
Width and Serialization of
Classical Planning Problems
Authors: Nir Lipovetzky and Hector Geffner
Presenter: Gage Birchmeier

Background

● Many State Space planners we looked at use a heuristic to guide search

● Improvements to planning usually just meant a better heuristic

● This paper introduces a new way to navigate a search space without a heuristic

● Very similar to iterative deepening methods

Introductory Definitions

● Consider conjunctions of size i in the space of atoms in a planning problem

● A conjunctions t is succeeded by t’ if any optimal plan for t can be made into an optimal plan for t’ by

adding one more action

● We can construct a directed graph Gi as follows:
○ The vertices are all possible conjunctions of size at most i
○ A directed edge from t to t’ exists iff t’ succeeds t

Width of a Problem

● We can now define the width of a formula in a planning problem

● A formula has width w is the minimum w such that Gw contains a conjunction that implies the

formula

● Then the width of a planning problem can be defined as the width of the goal

Width of getting block onto table

● In the blocks domain, getting a block onto a table has width 1

● Imagine blocks b1, … , bn are stacked on top of b0 , which we want to get on the table

● We can connect clear(bn) -> clear(bn-1) -> … -> clear(b0) -> ontable(b0) each by the action putontable(bi)
which is what gives the problem a width of 1

a

b
1

b
0

b
2

b
0

Advantages of width

● Many common domains have a bounded width given that the goal is a single atom

● Blocks, Logistics, and n-puzzle single goal problems have a width of at most 2

● Planning problems can be solved in time exponential relative to width O(ni)
● The small width of single goal problems shows that complexity comes from having multiple goals,

not the domain

Iterative Width Planner

● Iterative Width is a forward-state breadth-first search with pruning

● If the smallest new conjunction produced by a state s has size i (this particular collection of facts

has not been seen as true in another state), then we say it has a novelty of i. If there is no such

conjunction, a state has a novelty of n+1.

● The higher the novelty, the less new a state is

● At iteration i of IW, we prune any states with novelty greater than i
● Compare to Iterative deepening where we prune if the depth is greater than i

Serialized Iterative Width

● Another variant on Iterative Width search

● Start with a width of 1, then find the first state s that has 1 of the goals

● Then starting from s, perform search with a width of 2 to find a state that has the earlier goal plus

one new one satisfied

● Continue until all goal clauses are satisfied

Example

● Delivery domain

● Have one plane and one cargo at ATL

● Want the cargo at MSY

● Use Iterative Width Planning to solve

ATL MSY ATL MSY

Example (i = 1)

ATL MSY

ATL MSY

ATL MSY

ATL MSY

Nothing new here… pruned

in(C1, P1) [width 1]

at(P1, MSY) [width 1]

fly(P1, ATL, ATL)

load(C1, P1)

fly(P1, ATL, MSY)

at(C1, ATL)
at(P1, ATL)

Example (i = 1)

ATL MSY

ATL MSY

ATL MSY

Nothing new here… pruned

Nothing new here… pruned

ATL MSY

at(P1, MSY) /\ in(C1, P1) [width 2] pruned

fly(P1, ATL, ATL)

unload(C1, P1)

fly(P1, ATL, MSY)

Example (i = 2)

ATL MSY

ATL MSY

ATL MSY

ATL MSY

Nothing new here… pruned

in(C1, P1) [width 1]

at(P1, MSY) [width 1]

fly(P1, ATL, ATL)

load(C1, P1)

fly(P1, ATL, MSY)

at(C1, ATL)
at(P1, ATL)

Example (i = 2)

ATL MSY

ATL MSY

ATL MSY

Nothing new here…

Nothing new here …

ATL MSY

at(P1, MSY) /\ in(C1, P1) [width 2]

fly(P1, ATL, ATL)

unload(C1, P1)

fly(P1, ATL, MSY)

Example (i = 2)

ATL MSY

ATL MSY

Nothing new here… pruned

at(C1, MSY) [width 1] goal

Nothing new here… pruned

fly(P1, MSY, ATL)

unload(C1, P1)

fly(P1, MSY, MSY)

ATL MSYATL MSY

