
Reviving Partial Order Planning
by XuanLong Nguyen & Subbarao

Kambhampati

Presented by Fairoz Nower Khan

History of planning

A revival for partial order planning

POP can be made very efficient by exploiting the same ideas
that scaled up state search and Graphplan planners
● Effective heuristic search control
● Use of reachability analysis
● Handling of disjunctive constraints

POP review
Flaw: Open condition OR unsafe
link
Solution plan: A partial plan with
no remaining flaw
• Every open condition must be
satisfied by some action
• No unsafe links should exist (i.e.
the plan is consistent)

POP Algorithm
1. Let P be an initial plan
2. Flaw Selection: Choose a flaw f (either open condition or unsafe link)
3. Flaw resolution:
• If f is an open condition,
 choose an action S that achieves f
• If f is an unsafe link,
 choose promotion or demotion
• Update P
• Return NULL if no resolution exist
4. If there is no flaw left, return P, else go to 2.

Main ideas from the paper
1. Ranking partial plans by an effective distance-based
heuristic estimator

2. Exploiting reachability analysis by using invariants to
discover hidden conflicts in the plan.

3. Resolving threatened links by posting disjunctive ordering
constraints into the partial plan to avoid unnecessary and
exponential multiplication of failures due to
promotion/demotion splitting

1. Ranking partial plans using distance-based Heuristic

1. Ranking Function: f(P) = g(P) + w h(P)

g(P): number of actions in P

h(P): estimate of number of new actions needed to
refine P to become a solution plan

w: increase the greediness of the heuristic search

1. Ranking partial plans using distance-based heuristic

2. Estimating h(P) using Planning Graph
 h(P) is estimated by relaxing the negative effects
 present in the partial plan P

 Negative effects of actions are relaxed
● P has no threatened causal link flaws
● h(P) becomes the number of actions (cost(S))

needed to achieve the set of open condition S from
the initial state

Distance-based heuristic estimate
Estimate cost(S)
1. Build a planning graph PG from the initial state.
2. Cost(S) := 0 if all subgoals in S are in level 0.
3. Let p be a subgoal in S that appears last in PG.
4. Pick an action a in the graph that first achieves p
5. Update

cost(S) := 1 + cost(S + Prec(a) – Eff(a))
6. Replace S = S + Prec(a) – Eff(a), goto 2

5. cost(S) := 1 + cost(S + Prec(a) – Eff(a))
6. Replace S = S + Prec(a) – Eff(a), goto 2

Cost = 1 + Cost (s)

Cost = 1 + 1 + Cost (s)Cost = 2 + 0 = 2

2. Handling unsafe link flaws
● Previously, we know that a threatened causal link is

resolved by either promotion or demotion
● Splitting the current partial plan into two partial plans

2. Handling unsafe link flaws
● For each unsafe link threatened by another step Sk:

Add disjunctive constraint to O: Sk < Si V Si < Sj

● The disjunctive ordering constraint captures both the promotion
and demotion possibilities without prematurely splitting a single
failing plan unnecessarily multiplied into many descendant plans

● Whenever a new ordering constraint is introduced to O, perform
the constraint propagations

2. Handling unsafe link flaws

● If action a1 comes before a2, and a2 comes before a3, then a1 must
come before a3.

● If a1 comes before a2 and a2 comes before a1, it's impossible, so it's
false.

● If a1 comes before a2 and a2 comes before a1 or a3 comes before a4,
then a3 must come before a4

3. Detecting indirect conflicts using reachability analysis

Reachability analysis to detect invariant:

● To detect hidden conflicts in plans, we need to understand what
states the plan can reach. This type of information, known as
reachability information, has been crucial in improving state space
planners. It helps to identify conflicts and inconsistencies within
plans.

● Graphplan's planning graph structure is applied to identify mutex
constraints. Mutexes are conditions or actions that cannot occur
together. At the final level of the planning graph, the mutexes
present there are known as state invariants.

3. Detecting indirect conflicts using reachability analysis

Reachability analysis to detect invariant:

● Cutset: Set of literals that must be true at some point during
execution of plan. Cutsets are sets of conditions that must be
true before and after a specific action is taken in a plan.

● If there's a cutset that contains a mutex, it means the plan is
definitely invalid and cannot lead to a successful solution. This
allows us to efficiently prune or remove such plans from
consideration.

3. Detecting indirect conflicts using reachability analysis

● An action is ak is said to have conflict with a causal link ai aj :
● if a set of disjunctive ordering constraints (O) is consistent and if either

the preconditions (Prec) or effects (Eff) of action ak contain a mutex
involving the condition p.

• Detects indirect conflicts early
• Derives more disjunctive
constraints to be propagated

Experiments on RePOP
● Compared RePOP against UCPOP, Graphplan and AltAlt in

a number of benchmark domains
– Time and Solution quality

● RePOP is very good in parallel domains (gripper, logistics,
rocket, parallel blocks world)
• Outperforms Graphplan in many domains
• Competitive with AltAlt
• Completely dominates UCPOP

● RePOP still inefficient in serial domains:
Travel, Grid, 8-puzzle

Experiments on RePOP

RePOP generates partially ordered plans
•Number of actions: RePOP typically returns
shortest plans
•Number of time steps (makespan):

 Graphplan produces optimal number of time steps
 RePOP comes close

•Flexibility:
 RePOP typically returns the most flexible plans

Thank You!

