
Logic

Stephen G. Ware

CS 463G

Logic

• How can we represent knowledge about the world
in a general, reusable way?

• How can we use existing knowledge to gain new
knowledge?

Problem Solving Approaches

Procedural: For each new problem, write a domain-
specific algorithm to solve it.

• Fast
• Not reusable
• Requires domain expertise

Declarative: Describe the problem in a common
syntax and solve it using general techniques.

• Slow
• Reusable
• Less expertise required

Syntax & Semantics

The rules of syntax for a logic define which
expressions are legal to write.

The semantics of a logic define what an expression
means and when it is true or false.

Logical algorithms only manipulate syntax, but it is
up to the user or the agent to interpret meaning.

Wumpus World

• The player, who can
navigate the grid world

• The wumpus, who will
eat the player if the player
blunders into its square

• Bottomless pits

• A chest of goldA B C D

4

3

2

1

Wumpus World

• When adjacent to the
wumpus, the player
detects a stench.

• When adjacent to a pit,
the player detects a
breeze.

• When in the square with
the gold, the player
detects a glimmer.

A B C D

4

3

2

1

Wumpus World

Actions:

• Move forward

• Turn left

• Turn right

• Grab gold

• Fire arrow (kills the
wumpus if it lies along
the trajectory)

A B C D

4

3

2

1

Logics

How statements are made:

• Propositional Logic

• Predicate Logic

• First Order Logic

How statements are combined:

• Boolean Logic

Propositional Logic

Every statement about the world which can be true
or false is represented as a unique symbol.

Syntax: R

Semantics: “It is raining outside.”

Syntax: PA1

Semantics: “There is a pit at square A1.”

Boolean Logic

Boolean operators provide a way to combine
individual statements (which can each be true or
false) into larger expressions which, as a whole, are
true or false.

Negation

A NOT expression (or negation) has the opposite
truth value as its term.

𝑥 ¬𝒙

T F

F T

Conjunction

An AND expression (or conjunction) is true just
when all of its individual conjuncts are true.

𝑥 𝑦 𝒙 ∧ 𝒚

T T T

T F F

F T F

F F F

Disjunction

A OR expression (or disjunction) is true when at
least one of its individual disjuncts is true.

𝑥 𝑦 𝒙 ∨ 𝒚

T T T

T F T

F T T

F F F

Implication

A IF expression (or implication) has an
antecedent followed by a consequent. It is true
when its consequent is true or when both the
antecedent and consequent are false.

𝑥 𝑦 𝒙 → 𝒚

T T T

T F F

F T T

F F T

Biconditional

An IFF (if an only if) expression (or biconditional) is
true just when both sides have the same truth value.

The two sides are said to be logically equivalent.

𝑥 𝑦 𝒙 𝒚

T T T

T F F

F T F

F F T

Statements vs. Things

The problem with making every statement its own
symbol is that we can’t say anything about its parts.

We want to distinguish between statements (which
have a truth value) and the things those statements
are about (which do not have a truth value).

Statements vs. Things

“It is raining outside.” is a statement.

It is true or false.

“rain” and “outside” are things.

Statements are made about things.

Things are not true or false.

Predicate Logic

The official word for a “thing” is a term. There are
three types of terms:

1. A constant represents a specific thing.

2. A function is a parameterized thing.

3. A variable stands for any term.

Statements are made by applying a predicate
(relationship) to 0 or more terms.

Predicate Logic Example

Things:

• P = “player”

• W = “wumpus”

• P1 = “pit 1”

• A1 = “square A1”…

Predicates:

• at = “a thing is at a location”

• breeze = “breeze at”

• stench = “stench at”

Examples:

• 𝑎𝑡(𝑃1, 𝐵3) = “Pit 1 is at square B3.”

• 𝑎𝑡(𝑃, 𝐵2) = “The player is at square B2.”

• 𝑏𝑟𝑒𝑒𝑧𝑒(𝐵2) = “The player detects a breeze at B2.”

Predicate Logic Example (alt)

Things:

• A1 = “square A1”

• A2 = “square A2”…

Predicates:

• breeze = “breeze at”

• pit = “pit at”

• stench = “stench at”

• wumpus = “wumpus at”

Examples:

• 𝑏𝑟𝑒𝑒𝑧𝑒(𝐵2) = “The player detects a breeze at B2”

• 𝑝𝑖𝑡(𝐵3) = “There is a pit at B3.”

Functions

A function is a term which can be treated like a
constant, but which is parameterized with other
terms.

e.g. 𝑎𝑏𝑜𝑣𝑒(𝑥) means “the square above square x.”

e.g. 𝑎𝑏𝑜𝑣𝑒(𝐵1) means “the square above B1.”

Functions

A function is a term which can be treated like a
constant, but which is parameterized with other
terms.

Do not confuse functions with predicates!

• They look the same, but…

• Functions are things. They have no truth value.

• Predicates are statements about relationships. They
do have truth value.

Ground Expressions

We say that a predicate logic expression is ground
when it contains no variables.

e.g. 𝑝𝑖𝑡(𝑥) is not ground

e.g. 𝑝𝑖𝑡 𝐶1 is ground

First Order Logic

Specifies not only relationships between objects but
also over quantities of objects.

The universal quantifier ∀ means “for all.”

e.g. ∀𝑥 𝑎𝑛𝑖𝑚𝑎𝑙 𝑥 → 𝑙𝑜𝑣𝑒𝑠(𝐽𝑜ℎ𝑛, 𝑥) =

“John loves all animals.”

The existential quantifier ∃ means “there exists.”

e.g. ∃𝑥 𝑙𝑜𝑣𝑒𝑠(𝑥, 𝐽𝑜ℎ𝑛) = “Someone loves John.”

Scope of Quantified Variables

Consider two facts about the Wumpus world:
∀𝑥(𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 → ∃𝑦 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑝𝑖𝑡 𝑦))
∀𝑥(𝑠𝑡𝑒𝑛𝑐ℎ 𝑥 → ∃𝑦 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑤𝑢𝑚𝑝𝑢𝑠 𝑦))

x only exists here

Scope of Quantified Variables

Consider two facts about the Wumpus world:
∀𝑥(𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 → ∃𝑦 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑝𝑖𝑡 𝑦))
∀𝑥(𝑠𝑡𝑒𝑛𝑐ℎ 𝑥 → ∃𝑦 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑤𝑢𝑚𝑝𝑢𝑠 𝑦))

y only exists here

Standardizing Apart

Consider two facts about the Wumpus world:
∀𝑥(𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 → ∃𝑦 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑝𝑖𝑡 𝑦))
∀𝑥(𝑠𝑡𝑒𝑛𝑐ℎ 𝑥 → ∃𝑦 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑤𝑢𝑚𝑝𝑢𝑠 𝑦))

The reuse of x and y in these two facts can get
confusing, so we standardize apart the variable names
to avoid any confusion.

Standardizing Apart

Consider two facts about the Wumpus world:
∀𝑤(𝑏𝑟𝑒𝑒𝑧𝑒 𝑤 → ∃𝑥 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑤, 𝑥 ∧ 𝑝𝑖𝑡 𝑥))
∀𝑦(𝑠𝑡𝑒𝑛𝑐ℎ 𝑦 → ∃𝑧 (𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑦, 𝑧 ∧ 𝑤𝑢𝑚𝑝𝑢𝑠 𝑧))

The reuse of x and y in these two facts can get
confusing, so we standardize apart the variable names
to avoid any confusion.

Conventions for Quantifiers

When using first order logic, we assume that all
variables are universally quantified. This means we
can leave off universal quantifiers.

∀𝑥 𝑙𝑜𝑣𝑒𝑠(𝐽𝑜ℎ𝑛, 𝑥)

can simply be written as:
𝑙𝑜𝑣𝑒𝑠(𝐽𝑜ℎ𝑛, 𝑥)

Skolemization

We can replace existentially quantified variables
with a single Skolem constant representing the
object in question.

∃𝑥 𝑙𝑜𝑣𝑒𝑠(𝑥,𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠)

can simply be written as:
𝑙𝑜𝑣𝑒𝑠 𝑃,𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠

P is a person who loves mosquitoes.

Logics (Review)

• Propositional logic is simple, so we will often use
it in examples, but it is not very expressive.

• Predicate logic is more expressive, especially
when combined with…

• First order logic adds universal and existential
quantifiers.

• Boolean logic can be used with any logic above.

Important Equivalencies

• Negated Quantifiers

• Implications and Disjunctions

• De Morgan’s Laws

• Distribution of OR over AND

Negated Quantifiers

The universal and existential quantifiers are related;
each is the negation of the other.

• ¬∀𝑥 𝑙𝑜𝑣𝑒𝑠(𝐽𝑜ℎ𝑛, 𝑥) means “It is not true that John
loves everything.”

Its negation would be:

• ∃𝑥 ¬𝑙𝑜𝑣𝑒𝑠(𝐽𝑜ℎ𝑛, 𝑥), which means “There exists
something that John does not love.”

Negated Quantifiers

The universal and existential quantifiers are related;
each is the negation of the other.

• ¬∃𝑥 𝑙𝑜𝑣𝑒𝑠(𝑥,𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠) means “There does
not exist anyone who loves mosquitoes.”

Its negation would be:

• ∀𝑥 ¬𝑙𝑜𝑣𝑒𝑠(𝑥,𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠), which means
“Everyone does not loves mosquitoes.”

Implications and Disjunction

Notice the similarity:

𝑥 𝑦 𝒙 → 𝒚

T T T

T F F

F T T

F F T

𝑥 𝑦 ¬𝒙 ∨ 𝒚

T T

T F

F T

F F

Implications and Disjunction

Notice the similarity:

𝑥 𝑦 𝒙 → 𝒚

T T T

T F F

F T T

F F T

𝑥 𝑦 ¬𝒙 ∨ 𝒚

T T T

T F

F T

F F

Implications and Disjunction

Notice the similarity:

𝑥 𝑦 𝒙 → 𝒚

T T T

T F F

F T T

F F T

𝑥 𝑦 ¬𝒙 ∨ 𝒚

T T T

T F F

F T

F F

Implications and Disjunction

Notice the similarity:

𝑥 𝑦 𝒙 → 𝒚

T T T

T F F

F T T

F F T

𝑥 𝑦 ¬𝒙 ∨ 𝒚

T T T

T F F

F T T

F F

Implications and Disjunction

Notice the similarity:

The expressions 𝑥 → 𝑦 and ¬𝑥 ∨ 𝑦 are equivalent.

𝑥 𝑦 𝒙 → 𝒚

T T T

T F F

F T T

F F T

𝑥 𝑦 ¬𝒙 ∨ 𝒚

T T T

T F F

F T T

F F T

De Morgan’s Laws

¬ 𝑥 ∧ 𝑦 ¬𝑥 ∨ ¬𝑦

¬ 𝑥 ∨ 𝑦 ¬𝑥 ∧ ¬𝑦

Exercise: Write the truth tables to prove these laws.

Distribution of OR over AND

𝑥 ∨ 𝑦 ∧ 𝑧 𝑥 ∨ 𝑦 ∧ 𝑥 ∨ 𝑧

Exercise: Write truth tables to prove this.

Distribution of OR over AND

This can be generalized to situations like this:

𝑤 ∧ 𝑥 ∨ 𝑦 ∧ 𝑧

𝑤 ∧ 𝑥 ∨ 𝑦 ∧ 𝑤 ∧ 𝑥 ∨ 𝑧

𝑦 ∨ 𝑤 ∧ 𝑥 ∧ 𝑧 ∨ 𝑤 ∧ 𝑥

(𝑦 ∨ 𝑤) ∧ 𝑦 ∨ 𝑥 ∧ 𝑧 ∨ 𝑤 ∧ 𝑧 ∨ 𝑥

𝑦 ∨ 𝑤 ∧ 𝑦 ∨ 𝑥 ∧ 𝑧 ∨ 𝑤 ∧ 𝑧 ∨ 𝑥

(𝑤 ∨ 𝑦) ∧ 𝑤 ∨ 𝑧 ∧ (𝑥 ∨ 𝑦) ∧ 𝑥 ∨ 𝑧

Database Semantics

• Unique Names Assumption

Each constant refers to a different object.

(Note: This means two constants cannot be equal.)

• Domain Closure Assumption

Only those objects we name exist.

• Closed World Assumption

Facts not explicitly stated to be true are false.

Skolemization (cont.)

Consider this statement:

∀𝑥 ∃𝑦 𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑝𝑖𝑡 𝑦

By convention, we drop the universal variable:

∃𝑦 𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑝𝑖𝑡 𝑦

Can we replace y with a Skolem constant?

Skolemization (cont.)

Original statement:

∀𝑥 ∃𝑦 𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑝𝑖𝑡 𝑦

Replaced with Skolem constant:

𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑆 ∧ 𝑝𝑖𝑡 𝑆

This does not have the same meaning! It says that all
breezy squares are adjacent to the same pit square.

Skolemization (cont.)

Original statement:

∀𝑥 ∃𝑦 𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑦 ∧ 𝑝𝑖𝑡 𝑦

Replaced with Skolem function:

𝑏𝑟𝑒𝑒𝑧𝑒 𝑥 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑥, 𝑆(𝑥) ∧ 𝑝𝑖𝑡 𝑆(𝑥)

This has the same meaning, because the function
can stand for more than just one square.

Skolemization (cont.)

When an existential quantifier appears within the
scope of one or more universal quantifiers, we
replace the existentially quantified variable with a
Skolem function whose parameters are all the
universally quantified variables.

Skolem functions can be seen as a generalization of
Skolem constants, because a constant can be thought
of as a function with 0 parameters.

Conjunctive Normal Form

• Literals

• Disjunctive Clauses

• Conjunctive Normal Form (CNF)

• Converting to CNF

Literals

A literal is an individual statement or its negation.

Propositional logic example:

• 𝑥 is a literal

• ¬𝑥 is a literal

Predicate logic example:

• 𝑝𝑖𝑡(𝐴1) is a literal

• ¬𝑝𝑖𝑡 𝐴1 is a literal

Clauses

A disjunctive clause is a disjunction whose disjuncts
are all literals. (This includes a disjunction of 1
disjunct, i.e. a literal by itself.)

• 𝑎𝑛𝑖𝑚𝑎𝑙(𝑥) is a disjunctive clause

• ¬𝑎𝑛𝑖𝑚𝑎𝑙 𝑥 ∨ 𝑙𝑜𝑣𝑒𝑠 𝐽𝑜ℎ𝑛, 𝑥 is a disjunctive clause

Conjunctive Normal Form

An expression is in conjunctive normal form
(CNF) if it is a conjunction of disjunctive clauses.
(This includes a conjunction of 1 literal, i.e. a literal
by itself.)

• 𝑎𝑛𝑖𝑚𝑎𝑙 𝑥 ∧ ¬𝑎𝑛𝑖𝑚𝑎𝑙 𝑥 ∨ 𝑙𝑜𝑣𝑒𝑠 𝐽𝑜ℎ𝑛, 𝑥
is in conjunctive normal form

disjunctive clause disjunctive clause

Conjunctive Normal Form

An expression is in conjunctive normal form
(CNF) if it is a conjunction of disjunctive clauses.
(This includes a conjunction of 1 literal, i.e. a literal
by itself.)

• 𝑎𝑛𝑖𝑚𝑎𝑙 𝑥 ∧ ¬𝑎𝑛𝑖𝑚𝑎𝑙 𝑥 ∨ 𝑙𝑜𝑣𝑒𝑠 𝐽𝑜ℎ𝑛, 𝑥
is in conjunctive normal form

CNF expression

Conjunctive Normal Form

All logical expressions can be converted to
conjunctive normal form.

This allows us to standardize the input to logical
algorithms and simplify the code.

Converting to CNF

1. Eliminate implications.

2. Move ¬ inwards.

3. Standardize variable names apart.

4. Skolemize.

5. Drop universal quantifiers.

6. Distribute AND over OR.

Converting to CNF

Convert the following to CNF:

∀𝑥 ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 → ∃𝑦 𝑙𝑜𝑣𝑒𝑠(𝑦, 𝑥)

“Everyone who loves all animals is loved by someone.”

Converting to CNF

1. Eliminate implications.

Remember: 𝑥 → 𝑦 (¬𝑥 ∨ 𝑦)

∀𝑥 ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 → ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

becomes:

Converting to CNF

1. Eliminate implications.

Remember: 𝑥 → 𝑦 (¬𝑥 ∨ 𝑦)

∀𝑥 ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 → ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

becomes:

Converting to CNF

1. Eliminate implications.

Remember: 𝑥 → 𝑦 (¬𝑥 ∨ 𝑦)

∀𝑥 ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 → ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

becomes:

∀𝑥 ¬ ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

Converting to CNF

1. Eliminate implications.

Remember: 𝑥 → 𝑦 (¬𝑥 ∨ 𝑦)

∀𝑥 ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 → ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

becomes:

∀𝑥 ¬ ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

Converting to CNF

1. Eliminate implications.

Remember: 𝑥 → 𝑦 (¬𝑥 ∨ 𝑦)

∀𝑥 ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 → ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

becomes:

∀𝑥 ¬ ∀𝑦 ¬𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 ∨ 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

Converting to CNF

1. Eliminate implications.

Remember: 𝑥 → 𝑦 (¬𝑥 ∨ 𝑦)

∀𝑥 ∀𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 → 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 → ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

becomes:

∀𝑥 ¬ ∀𝑦 ¬𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 ∨ 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ ∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥

Converting to CNF

2. Move ¬ inwards.
Remember: Negated quantifiers & De Morgan’s laws.

∀𝑥 ¬(∀𝑦 ¬𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 ∨ 𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦) ∨ (∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥)

becomes:

∀𝑥 ∃𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 ∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ (∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥)

“Either there is some animal that x does not love, or
someone loves x.”

Converting to CNF

3. Standardize variable names apart.

∀𝑥 ∃𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 ∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ (∃𝑦 𝑙𝑜𝑣𝑒𝑠 𝑦, 𝑥)

becomes:

∀𝑥 ∃𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 ∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ (∃𝑧 𝑙𝑜𝑣𝑒𝑠 𝑧, 𝑥)

Converting to CNF

4. Skolemize.

∀𝑥 ∃𝑦 𝑎𝑛𝑖𝑚𝑎𝑙 𝑦 ∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ (∃𝑧 𝑙𝑜𝑣𝑒𝑠 𝑧, 𝑥)

becomes:

∀𝑥 𝑎𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠 𝐺(𝑥), 𝑥

Converting to CNF

5. Drop universal quantifiers.

∀𝑥 𝑎𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠 𝐺(𝑥), 𝑥

becomes:

𝑎𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠 𝐺(𝑥), 𝑥

Converting to CNF

6. Distribute AND over OR.

𝑎𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠 𝐺(𝑥), 𝑥

becomes:

𝑎𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠(𝐺 𝑥 , 𝑥)
∧ ¬𝑙𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝑙𝑜𝑣𝑒𝑠(𝐺 𝑥 , 𝑥)

	Slide 1: Logic
	Slide 2: Logic
	Slide 3: Problem Solving Approaches
	Slide 4: Syntax & Semantics
	Slide 5: Wumpus World
	Slide 6: Wumpus World
	Slide 7: Wumpus World
	Slide 8: Logics
	Slide 9: Propositional Logic
	Slide 10: Boolean Logic
	Slide 11: Negation
	Slide 12: Conjunction
	Slide 13: Disjunction
	Slide 14: Implication
	Slide 15: Biconditional
	Slide 16: Statements vs. Things
	Slide 17: Statements vs. Things
	Slide 18: Predicate Logic
	Slide 19: Predicate Logic Example
	Slide 20: Predicate Logic Example (alt)
	Slide 21: Functions
	Slide 22: Functions
	Slide 23: Ground Expressions
	Slide 24: First Order Logic
	Slide 25: Scope of Quantified Variables
	Slide 26: Scope of Quantified Variables
	Slide 27: Standardizing Apart
	Slide 28: Standardizing Apart
	Slide 29: Conventions for Quantifiers
	Slide 30: Skolemization
	Slide 31: Logics (Review)
	Slide 32: Important Equivalencies
	Slide 33: Negated Quantifiers
	Slide 34: Negated Quantifiers
	Slide 35: Implications and Disjunction
	Slide 36: Implications and Disjunction
	Slide 37: Implications and Disjunction
	Slide 38: Implications and Disjunction
	Slide 39: Implications and Disjunction
	Slide 40: De Morgan’s Laws
	Slide 41: Distribution of OR over AND
	Slide 42: Distribution of OR over AND
	Slide 43: Database Semantics
	Slide 44: Skolemization (cont.)
	Slide 45: Skolemization (cont.)
	Slide 46: Skolemization (cont.)
	Slide 47: Skolemization (cont.)
	Slide 48: Conjunctive Normal Form
	Slide 49: Literals
	Slide 50: Clauses
	Slide 51: Conjunctive Normal Form
	Slide 52: Conjunctive Normal Form
	Slide 53: Conjunctive Normal Form
	Slide 54: Converting to CNF
	Slide 55: Converting to CNF
	Slide 56: Converting to CNF
	Slide 57: Converting to CNF
	Slide 58: Converting to CNF
	Slide 59: Converting to CNF
	Slide 60: Converting to CNF
	Slide 61: Converting to CNF
	Slide 62: Converting to CNF
	Slide 63: Converting to CNF
	Slide 64: Converting to CNF
	Slide 65: Converting to CNF
	Slide 66: Converting to CNF

