𝐶1

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 =?
𝑃𝐴2 = 𝐹
𝑃𝐵1 =?
𝑃𝐵2 =?
𝑃𝐶1 =? We need to

backtrack and try
a different value
for PA2.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
𝑇 ∧
¬𝐹 ∧
¬𝐹 ∨ 𝐹 ∨ 𝐹 ∧
𝐹 ∨ ¬𝐹 ∧
𝐹 ∨ ¬𝐹

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 = 𝐹
𝑃𝐴2 = 𝐹
𝑃𝐵1 = 𝐹
𝑃𝐵2 = 𝐹
𝑃𝐶1 = 𝐹

This model
satisfies the
expression. The
Wumpus World
rules allow at
least one possible
world.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
𝑇 ∧
𝑇 ∧
𝑇 ∨ 𝐹 ∨ 𝐹 ∧
𝐹 ∨ 𝑇 ∧
𝐹 ∨ 𝑇

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 = 𝐹
𝑃𝐴2 = 𝐹
𝑃𝐵1 = 𝐹
𝑃𝐵2 = 𝐹
𝑃𝐶1 = 𝐹

This model
satisfies the
expression. The
Wumpus World
rules allow at
least one possible
world.

Wumpus in CNF

Knowledge Base:
𝑇 ∧
𝑇 ∧
𝑇 ∧
𝑇 ∧
𝑇 ∧
𝑇

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 = 𝐹
𝑃𝐴2 = 𝐹
𝑃𝐵1 = 𝐹
𝑃𝐵2 = 𝐹
𝑃𝐶1 = 𝐹

This model
satisfies the
expression. The
Wumpus World
rules allow at
least one possible
world.

Wumpus in CNF

Knowledge Base:
𝑇

Variables:
𝐵𝐴1 = 𝐹
𝐵𝐵1 = 𝐹
𝑃𝐴2 = 𝐹
𝑃𝐵1 = 𝐹
𝑃𝐵2 = 𝐹
𝑃𝐶1 = 𝐹

This model
satisfies the
expression. The
Wumpus World
rules allow at
least one possible
world.

Naïve SAT Solver
Begin with every variable’s value unassigned.

To find a model which satisfies a CNF expression:

If every clause is true, return true.

If any clause is empty, return false.

Choose an unassigned variable V.

Set V=T. Try to find a model that satisfies.

Set V=F. Try to find a model that satisfies.

Return false.

Notice the similarity to the CSP solver!

Using SAT for Inference

Given a knowledge base (which is known to be
satisfiable) and some fact, how can we tell if that fact is
entailed?

One approach: Add the fact to the knowledge base
and check if it is still satisfiable.

Will this work?

No! This will only tell us if there exists a possible
world in which that fact is true, not if it is actually true.

Possible Worlds

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

Query:

• 𝑃𝐵2

It might be true, but
also it might not be.

Possible Worlds

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

2

1

A B C

Knowledge Base:

• 𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1

• 𝐵𝐵1 𝑃𝐵2 ∨ 𝑃𝐶1

Query:

• ¬𝑃𝐴2

It is true in all
possible worlds!

Proof By Contradiction

Given some proposition 𝑃 that you want to prove
true, assume ¬𝑃 and show that this leads to an
absurd conclusion.

In other words, prove 𝑃 by showing that ¬𝑃 is
impossible.

In other words, add ¬𝑃 to the knowledge base and
show that it has become unsatisfiable.

Wumpus SAT

Knowledge Base:

• There is a breeze at A1 if
and only if there is a pit at
A2 or a pit at B1.

• There is no breeze at A1.

Query:

There is no pit in square A2.

𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

¬𝐵𝐴1

¬𝑃𝐴2

Wumpus SAT

Knowledge Base:

• There is a breeze at A1 if
and only if there is a pit at
A2 or a pit at B1.

• There is no breeze at A1.

Negated Query:

There is a pit in square A2.

𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

¬𝐵𝐴1

𝑃𝐴2

Wumpus SAT

Knowledge Base:

• There is a breeze at A1 if
and only if there is a pit at
A2 or a pit at B1.

• There is no breeze at A1.

• There is a pit in square A2.

𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

¬𝐵𝐴1 ∧

𝑃𝐴2

We add the negated query to the knowledge base
and hope that it is unsatisfiable.

Wumpus SAT

Knowledge Base:

• There is a breeze at A1 if
and only if there is a pit at
A2 or a pit at B1.

• There is no breeze at A1.

• There is a pit in square A2.

𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

¬𝐵𝐴1 ∧

𝑃𝐴2

In other words, we can prove ¬𝑃𝐴2 by showing that
it can’t possibly be the case that 𝑃𝐴2.

Wumpus SAT

Knowledge Base:
𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

¬𝐵𝐴1 ∧
𝑃𝐴2

In other words, we can prove ¬𝑃𝐴2 by showing that
it can’t possibly be the case that 𝑃𝐴2.

Wumpus SAT

Knowledge Base:
𝐵𝐴1 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

¬𝐵𝐴1 ∧
𝑃𝐴2

First, convert to conjunctive normal form.

Wumpus SAT

Knowledge Base:
𝐵𝐴1 → 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝑃𝐴2 ∨ 𝑃𝐵1 → 𝐵𝐴1 ∧

¬𝐵𝐴1 ∧
𝑃𝐴2

First, convert to conjunctive normal form.

Wumpus SAT

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
¬ 𝑃𝐴2 ∨ 𝑃𝐵1 ∨ 𝐵𝐴1 ∧

¬𝐵𝐴1 ∧
𝑃𝐴2

First, convert to conjunctive normal form.

Wumpus SAT

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

¬𝑃𝐴2 ∧ ¬𝑃𝐵1 ∨ 𝐵𝐴1 ∧
¬𝐵𝐴1 ∧
𝑃𝐴2

First, convert to conjunctive normal form.

Wumpus SAT

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧ (𝐵𝐴1 ∨ ¬𝑃𝐵1) ∧
¬𝐵𝐴1 ∧
𝑃𝐴2

First, convert to conjunctive normal form.

Wumpus SAT

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧ (𝐵𝐴1 ∨ ¬𝑃𝐵1) ∧

¬𝐵𝐴1 ∧
𝑃𝐴2

First, convert to conjunctive normal form.

Wumpus SAT

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧

(𝐵𝐴1 ∨ ¬𝑃𝐵1) ∧
¬𝐵𝐴1 ∧
𝑃𝐴2

First, convert to conjunctive normal form.

Wumpus SAT

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧

(𝐵𝐴1 ∨ ¬𝑃𝐵1) ∧
¬𝐵𝐴1 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
¬𝑇 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝑇 ∨ ¬𝑃𝐴2 ∧

(𝑇 ∨ ¬𝑃𝐵1) ∧
¬𝑇 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝑇
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
𝐹 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧

𝑇 ∧
𝑇 ∧
𝐹 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝑇
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
𝐹

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝑇
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧

(𝐵𝐴1 ∨ ¬𝑃𝐵1) ∧
¬𝐵𝐴1 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
¬𝐹 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐹 ∨ ¬𝑃𝐴2 ∧

(𝐹 ∨ ¬𝑃𝐵1) ∧
¬𝐹 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
𝑇 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐹 ∨ ¬𝑃𝐴2 ∧

(𝐹 ∨ ¬𝑃𝐵1) ∧
𝑇 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
𝑇 ∧
¬𝑃𝐴2 ∧
¬𝑃𝐵1 ∧
𝑇 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
¬𝑃𝐵1 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
¬𝑇 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝑇

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
𝐹 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝑇

Wumpus SAT

Knowledge Base:
𝐹

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝑇

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
¬𝑃𝐵1 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 =?

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
¬𝐹 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
𝑇 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
𝑃𝐴2

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
¬𝑇 ∧
𝑇

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 = 𝑇
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
𝐹 ∧
𝑇

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 = 𝑇
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
𝐹

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 = 𝑇
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
¬𝐹 ∧
𝐹

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 = 𝐹
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
𝑇 ∧
𝐹

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 = 𝐹
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
𝐹

Now, check if this expression can be satisfied.
Remember: we hope that it cannot be!

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 = 𝐹
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
𝑃𝐴2

There is no way to satisfy this expression!
We have proved there is no pit in A2.

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
𝑃𝐴2

There is no way to satisfy this expression!
We have proved ¬𝑃𝐴2.

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝐹

Wumpus SAT

Knowledge Base:
¬𝑃𝐴2 ∧
𝑃𝐴2

There is no way to satisfy this expression!
We have proved ¬𝑃𝐴2 because 𝑃𝐴2 is impossible.

Variables:
𝐵𝐴1 = 𝐹
𝑃𝐴2 =?
𝑃𝐵1 = 𝐹

Using SAT for Inference

Query: 𝑃𝐴2

KB ∧ ¬𝑃𝐴2 is satisfiable, so we cannot conclude 𝑃𝐴2.

Query: ¬𝑃𝐴2

KB ∧ 𝑃𝐴2 is not satisfiable, so we can conclude ¬𝑃𝐴2.

¬𝑃𝐴2 is entailed by the knowledge base.

Improving the SAT Solver
Begin with every variable’s value unassigned.

To find a model which satisfies a CNF expression:

If every clause is true, return true.

If any clause is empty, return false.

Choose an unassigned variable V.

Set V=T. Try to find a model that satisfies.

Set V=F. Try to find a model that satisfies.

Return false.

Improving the SAT Solver
Begin with every variable’s value unassigned.

To find a model which satisfies a CNF expression:

If every clause is true, return true.

If any clause is empty, return false.

Choose an unassigned variable V.

Set V=T. Try to find a model that satisfies.

Set V=F. Try to find a model that satisfies.

Return false.

Which variable to choose?

Should we try assigning 𝐵𝐴1 = 𝑇?

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧

(𝐵𝐴1 ∨ ¬𝑃𝐵1) ∧
¬𝐵𝐴1 ∧
𝑃𝐴2

Variables:
𝐵𝐴1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?

Which variable to choose?

This is called a “unit clause” and 𝐵𝐴1 can only be 𝐹.

Knowledge Base:
¬𝐵𝐴1 ∨ 𝑃𝐴2 ∨ 𝑃𝐵1 ∧
𝐵𝐴1 ∨ ¬𝑃𝐴2 ∧

(𝐵𝐴1 ∨ ¬𝑃𝐵1) ∧
¬𝐵𝐴1 ∧
𝑃𝐴2

Variables:
𝐵𝐴1 =?
𝑃𝐴2 =?
𝑃𝐵1 =?

Which variable to choose?

Is there any reason to try assigning 𝑍 = 𝐹?

Knowledge Base:
𝑋 ∨ 𝑌 ∨ 𝑍 ∧
¬𝑌 ∨ 𝑍

Variables:
𝑋 =?
𝑌 =?
𝑍 =?

Which variable to choose?

Knowledge Base:
𝑋 ∨ 𝑌 ∨ 𝑍 ∧
¬𝑌 ∨ 𝑍

Variables:
𝑋 =?
𝑌 =?
𝑍 =?

𝑍 is called a “pure symbol” because it always
appears with the same valence. In other words, we
only ever see 𝑍, and we never see ¬𝑍.

There is no reason to bother trying 𝑍 = 𝐹.

DPLL Algorithm
Begin with every variable’s value unassigned.

To find a model which satisfies a CNF expression:

Simplify the model by assigning unit clauses.

Simplify the model by assigning pure symbols.

If every clause is true, return true.

If any clause is empty, return false.

Choose an unassigned variable V.

Set V=T. Try to find a model that satisfies.

Set V=F. Try to find a model that satisfies.

Return false.

Which variable to choose?

Components can be solved separately, in parallel.

Knowledge Base:
𝐴 ∨ 𝐵 ∨ 𝐶 ∧
¬𝐴 ∨ 𝐵 ∧
𝑋 ∨ 𝑌 ∨ 𝑍 ∧

¬𝑌

Variables:
𝐴 =?
𝐵 =?
𝐶 =?
𝑋 =?
𝑌 =?
𝑍 =?

Borrowing from CSPs

• Variable and value ordering

• Intelligent backtracking and backjumping

• Local search

Review: Local Search

Traditional Search:
• Start with an empty solution.
• At each step, add one thing to the solution.
• Return solution on success; backtrack on fail.
Local Search:
• Start with a random (probably bad) solution.
• At each step, make one change.
• Run until solution found or out of time.

Local Search SAT Solver
Randomly assign T or F to every variable.

Until you run out of time:

If every clause is true, return solution.

Choose a variable V.

Flip the variable (T → F or F → T).

Local Search SAT Solver
Randomly assign T or F to every variable.

Until you run out of time:

If every clause is true, return solution.

Choose a variable V.

Flip the variable (T → F or F → T).

Review: Local Search

Local Search:

• Start with a random (probably bad) solution.

• At each step, make one change.
• Usually make a change that improves the solution.
• Sometimes make a random change.
• Restart if stuck in a local maxima.

• Run until solution found or out of time.

Review: Local Search

Local Search:

• Start with a random (probably bad) solution.

• At each step, make one change.
• Usually make a change that improves the solution.
• Sometimes make a random change.
• Restart if stuck in a local maxima.

• Run until solution found or out of time.

Solution Quality (Utility)

How do we measure which solutions to a SAT
problem are better than others?

If a problem has n clauses, then a solution has 0
unsatisfied clauses and n satisfied clauses.

The number of satisfied clauses is a good measure of
how good a solution is. In other words, solutions
where more clauses are satisfied are better than ones
where fewer clauses are satisfied.

GSAT Algorithm
Let n be the "noise parameter," where 0 < n < 1.

Randomly assign T or F to every variable.

Until you run out of time:

If every clause is true, return solution.

With probability p < n:

Flip a random variable.

Else:

Flip the variable that leads to higher utility.

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=? B=?

Expression: (and (or ? ?) (or (not ?) ?))

Start with a random assignment of values.

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=T B=F

Expression: (and (or T F) (or (not T) F))

Start with a random assignment of values.

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=T B=F

Expression: (and (or T F) (or (not T) F))

Is this a solution?

No, so we need to choose a variable to flip.

satisfied not satisfied

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=T B=F

Expression: (and (or T F) (or (not T) F))

Assume the noise parameter is 𝑛 = 0.25.

25% of the time, we choose a variable at random.

We generate a random number 𝑝 = 0.13 and 𝑝 < 𝑛,
so we pick a variable at random, and we get A.

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=F B=F

Expression: (and (or F F) (or (not F) F))

Flip A from T to F.

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=F B=F

Expression: (and (or F F) (or (not F) F))

Is this a solution?

No, so we need to choose a variable to flip.

not satisfied satisfied

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=F B=F

Expression: (and (or F F) (or (not F) F))

We generate a random number 𝑝 = 0.82 and 𝑝 > 𝑛, so
we will flip the variable that results in the most clauses
being satisfied.

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=F B=F

Expression: (and (or F F) (or (not F) F))

If we flip A from F to T, how many will be satisfied?

If we flip B from F to T, how many will be satisfied?

So B is the better choice.

1

2

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=F B=T

Expression: (and (or F T) (or (not F) T))

Flip B from F to T.

GSAT Example

Problem: (and (or A B) (or (not A) B))

Solution: A=F B=T

Expression: (and (or F T) (or (not F) T))

Is this a solution?

Yes!

satisfied satisfied

Improving GSAT

Two features of GSAT we would like to improve:

• Consider flipping every variable at every step.

• Random moves are a little too random.

WalkSAT Algorithm
Let n be the "noise parameter," where 0 < n < 1.

Randomly assign T or F to every variable.

Until you run out of time:

If every clause is true, return solution.

Randomly choose an unsatisfied clause c.

With probability p < n:

Flip a random variable in c.

Else:

Flip the variable in c that leads to higher utility.

GSAT vs. WalkSAT

• Algorithms are very similar. The only difference is
how they choose which variable to flip.

• GSAT considers every variable every time.

• WalkSAT first chooses an unsatisfied clause, then
chooses a variable in that clause.

• WalkSAT has a chance of improving the solution
even when making a random move.

	Slide 1: Model Checking
	Slide 2: Logical Inference
	Slide 3: Wumpus World
	Slide 4: Wumpus World
	Slide 5: Wumpus World
	Slide 6: Propositional Representation
	Slide 7: Knowledge Base + Sensing
	Slide 8: Possible Worlds
	Slide 9: Possible Worlds
	Slide 10: Possible Worlds
	Slide 11: Possible Worlds
	Slide 12: Possible Worlds
	Slide 13: Possible Worlds
	Slide 14: Logical Entailment
	Slide 15: Computational Deduction
	Slide 16: Model Checking
	Slide 17: Propositional Satisfiability
	Slide 18: Wumpus in CNF
	Slide 19: Wumpus in CNF
	Slide 20: Wumpus in CNF
	Slide 21: Wumpus in CNF
	Slide 22: Wumpus in CNF
	Slide 23: Wumpus in CNF
	Slide 24: Wumpus in CNF
	Slide 25: Wumpus in CNF
	Slide 26: Wumpus in CNF
	Slide 27: Wumpus in CNF
	Slide 28: Wumpus in CNF
	Slide 29: Wumpus in CNF
	Slide 30: Wumpus in CNF
	Slide 31: Wumpus in CNF
	Slide 32: Wumpus in CNF
	Slide 33: Wumpus in CNF
	Slide 34: Wumpus in CNF
	Slide 35: Wumpus in CNF
	Slide 36: Wumpus in CNF
	Slide 37: Wumpus in CNF
	Slide 38: Wumpus in CNF
	Slide 39: Wumpus in CNF
	Slide 40: Wumpus in CNF
	Slide 41: Wumpus in CNF
	Slide 42: Wumpus in CNF
	Slide 43: Wumpus in CNF
	Slide 44: Wumpus in CNF
	Slide 45: Wumpus in CNF
	Slide 46: Wumpus in CNF
	Slide 47: Wumpus in CNF
	Slide 48: Naïve SAT Solver
	Slide 49: Using SAT for Inference
	Slide 50: Possible Worlds
	Slide 51: Possible Worlds
	Slide 52: Proof By Contradiction
	Slide 53: Wumpus SAT
	Slide 54: Wumpus SAT
	Slide 55: Wumpus SAT
	Slide 56: Wumpus SAT
	Slide 57: Wumpus SAT
	Slide 58: Wumpus SAT
	Slide 59: Wumpus SAT
	Slide 60: Wumpus SAT
	Slide 61: Wumpus SAT
	Slide 62: Wumpus SAT
	Slide 63: Wumpus SAT
	Slide 64: Wumpus SAT
	Slide 65: Wumpus SAT
	Slide 66: Wumpus SAT
	Slide 67: Wumpus SAT
	Slide 68: Wumpus SAT
	Slide 69: Wumpus SAT
	Slide 70: Wumpus SAT
	Slide 71: Wumpus SAT
	Slide 72: Wumpus SAT
	Slide 73: Wumpus SAT
	Slide 74: Wumpus SAT
	Slide 75: Wumpus SAT
	Slide 76: Wumpus SAT
	Slide 77: Wumpus SAT
	Slide 78: Wumpus SAT
	Slide 79: Wumpus SAT
	Slide 80: Wumpus SAT
	Slide 81: Wumpus SAT
	Slide 82: Wumpus SAT
	Slide 83: Wumpus SAT
	Slide 84: Wumpus SAT
	Slide 85: Wumpus SAT
	Slide 86: Wumpus SAT
	Slide 87: Wumpus SAT
	Slide 88: Wumpus SAT
	Slide 89: Wumpus SAT
	Slide 90: Using SAT for Inference
	Slide 91: Improving the SAT Solver
	Slide 92: Improving the SAT Solver
	Slide 93: Which variable to choose?
	Slide 94: Which variable to choose?
	Slide 95: Which variable to choose?
	Slide 96: Which variable to choose?
	Slide 97: DPLL Algorithm
	Slide 98: Which variable to choose?
	Slide 99: Borrowing from CSPs
	Slide 100: Review: Local Search
	Slide 101: Local Search SAT Solver
	Slide 102: Local Search SAT Solver
	Slide 103: Review: Local Search
	Slide 104: Review: Local Search
	Slide 105: Solution Quality (Utility)
	Slide 106: GSAT Algorithm
	Slide 107: GSAT Example
	Slide 108: GSAT Example
	Slide 109: GSAT Example
	Slide 110: GSAT Example
	Slide 111: GSAT Example
	Slide 112: GSAT Example
	Slide 113: GSAT Example
	Slide 114: GSAT Example
	Slide 115: GSAT Example
	Slide 116: GSAT Example
	Slide 117: Improving GSAT
	Slide 118: WalkSAT Algorithm
	Slide 119: GSAT vs. WalkSAT

