
Informed Search

Stephen G. Ware

CS 463G

Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Uninformed vs. Informed

• Uninformed search considers only information
about the past (work already done).

• Informed search also estimates information about
the future (work still to be done).

Heuristics

A heuristic is a function h which, given some state,
estimates the amount of work left to do before
reaching a goal state.

Consider driving from one city to another.

The straight line distance between two cities in
miles (distance “as the crow flies”) provides a good
estimate of how many miles are left to drive on the
actual roads before reaching the destination.

Grid World Heuristic

Given x and y coordinates:

A = (0,0)

B = (0,1)

C = (0,2)

…

W = (5,4)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Grid World Heuristic

Manhattan Distance:

(also called taxicab distance)

Given two squares

X = (x1,y1) and Y = (x2,y2)

h(X,Y) = |x1-x2| + |y1-y2|

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Grid World Heuristic

Manhattan Distance:

(also called taxicab distance)

Example:

T = (4,4) and C = (0,2)

d(T,C) = 12

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Grid World Heuristic

Manhattan Distance:

(also called taxicab distance)

Example:

T = (4,4) and C = (0,2)

d(L,G) = 12

h(L,G) = |4-0| + |4-2| = 6

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Grid World Heuristic

Manhattan Distance:

(also called taxicab distance)

• Ignores obstacles.

• May underestimate the
actual distance, but that’s ok!

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Best First Search

When choosing which state to consider next, use a
heuristic to estimate how much work is left to do
before the goal is reached.

Informed Search

• Greedy Search

• A* Search

Both are kinds of Best First Search.

Greedy Search

When choosing the next state, always choose the
one with the lowest heuristic value.

i.e. always choose the state which (we estimate) is
closest to the goal.

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:

Frontier:
T=6

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T

Frontier:
P=5, X=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P

Frontier:
O=4, X=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O

Frontier:
N=3, X=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N

Frontier:
S=4, X=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S

Frontier:
R=5, X=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R

Frontier:
Q=6, X=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q

Frontier:
M=5, X=7, U=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M

Frontier:
K=4, X=7, U=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K

Frontier:
F=3, L=3, X=7, U=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K,F

Frontier:
A=2, G=2, L=3, X=7, U=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K,F,A

Frontier:
B=1, G=2, L=3, X=7, U=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K,F,A,B

Frontier:
C=0, G=2, L=3, X=7, U=7

Greedy Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,S,R,Q,M,K,F,A,B

Frontier:
G=2, L=3, X=7, U=7

Goal found!

Greedy Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

Greedy Search

1. Let V be the set of visited nodes, empty.
2. Let F be a min priority queue, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F with h as the key.

(or decrease key of s if it is in F)

Properties of Greedy Search

If we don’t keep track of visited states (i.e. we might
repeat some steps), how will greedy search behave?

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
T=6

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
P=5, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
O=4, T=6, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
N=3, P=5, T=6, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
O=4, S=4, P=5, T=6, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
N=3, S=4, P=5, T=6, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
O=4, S=4, P=5, T=6, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
N=3, S=4, P=5, T=6, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
O=4, S=4, P=5, T=6, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
N=3, S=4, P=5, T=6, X=7

Greedy Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
O=4, S=4, P=5, T=6, X=7

Properties of Greedy Search

If we don’t keep track of visited states (i.e. we might
repeat some steps), how will greedy search behave?

It may not find a solution!

In other words, greedy search is only complete if
the space is finite, and we avoid repeating states.

In an infinite space, greedy is incomplete no matter
what.

Complexity of Greedy Search

Given a state space in which…

• each node has b successors,

• the shortest path to the solution has d steps,

• the longest path in the space is m long

What is the time complexity?

O(bm)

Complexity of Best First Search

Though the worst case may not be better than
uninformed search, in practice, best first search is
usually better because the heuristic helps us avoid
the worst case most of time.

A* Search

When choosing the next state, choose the one for
which the sum of the work done so far plus the
estimated work remaining is lowest.

i.e. consider both how far we have come and how far
we think we have left to go.

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:

Frontier:
T:0+6=6

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T

Frontier:
P:1+5=6, X:1+7=8

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P

Frontier:
O:2+4=6, X:1+7=8

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O

Frontier:
N:3+3=6, X:1+7=8

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N

Frontier:
X:1+7=8, S:4+4=8

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X

Frontier:
S:4+4=8, W:2+6=8

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S

Frontier:
W:2+6=8, R:5+5=10,
V:5+5=10

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W

Frontier:
R:5+5=10, V:5+5=10

We found a better
path to V.

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W

Frontier:
V:3+5=8, R:5+5=10

We found a better
path to V.

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V

Frontier:
R:5+5=10

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R

Frontier:
Q:6+6=12

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R,Q

Frontier:
M:7+5=12, U:7+7=14

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R,Q,M

Frontier:
K:8+4=12, U:7+7=14

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R,Q,M,K

Frontier:
F:9+3=12, L:9+3=12,
U:7+7=14

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R,Q,M,K,F

Frontier:
A:10+2=12, L:9+3=12,
G:10+2=12, U:7+7=14

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R,Q,M,K,F,
A
Frontier:
B:11+1=12, L:9+3=12,
G:10+2=12, U:7+7=14

How should we break ties
when many nodes have
the same score?

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R,Q,M,K,F,
A
Frontier:
B:11+1=12, L:9+3=12,
G:10+2=12, U:7+7=14

How should we break ties
when many nodes have
the same score? Greedily!

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R,Q,M,K,F,
A,B
Frontier:
C:12+0=12, L:9+3=12,
G:10+2=12, U:7+7=14

A* Search

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Visited:
T,P,O,N,X,S,W,V,R,Q,M,K,F,
A,B
Frontier:
L:9+3=12, G:10+2=12,
U:7+7=14

Goal found!

A* Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F.

A* Search

1. Let V be the set of visited nodes, empty.
2. Let F be a min priority queue, initially

containing only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V:
9. Add s to F with d+h as the key.

(or decrease key of s if it is in F)

A* and Its Heuristic

If a heuristic can guarantee that it will never
overestimate, it is called admissible.

When used with an admissible heuristic, A*:

• is complete (even in infinite spaces)

• always returns the optimal solution

A* Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
T:0+6=6

A* Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
P:1+5=6, X:1+7=8

A* Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
O:2+4=6, T:2+6=8, X:1+7=8

A* Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
N:3+3=6, P:3+5=8, T:2+6=8,
X:1+7=8,

A* Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
O:4+4=8, S:4+4=8, P:3+5=8,
T:2+6=8, X:1+7=8,

A* Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
N:5+3=8, S:4+4=8, P:3+5=8,
T:2+6=8, X:1+7=8

A* Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
S:4+4=8, P:3+5=8, T:2+6=8,
X:1+7=8, O:6+4=10

A* Search (without V)

A B C D E

F G H I J

K L

M N O P

Q R S T

U V W X

Frontier:
N:5+3=8, P:3+5=8, T:2+6=8,
X:1+7=8, O:6+4=10,
V:5+5=10, R:5+5=10

Designing Heuristics

When designing heuristics, we often face a tradeoff
between the two most important features:

• Accuracy: How well it estimates remaining work.

• Speed: How fast it can be computed.

More accurate heuristics take longer to compute,
while easily computed heuristic are often inaccurate.

Designing Heuristics

Most heuristics are based on solving a relaxed
(simpler) version of the real problem.

For example, Manhattan distance ignores barriers in
the search space. This means it may underestimate,
but now it can be computed much faster than the
actual distance to the goal.

Designing Heuristics

In large search spaces (i.e. most real world problems),
accuracy is more valuable than speed, because the
problem is intractable anyway.

Small improvements to the accuracy of the heuristic
can save an exponential amount of work.

Designing Heuristics

Many heuristics sacrifice admissibility for accuracy
and speed.

Such heuristics do not guarantee an optimal
solution, but this is often acceptable, since an
optimal solution would take too long to find
anyway.

Satisficing = good enough

Best First Search

1. Let V be the set of visited nodes, empty.
2. Let F be the frontier, initially containing

only the initial state.
3. Loop:
4. If F is empty, return failure.
5. Choose a node n to remove from F.
6. If n is a solution, return n.
7. Add n to V.
8. For every successor s of n not in V or F:
9. Add s to F.
Implement F as a min priority queue.

General Search Algorithm

If we use a min priority queue for the frontier, we can
do most kinds of search by simply changing how we
calculate the key of a node in the queue.

• d = number of steps taken so far (e.g. roads traveled)

• w = work done so far (e.g. miles traveled)

• h = estimated work remaining (e.g. miles remaining)

General Search Algorithm

How should we calculate the key of a node in the min
priority queue to get…

• Breadth First Search?

• Depth First Search?

• Uniform Cost Search?

• Greedy Search?

• A* Search?

d

-d

w

h

w + h

Complexity of Best First Search

If we don’t keep track of which nodes have been
visited (i.e. we treat the search space as a tree), is A*
still complete and optimal?

Yes!

Because A* considers the distance traveled so far, it
naturally penalizes paths with loops. Thus, many
implementations of A* do not use V.

Complexity of Best First Search

Even if we don’t keep track of which nodes have
already been visited, we still usually run out of
memory before we run out of time.

How can we save memory?

Memory-Bounded A* Search

• Set a maximum size for the frontier.

• When the frontier gets full, remove the worst node
(i.e. the nodes with the highest d + h value).

• Before removing (“forgetting”) a node, have its
parent remember its value. A parent only
remembers the value of its best forgotten child.

Memory-Bounded A* Search

• Later on, it might turn out that the best path is one
that we have forgotten.

• By having the parent remember the value of its
best forgotten child, we will know when this
happens.

• We can always go back and re-explore the
forgotten part of the space. This means some time
is wasted re-doing past work (i.e. there is a tradeoff
between space and time).

	Slide 1: Informed Search
	Slide 2: Search
	Slide 3: Uninformed vs. Informed
	Slide 4: Heuristics
	Slide 5: Grid World Heuristic
	Slide 6: Grid World Heuristic
	Slide 7: Grid World Heuristic
	Slide 8: Grid World Heuristic
	Slide 9: Grid World Heuristic
	Slide 10: Best First Search
	Slide 11: Informed Search
	Slide 12: Greedy Search
	Slide 13: Greedy Search
	Slide 14: Greedy Search
	Slide 15: Greedy Search
	Slide 16: Greedy Search
	Slide 17: Greedy Search
	Slide 18: Greedy Search
	Slide 19: Greedy Search
	Slide 20: Greedy Search
	Slide 21: Greedy Search
	Slide 22: Greedy Search
	Slide 23: Greedy Search
	Slide 24: Greedy Search
	Slide 25: Greedy Search
	Slide 26: Greedy Search
	Slide 27: Greedy Search
	Slide 28: Greedy Search
	Slide 29: Properties of Greedy Search
	Slide 30: Greedy Search (without V)
	Slide 31: Greedy Search (without V)
	Slide 32: Greedy Search (without V)
	Slide 33: Greedy Search (without V)
	Slide 34: Greedy Search (without V)
	Slide 35: Greedy Search (without V)
	Slide 36: Greedy Search (without V)
	Slide 37: Greedy Search (without V)
	Slide 38: Greedy Search (without V)
	Slide 39: Greedy Search (without V)
	Slide 40: Greedy Search (without V)
	Slide 41: Properties of Greedy Search
	Slide 42: Complexity of Greedy Search
	Slide 43: Complexity of Best First Search
	Slide 44: A* Search
	Slide 45: A* Search
	Slide 46: A* Search
	Slide 47: A* Search
	Slide 48: A* Search
	Slide 49: A* Search
	Slide 50: A* Search
	Slide 51: A* Search
	Slide 52: A* Search
	Slide 53: A* Search
	Slide 54: A* Search
	Slide 55: A* Search
	Slide 56: A* Search
	Slide 57: A* Search
	Slide 58: A* Search
	Slide 59: A* Search
	Slide 60: A* Search
	Slide 61: A* Search
	Slide 62: A* Search
	Slide 63: A* Search
	Slide 64: A* Search
	Slide 65: A* Search
	Slide 66: A* and Its Heuristic
	Slide 67: A* Search (without V)
	Slide 68: A* Search (without V)
	Slide 69: A* Search (without V)
	Slide 70: A* Search (without V)
	Slide 71: A* Search (without V)
	Slide 72: A* Search (without V)
	Slide 73: A* Search (without V)
	Slide 74: A* Search (without V)
	Slide 75: Designing Heuristics
	Slide 76: Designing Heuristics
	Slide 77: Designing Heuristics
	Slide 78: Designing Heuristics
	Slide 79: Best First Search
	Slide 80: General Search Algorithm
	Slide 81: General Search Algorithm
	Slide 82: Complexity of Best First Search
	Slide 83: Complexity of Best First Search
	Slide 84: Memory-Bounded A* Search
	Slide 85: Memory-Bounded A* Search

