
UMCP: A Sound and Complete
Procedure for Hierarchical

Task -Netw ork Planning

authors

Kutluhan Erol James Hendler Dana S. Nau

W hat is HTN?

W hat is HTN?

The world and basic actions are represented similar to
STRIPS.

W hat is HTN?

The world and basic actions are represented similar to
STRIPS.

HTN-planning replaces STRIPS-style goals with tasks and
task networks.

Ty pes of Task s

Goal Tasks

Ty pes of Task s

Goal Tasks

Ty pes of Task s

Primitive Tasks

Goal Tasks

Ty pes of Task s

Primitive Tasks

Compound Tasks

Goal Tasks

Ty pes of Task s

Primitive Tasks

Compound Tasks

Similar to STRIP-style goals, which includes properties that we wish to make true.

Goal Tasks

Ty pes of Task s

Primitive Tasks

Compound Tasks

Similar to STRIP-style goals, which includes properties that we wish to make true.

Tasks that we can directly achieve by executing corresponding action.

Goal Tasks

Ty pes of Task s

Primitive Tasks

Compound Tasks

Similar to STRIP-style goals, which includes properties that we wish to make true.

Tasks that we can directly achieve by executing corresponding action.

Tasks with desired changes that involve several goal tasks and primitive tasks.

Compound Tasks

Building a house Having a house

Compound Tasks

at(car, place_1) at(car, place_1)prim_task prim_task

Compound Tasks

at(car, place_1) at(car, place_1)

Task Netw ork s

Task Netw ork s

Tasks are connected together in HTN planning via the use of task networks.

Task Netw ork s

Achieve[clear(v1)]

do[move(v1, v3, v2)]

Achieve[clear(v2)]

n1:

n2:

n3:

:on(v1, v3):

clear(v2):

clear(v1):

Non-primitive task of achieve[on(v1,v2)]

(
 (n1: achieve[clear(v1)]) (n2: achieve[clear(v1)]) (n3: do[move(v1, v2 , v3)])
 (n1 < n3) ^ (n2 < n3) ^ (n1,clear(v1),n3)

∧(n2, clear(v2), n3) ∧ (on(v1, v3), n3)
∧ ¬(v1 = v2) ∧ ¬(v1 = v3) ∧ ¬(v2 = v3)

)

Task Netw ork s

HTN Planning Procedure

HTN Planning Procedure

1. Input a planning problem P.
2. If P contains only primitive tasks, then resolve the conflicts in P and return the

result. If the conflicts cannot be resolved, return failure.
3. Choose a non-primitive task t in P.
4. Choose an expansion for t.
5. Replace t with the expansion.
6. Use critics to find the interactions among the tasks in P, and suggest ways to

handle them.
7. Apply one of the ways suggested in step 6.
8. Go to step 2.

UMCP Planning Procedure

1. Input a planning problem P = 〈d, I, D〉.
2. if d is primitive, then

1. If comp(d, I, D) 6 = ∅, return a member of it.
2. Otherwise return FAILURE.

3. Pick a non-primitive task node (n : α) in d.
4. Nondeterministically choose a method m for α.
5. Set d := reduce(d, n, m).
6. Set Γ := τ (d, I, D).
7. Nondeterministically set d := some element of Γ.
8. Go to step 2.

HTN Planning Procedure

1. Input a planning problem P.
2. If P contains only primitive tasks, then resolve the conflicts in P and return the

result. If the conflicts cannot be resolved, return failure.
3. Choose a non-primitive task t in P.
4. Choose an expansion for t.
5. Replace t with the expansion.
6. Use critics to find the interactions among the tasks in P, and suggest ways to

handle them.
7. Apply one of the ways suggested in step 6.
8. Go to step 2.

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

Build House House

Land

Money

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

Build House House

Land

Money

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

Build House House

Land

Money

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Build House House

Land

Obtain Permit

Hire Builder

Construct Pay Builder

Obtain Permit

Get Friend

Construct Pay Builder

Hire and build Build with a friend

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

Build House House

Land

Money

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

House

Land

Money

Obtain Permit

Hire Builder

Construct Pay Builder

Hire and build

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

House

Land

Money

Obtain Permit

Hire Builder

Construct Pay Builder

Hire and build

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

House

Land

Money

Obtain Permit

Hire Builder

Construct

Pay Builder

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

House

Land

Money

Obtain Permit

Hire Builder

Construct

Pay Builder

~Money

~Money

Money

HTN Planning Procedure
1. Input a planning problem P.

2. If P contains only primitive tasks, then resolve the
conflicts in P and return the result. If the conflicts
cannot be resolved, return failure.

3. Choose a non-primitive task t in P.

4. Choose an expansion for t.

5. Replace t with the expansion.

6. Use critics to find the interactions among the tasks in
P, and suggest ways to handle them.

7. Apply one of the ways suggested in step 6.

8. Go to step 2.

Start

Finish

Buy Land

House

Land

Money

Obtain Permit

Hire Builder

Construct

Pay Builder

~Money

~Money

Money

GetLoan

Soundness of UMCP

Whenever UMCP returns a plan, it achieves the input task network at the
initial state with respect to all the models that satisfy the methods and the

operators

Completeness of UMCP

Whenever UMCP fails to find a plan, there is no plan that achieves the input
task network at the initial state with respect to all the models that satisfy the

methods and the operators.

Know ledge Representation

Classical Planning

Know ledge Representation

The world state and actions are typically represented using logical expressions, like in the
STRIPS, where actions are defined by preconditions and effects.

Classical Planning

Know ledge Representation

The world state and actions are typically represented using logical expressions, like in the
STRIPS, where actions are defined by preconditions and effects.

HTN Planning

Represents actions as a hierarchy of tasks. Tasks can be decomposed into subtasks,
allowing for a more structured representation of complex actions.

This hierarchical representation enables the decomposition of high-level goals into
simpler subgoals.

Problem-Solv ing Approach

Classical Planning

Problem-Solv ing Approach

These algorithms focus on finding a sequence of primitive actions to achieve a goal state,
often using search algorithms like A* or heuristic search.

Classical Planning

Problem-Solv ing Approach

These algorithms focus on finding a sequence of primitive actions to achieve a goal state,
often using search algorithms like A* or heuristic search.

HTN Planning

HTN planning works by decomposing complex tasks into simpler subtasks, iteratively
expanding and resolving conflicts until a conflict-free with primitive tasks is found.

This approach allows for more structured and goal-directed problem-solving.

	UMCP: A Sound and Complete Procedure for Hierarchical�Task-Network Planning
	What is HTN?
	What is HTN?
	What is HTN?
	Types of Tasks
	Types of Tasks
	Types of Tasks
	Types of Tasks
	Types of Tasks
	Types of Tasks
	Types of Tasks
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Task Networks
	Task Networks
	Task Networks
	Task Networks
	HTN Planning Procedure
	HTN Planning Procedure
	UMCP Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	HTN Planning Procedure
	Soundness of UMCP
	Completeness of UMCP
	Knowledge Representation
	Knowledge Representation
	Knowledge Representation
	Problem-Solving Approach
	Problem-Solving Approach
	Problem-Solving Approach
	Slide Number 43

