Concise finite-domain
representations for PDDL
planning tasks

Ethan Coots

PDDL

* Objects

* Predicates

* Operators

* |[nitial State

* Goal Specification

Finite-Domain Representations

* Nonbinary representation of variables

* PDDL representation overestimates feasible world states

* Example: only one proposition of the form at-p1-x can be true at once
(PDDL ignores this)

Current goals: cargo_msy in plane_atl, plane_atlin msy
Fly plane_atl msy msy
Load cargo_msy plane_atl atl

Propositions:
at-pl-a,at-pl-b,at-pl-c,at-pl-d, at-pl-e,at-pl-£f, at-pl-g,
at-p2-a,at-p2-b,at-p2-c, at-p2-d,at-p2-e,at-p2-£f, at-p2-q,
at-cl-a,at-cl-b,at-cl-c,at-cl-d,
at-c2-a,at-c2-b,at-c2-c,at-c2-d,
at-c3-e,at-c3-f, at-c3-q,
at-t-d,at-t-e,
in-pl-cl, in-pl-c2, in-pl-c3, in-pl-t,
in-p2-cl, in-p2-c2, in-p2-c3, in-p2-t

Variables:
pl,p2 € {at-a,at-b,at-c,at-d,at-e, at-f, at-q,
in-cl, in-c2, in-¢3, in-t}
cl,c2 € {at-a,at-b,at-c, at-d}
c3 € {at-e,at-f,at-g}
t € {at-d, at-e}

Why?

* SAT representations disallowing inconsistent values of a single
finite domain variable

* Binary Decision Diagram encodings contain fewer variables
* Less memory used with heuristic planning
* Overall, more concise representation of planning problems

How?

PDDL 2.2 task

‘ Normalization

Normalized PDDL 2.2 task

y‘ Invariant synthesis

Normalized PDDL 2.2 task
+ invariants

w‘ Grounding

Grounded PDDL 2.2 task
+ invariants

‘ FDR task generation

Task in finite-domain representation

Fig. 6. Overview of the translation algorithm.

Normalization

* Compiles away types

* Simplifies conditions

 Simplifies effects

* This produces a normalized PDDL task

Invariant Synthesis

* Invariant: property satisfied by all world states that are reachable
from the initial state

* “Balanced”: Must show that no operator can increase the weight
of any of its instances.

Precondition: at(x,l1) Aat(x,[y)
Add effects: at(x,l3) Aat(x,ls)

Delete effects: at(x,l1) Aat(x,[y)

Grounding

* We can improve the naive “permute-like” grounding algorithm by
eliminating ground operators that are not applicable in any
reachable state:

* Exploiting type information
* Checking static preconditions
* Checking relaxed reachability

Datalog Exploration

* Encodes atom reachability problem for relaxed planning tasks as
a set of logical facts and rules (a logic program)

* Computes canonical model of the logic program, consisting of
the set of ground atoms that it logically implies.

Implementation

algorithm compute-mutex-groups(invariants, Py, so):
for each invariant I € invariants:
for each instance o of I:
if weight(o,s9) = 1:
Create a mutex group containing all atoms in Py
covered by .

algorithm choose-variables(Pr, mutex-groups):

uncovered := Py

while mutex-groups # 0:
Pick a mutex group P of maximal cardinality.
Create a variable v with domain D, = PU{_L}.
uncovered := uncovered \ P
mutex-groups := { P'\ P | P' € mutex-groups }
mutex-groups := { P' | P’ € mutex-groups A\ |P'| > 2 }

Create a variable v with domain {p, 1 } for each remaining

element of uncovered.

Fig. 17. Greedy algorithm for computing the FDR variables and variable domains.

Conclusion

* FDR is a much more concise representation of planning problems
than previously discussed binary representations.

	Slide 1: Concise finite-domain representations for PDDL planning tasks
	Slide 2: PDDL
	Slide 3: Finite-Domain Representations
	Slide 4
	Slide 5: Why?
	Slide 6: How?
	Slide 7: Normalization
	Slide 8: Invariant Synthesis
	Slide 9
	Slide 10: Grounding
	Slide 11: Datalog Exploration
	Slide 12: Implementation
	Slide 13: Conclusion

