Width and Serialization of Classical Planning Problems

Authors: Nir Lipovetzky and Hector Geffner Presenter: Gage Birchmeier

Background

- Many State Space planners we looked at use a heuristic to guide search
- Improvements to planning usually just meant a better heuristic
- This paper introduces a new way to navigate a search space without a heuristic
- Very similar to iterative deepening methods

Introductory Definitions

- Consider conjunctions of size *i* in the space of atoms in a planning problem
- A conjunctions *t* is succeeded by *t*' if any optimal plan for *t* can be made into an optimal plan for *t*' by adding one more action
- We can construct a directed graph G^i as follows:
 - The vertices are all possible conjunctions of size at most *i*
 - \circ A directed edge from t to t' exists iff t' succeeds t

Width of a Problem

- We can now define the *width* of a formula in a planning problem
- A formula has width w is the minimum w such that G^w contains a conjunction that implies the formula
- Then the width of a planning problem can be defined as the width of the goal

Width of getting block onto table

- In the blocks domain, getting a block onto a table has width 1
- Imagine blocks b_1, \dots, b_n are stacked on top of b_0 , which we want to get on the table
- We can connect clear(b_n) -> clear(b_{n-1}) -> ... -> clear(b₀) -> ontable(b₀) each by the action putontable(b_i) which is what gives the problem a width of 1

Advantages of width

- Many common domains have a bounded width given that the goal is a single atom
- Blocks, Logistics, and n-puzzle single goal problems have a width of at most 2
- Planning problems can be solved in time exponential relative to width $O(n^i)$
- The small width of single goal problems shows that complexity comes from having multiple goals, not the domain

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Iterative Width Planner

- Iterative Width is a forward-state breadth-first search with pruning
- If the smallest new conjunction produced by a state *s* has size *i* (this particular collection of facts has not been seen as true in another state), then we say it has a *novelty* of *i*. If there is no such conjunction, a state has a novelty of *n*+1.
- The higher the novelty, the less new a state is
- At iteration *i* of IW, we prune any states with novelty greater than *i*
- Compare to Iterative deepening where we prune if the depth is greater than i

Serialized Iterative Width

- Another variant on Iterative Width search
- Start with a width of 1, then find the first state *s* that has 1 of the goals
- Then starting from *s*, perform search with a width of 2 to find a state that has the earlier goal plus one new one satisfied
- Continue until all goal clauses are satisfied

Example

- Delivery domain
- Have one plane and one cargo at ATL
- Want the cargo at MSY
- Use Iterative Width Planning to solve

at(P1, MSY) \land in(C1, P1) [width 2] pruned

at(P1, MSY) \land in(C1, P1) [width 2]

Nothing new here... pruned