Width and Serialization of
Classical Planning Problems

Authors: Nir Lipovetzky and Hector Geffner
Presenter: Gage Birchmeier

Background

Many State Space planners we looked at use a heuristic to guide search
Improvements to planning usually just meant a better heuristic

This paper introduces a new way to navigate a search space without a heuristic
Very similar to iterative deepening methods

Introductory Definitions

e Consider conjunctions of size i in the space of atoms in a planning problem
e Aconjunctionstis succeeded by t'if any optimal plan for t can be made into an optimal plan for t’ by

adding one more action

e Wecan construct a directed graph G' as follows:
o The vertices are all possible conjunctions of size at most i
o Adirected edge from t to t’ exists iff t’ succeeds t

Width of a Problem

e We can now define the width of a formulain a planning problem

e Aformulahaswidth wis the minimum w such that G" contains a conjunction that implies the
formula

e Thenthe width of a planning problem can be defined as the width of the goal

Width of getting block onto table

e Inthe blocks domain, getting a block onto a table has width 1
Imagine blocks bl, s bn are stacked on top of bO , which we want to get on the table
We can connect clear(bn) -> clear(bn_l) > > clear(bo) -> ontable(bo) each by the action putontable(b,.)

which is what gives the problem a width of 1

Advantages of width

Many common domains have a bounded width given that the goal is a single atom

Blocks, Logistics, and n-puzzle single goal problems have a width of at most 2

Planning problems can be solved in time exponential relative to width O(n')

The small width of single goal problems shows that complexity comes from having multiple goals,
not the domain

lterative Width Planner

e lterative Widthis a forward-state breadth-first search with pruning

e |fthe smallest new conjunction produced by a state s has size i (this particular collection of facts
has not been seen as true in another state), then we say it has a novelty of i. If there is no such
conjunction, a state has a novelty of n+1.
The higher the novelty, the less new a state is
At iterationi of IW, we prune any states with novelty greater than i
Compare to Iterative deepening where we prune if the depth is greater than i

Serialized lterative Width

e Another variant on Iterative Width search

e Startwith awidth of 1, then find the first state s that has 1 of the goals

e Thenstarting from s, perform search with a width of 2 to find a state that has the earlier goal plus
one new one satisfied

e Continue until all goal clauses are satisfied

Example

Delivery domain

Have one plane and one cargo at ATL
Want the cargo at MSY

Use Iterative Width Planning to solve

ATL MSY W

X |

ATL

MSY

/|

ATL

X

Nothing new here... pruned

MSY

Example (i = 1)

fly(P1, ATL, ATL)

ATL MSY ATL MSY
/'I load(C1, P1) %
at(C1, ATL) in(C1, P1) [width 1]
at(P1, ATL)

ATL MSY
X

t(P1, MSY) [width 1]

fly(P1, ATL, MSY)

MSY

Example (i = 1) P ATL AT

Nothing new here... pruned

ATL MSY ATL MSY
% unload(C1, P1) @x
Nothing new here... pruned
ATL MSY

fly(P1, ATL, MSY)

%

at(P1, MSY) A\ in(C1, P1) [width 2] pruned

ATL

X

Nothing new here... pruned

MSY

Example (i = 2)

fly(P1, ATL, ATL)

ATL MSY ATL MSY
/'I load(C1, P1) %
at(C1, ATL) in(C1, P1) [width 1]
at(P1, ATL)

ATL MSY
X

t(P1, MSY) [width 1]

fly(P1, ATL, MSY)

ATL MSY

%

Example (i = 2) P ATL AT

Nothing new here...

ATL MSY

%

ATL MSY

unload(C1, P1) @x

Nothing new here....

ATL MSY

%

fly(P1, ATL, MSY)

at(P1, MSY) A\ in(C1, P1) [width 2]

ATL MSY

%

Nothing new here... pruned

Example (i = 2) P MSYATL

ATL MSY

%

ATL MSY

unload(C1, P1) @x
>

at(C1, MSY) [width 1] goal

ATL MSY

%

fly(P1, MSY, MSY)

Nothing new here... pruned

