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Short History of Planning

* State-space planning seems the most intuitive way
to make planning into a search problem.

* However, a planning problem’s state space
explodes so quickly that we can’t hope to search it
unless we have a very accurate heuristic.

e We can reduce the number of decisions we have to
make during planning through abstraction.

* Plan graphs provide an abstraction of a planning
problem’s search space.

* Plan graphs lead to accurate heuristics!




State-Space Search
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State-Space Planner

Begin with an empty priority queue.
Put the initial state onto the priority queue.
While the queue is not empty:
Pop a state C off the priority queue.
If C is a goal state, return the plan to get to C.
For every step S whose preconditions are satisfied in C:
Let N be the state after taking step S in state C.

Push N onto the queue.

Return failure.




State-Space Search

Priority Queue:




State-Space Search

Start by pushing the initial
state onto the priority queue. °

Priority Queue:




State-Space Search

Start by pushing the initial

state onto the priority queue.

Heuristic
estimates 3
steps remain.

Priority Queue:




State-Space Search

Start by pushing the initial

state onto the priority queue.

Heuristic
estimates 3

A:0+3=3 steps remain.

Priority Queue:




State-Space Search

Pop a state off the queue.
Current State: A
Current Plan: @

Priority Queue:




State-Space Search

Expand the current state.
Current State: A
Current Plan: @

Priority Queue:

Step 2




State-Space Search

Put children on the queue.
Current State: A
Current Plan: @

Priority Queue:

Heuristic
estimates 1

step remains.

Step 2




State-Space Search

Put children on the queue.
Current State: A
Current Plan: @
Priority Queue:
B:1+1=2

Heuristic
estimates 1

step remains.

Step 2




State-Space Search

Put children on the queue.
Current State: A
Current Plan: @
Priority Queue:
B:1+1=2

Step 2

Heuristic
estimates 2
steps remain.




State-Space Search

Put children on the queue.
Current State: A
Current Plan: @
Priority Queue:
B:1+1=2

C:1+2=3

Step 2

Heuristic
estimates 2
steps remain.




State-Space Search

Put children on the queue.
Current State: A
Current Plan: @
Priority Queue:
B:1+1=2

C:1+2=3

Step 2




State-Space Search

Pop a state off the queue.
Current State: B
Current Plan: 1
Priority Queue:
C:1+2=3

Step 2




State-Space Search

Expand the current state.
Current State: B
Current Plan: 1
Priority Queue:
C:1+2=3




State-Space Search

Put children on the queue.
Current State: B
Current Plan: 1

Priority Queue:
C:1+2=3 Step 2
D:2+2=4

Heuristic
estimates 2
steps remain.




State-Space Search

Put children on the queue.
Current State: B
Current Plan: 1

Priority Queue:

C:1+2=3
D:2+2=4
E:2+2=4

Heuristic
estimates 2
steps remain.




State-Space Search

Put children on the queue.
Current State: B
Current Plan: 1

Priority Queue:
C:1+2=3

D:2+2=4

E:2+2=4




State-Space Search

Pop a state off the queue.
Current State: C
Current Plan: 2
Priority Queue:
D:2+2=4

E:2+2=4




State-Space Search

Expand the current state.
Current State: C
Current Plan: 2
Priority Queue:
D:2+2=4

E:2+2=4




State-Space Search

Put children on the queue.
Current State: C
Current Plan: 2

Priority Queue:

F:2+1=3 Step 2

Step 4
D:2+2=4
E:2+2=4

Heuristic
estimates 1
step remains.




State-Space Search

Put children on the queue.
Current State: C
Current Plan: 2

Priority Queue:

G:2+0=2 Step 2
Step 4
F:2+1=3
D: 2+2=4 Heuristic
EI 24+ 92 =4 estimates 0

steps remain.




State-Space Search

Put children on the queue.
Current State: C
Current Plan: 2
Priority Queue:
G:2+0=2

F:2+1=3

D:2+2=4

E:2+2=4




State-Space Search

Pop a state off the queue.
Current State: G
Current Plan: 2, 4
Priority Queue:
F:2+1=3

D:2+2=4

E:2+2=4




State-Space Search

Current state is a goal state!
Current State: G

Current Plan: 2, 4
Priority Queue:
F:2+1=3

D:2+2=4

E:2+2=14




State-Space Search

Return plan to reach G.
Current State: G
Current Plan: 2, 4
Priority Queue:
F:2+1=3

D:2+2=4
E:2+2=4




Planning Heuristics

The speed of a state-space planner is entirely
dependent on its heuristic.

State-space planning algorithms are simple; the
complexity and ingenuity comes in how they
calculate their heuristics.




Heuristics

A state-space planning heuristic estimates the
answer to the following question: “Given some
current state, how many more steps need to be taken
before a goal state is reached?”

Ideally, a heuristics is:

* Highly accurate
* Admissible

e Fast to calculate




Heuristic Search Planner (HSP)

* Created by Blai Bonet, Gabor Loerincs, and Héctor
Gettner

* Perhaps the first viable state-space planner.

* Winner of the first International Planning
Competition in 1998




HSP’s Heuristic

Input: The current state.
Every literal has a cost, initially e.
Every literal that is true in the current state has a cost of 0.
The cost of a conjunction is the sum of the costs of its conjuncts.
Do this until the costs of the literals stop changing:
For every step S:
For every literal E in the effect of S:
Let the cost of E be the minimum of:
1. The current cost of E.

2. The cost of S’s precondition + 1.

Return the cost of the problem’s goal.




HSP in Blocks World

Weights:
h(on(4,Table)) = oo
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) = 00
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,A)) =
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) = 00
h(—wlear(B)) = 00
h(clear(C)) = 00
h(—lclear(C)) = 00
h(clear(Table)) = o0

Initial State Goal

Note: For the sake of a small example, we will only
consider some of the literals and actions. When HSP
computes it heuristic, it considers all literals and all
actions.




HSP in Blocks World

Weights:
h(on(4,Table)) = oo
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) = 00
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,A)) =
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) = 00
h(—mlear(B)) = 00
h(clear(C)) = 00
h(—lclear(C)) = 00
h(clear(Table)) = o0

Initial State Goal

Start with the cost of every literal set to co.




HSP in Blocks World

Weights:

h(on(A, Table)) =0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,A4)) =0
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

Initial State Goal

Set the cost of every literal that is true in the initial
state to 0.




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,4)) =0
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

Initial State Goal

Update the cost of every effect of every step.




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,4)) =0
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

on(A,Table) A clear(A) A clear(B)
move(A,Table, B)

on(A, B) A ~on(A,Table) A clear(Table) A —clear(B)

Cost of precondition:
h(on(A, Table) A clear(A) A clear(B)) =7




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,4)) =0
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

on(A,Table) A clear(A) A clear(B)
move(A,Table, B)

on(A, B) A ~on(A,Table) A clear(Table) A —clear(B)

Cost of precondition:
h(on(A, Table) A clear(A) A clear(B)) = oo




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,4)) =0
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

on(A,Table) A clear(A) A clear(B)
move(A,Table, B)

on(A, B) A ~on(A,Table) A clear(Table) A —clear(B)

Cost of precondition:
h(on(A, Table) A clear(A) A clear(B)) = oo

Set h(on(A, B)) = min(oo, o0 + 1)

Set h(—lon(A, Table)) = min(oo, 00 + 1)
Set h(clear(Table)) = min(oo, 0 + 1)
Set h(—lclear(B)) = min(oo,c0 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,4)) =0
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) =0
h(—wlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

on(C,A) A clear(C)
moveToTable(C, A)

on(C,Table) A —on(C, A) A clear(A)

Cost of precondition:
h(on(C,A) A clear(C)) =7?




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) = 00
h(on(C,4)) =0
h(—on(C,A)) =
h(clear(A)) = 00
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

on(C,A) A clear(C)
moveToTable(C, A)

on(C,Table) A —on(C, A) A clear(A)

Cost of precondition:
h(on(C,A) A clear(C)) =0

Set h(on(C, Table)) = min(oo, 0 + 1)
Set h(—lon(C, A)) = min(oo, 0 + 1)
Set h(clear(A)) = min(oo, 0 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) =1
h(on(C,4)) =0
h(—on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—wlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

on(C,A) A clear(C)
moveToTable(C, A)

on(C,Table) A —on(C, A) A clear(A)

Cost of precondition:
h(on(C,A) A clear(C)) =0

Set h(on(C, Table)) = min(oo, 0 + 1)
Set h(—lon(C, A)) = min(oo, 0 + 1)
Set h(clear(A)) = min(oo, 0 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

on(B,Table) A clear(B) A clear(C)
move(B,Table, C)

on(B,C) A ~on(B,Table) A clear(Table) A —~clear(C)

Cost of precondition:
h(on(B,Table) A clear(B) A clear(C)) =7?




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) = 00
h(on(B,C)) =
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—lclear(C)) = 00
h(clear(Table)) = o0

on(B,Table) A clear(B) A clear(C)
move(B,Table, C)

on(B,C) A ~on(B,Table) A clear(Table) A —~clear(C)

Cost of precondition:
h(on(B,Table) A clear(B) A clear(C)) =0

Set h(on(B, C)) = min(eo, 0 + 1)

Set h(—lon(B,Table)) = min(oo, 0 + 1)
Set h(clear(Table)) = min(co, 0 + 1)
Set h(—lclea‘r(C)) = min(oo, 0 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) =1
h(on(B,C)) =1
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(ﬁclear(C)) =1
h(clear(Table)) =1

on(B,Table) A clear(B) A clear(C)
move(B,Table, C)

on(B,C) A ~on(B,Table) A clear(Table) A —~clear(C)

Cost of precondition:
h(on(B,Table) A clear(B) A clear(C)) =0

Set h(on(B, C)) = min(eo, 0 + 1)

Set h(—lon(B,Table)) = min(oo, 0 + 1)
Set h(clear(Table)) = min(co, 0 + 1)
Set h(—lclea‘r(C)) = min(oo, 0 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) =1
h(on(B, C)) =1
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1

Some costs changed, so we need to do another
round of updates.




HSP in Blocks World

Weights:

on(A,Table) A clear(A) A clear(B
h(on(4,Table)) = 0 ( ) (4) (B)
h(—|0n(A, Table)) = 0 move(A,Table, B)
h(on(4,B)) = on(4, B) A =on(A4, Table) A clear(Table) A —clear(B)

h(on(B, Table)) =0
h(—|0n(B, Table)) =1
h(on(B, C)) =1
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1

Cost of precondition:
h(on(A, Table) A clear(A) A clear(B)) =7?




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) = o0
h(on(4,B)) =
h(on(B, Table)) =0
h(—|0n(B, Table)) =1
h(on(B, C)) =1
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) = 00
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1

on(A,Table) A clear(A) A clear(B)
move(A,Table, B)

on(A, B) A ~on(A,Table) A clear(Table) A —clear(B)

Cost of precondition:
h(on(A, Table) A clear(A) A clear(B)) =1

Set h(on(4,B)) = min(eo, 1 + 1)

Set h(—lon(A, Table)) = min(oo,1 + 1)
Set h(clear(Table)) = min(1,1+ 1)
Set h(—lclear(B)) = min(oo,1 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) =2
h(on(A,B)) = 7)
h(on(B, Table)) =0
h(—|0n(B, Table)) =1
h(on(B, C)) =1
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—wlear(B)) =2
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1

on(A,Table) A clear(A) A clear(B)
move(A,Table, B)

on(A, B) A ~on(A,Table) A clear(Table) A —clear(B)

Cost of precondition:
h(on(A, Table) A clear(A) A clear(B)) =1

Set h(on(4,B)) = min(eo, 1 + 1)

Set h(—lon(A, Table)) = min(oo,1 + 1)
Set h(clear(Table)) = min(1,1+ 1)
Set h(—lclear(B)) = min(oo,1 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) =2
h(on(A,B)) =2
h(on(B, Table)) =0
h(—|0n(B, Table)) =1
h(on(B, C)) =1
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) =2
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1

on(C,A) A clear(C)
moveToTable(C, A)

on(C,Table) A —on(C, A) A clear(A)

Cost of precondition:
h(on(C,A) A clear(C)) =0

Set h(on(C, Table)) = min(1,0 + 1)
Set h(—on(C,A)) = min(1,0 + 1)
Set h(clear(A)) = min(1,0 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) =2
h(on(A,B)) =2
h(on(B, Table)) =0
h(—|0n(B, Table)) =1
h(on(B, C)) =1
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) =2
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1

on(B,Table) A clear(B) A clear(C)
move(B,Table, C)

on(B,C) A ~on(B,Table) A clear(Table) A —~clear(C)

Cost of precondition:
h(on(B,Table) A clear(B) A clear(C)) =0

Set h(on(B,C)) = min(1,0 + 1)

Set h(—lon(B,Table)) = min(1,0 + 1)
Set h(clear(Table)) = min(1,0 + 1)
Set h(—lclea‘r(C)) = min(1,0 + 1)




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) =2
h(on(A,B)) =2
h(on(B, Table)) =0
h(—|0n(B, Table)) =1
h(on(B, C)) =1
h(on(C, Table)) =1
h(on(C,4)) =0
h(—-on(C,4)) =1
h(clear(A)) =1
h(clear(B)) =0
h(—mlear(B)) =2
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1

Some costs changed, so we need to do another
round of updates.

Spoiler: Nothing will change this round.

After a round where no weights change, we are done.




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) =2
h(on(A,B)) =2
h(on(B, Table)) =0
h(—|0n(B, Table)) =1

e =
h(on(C, Table)) = 1

hgzzgc, Agl) =e)()) Initial State Goal
h(-on(C,4)) =1

h(clear(4)) = 1 What is the estimated cost of the goal?
h(clear(B)) =0 h(on(A, B) A on(B, C)) _ 9

h(—mlear(B)) =2
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1




HSP in Blocks World

Weights:
h(on(4,Table)) = 0
h(—|0n(A, Table)) =2
h(on(A,B)) =2
h(on(B, Table)) =0
h(—|0n(B, Table)) =1

lon(B, 0) =1 T
h C,Table)) =1

hgzzgc, Agl) =e)()) Initial State Goal
h(-on(C,4)) =1

h(clear(4)) = 1 What is the estimated cost of the goal?
h(clear(B)) =0 h(on(A, B) A OTL(B, C)) 04 1=23

h(—mlear(B)) =2
h(clear(C)) =0
h(—clear(C)) =1
h(clear(Table)) =1




HSP’s Heuristic

Every literal has a cost, initially e.
Every literal that is true in the initial state has a cost of 0.
The cost of a conjunction is the sum of the costs of its conjuncts.
Do this until the costs of the literals stop changing:
For every step S:
For every literal E in the effect of S:
Let the cost of E be the minimum of:

1. The current cost of E.

2. The cost of S’s precondition + 1.




Planning Problems

During planning, goals can:

* Interfere: Progress toward one goal undoes
progress toward another goal.

* Synergize: Progress toward one goal also makes
progress toward another goal.




HSP’s Heuristic

* HSP does not account for interference.

(Sometimes called the “ignore delete list” assumption)
* HSP does not account for synergy.

(Because the cost of a goal is the sum of its parts)

* HSP may overestimate, and thus is not admissible.

* In practice, HSP was the first heuristic that was
accurate enough to allow for state-space planning.

* Heuristic is efficient to compute.




Analyzing HSP's Heuristic

* The heuristic is based on a relaxed version of the
planning problem that is much easier to solve but
still provides a good approximation of the original.

* Relaxed problem: We can never get farther from a
goal, only closer (i.e. ignore interference).

* The cost of achieving some literal is 1 + the cost of
achieving the precondition of any step which has
that literal as an effect.




Fast-Forward (FF)

* Created by Bernhard Nebel and Jorg Hoftmann

* Top performer in the second (2000) and third
(2002) International Planning Competitions

* Observation: HSP’s estimates are very similar to
those obtained from a plan graph

* Idea: Use a plan graph to estimate the difficulty of
a goal and to find a solution to the relaxed problem

* Benefit: Plan graphs account for synergy in goals




FF Heuristic

Given a current state S and a goal G:
Construct a plan graph such that layer 0 is S.
Extend the plan graph until all goals in G appear.
(Do not use persistence steps or mutexes.)

Extract a solution as graphplan does.

Return the size of the resulting plan.




Cargo Problem

Initial State: at(C1,ATL) A at(C2,ATL) A at(P1,ATL)
Goal: at(C1,MSY) A at(C2,MSY)

Plan: HSP Estimate: ? steps

1. load(C1,P1,ATL) Plan Graph Estimate: ? steps
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4
5.
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Cargo Problem

Initial State: at(C1,ATL) A at(C2,ATL) A at(P1,ATL)
Goal: at(C1,MSY) A at(C2,MSY)

Plan: HSP Estimate: ? steps

1. load(C1,P1,ATL) Plan Graph Estimate: ? steps
Z. load(C2,P1,ATL) FF Estimate: 7 steps
3 fly(P1,ATL, MSY)
4
5.

. unload(C1,P1,MSY)

. unload(C2,P1,MSY)
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Cargo Problem

Initial State: at(C1,ATL) A at(C2,ATL) A at(P1,ATL)
Goal: at(C1,MSY) A at(C2,MSY)

Plan: HSP Estimate: 6 steps

1. load(C1,P1,ATL) Plan Graph Estimate: ? steps
Z. load(C2,P1,ATL) FF Estimate: 7 steps
3 fly(P1,ATL, MSY)
4
5.

. unload(C1,P1,MSY)

. unload(C2,P1,MSY)
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Cargo Problem

Initial State: at(C1,ATL) A at(C2,ATL) A at(P1,ATL)
Goal: at(C1,MSY) A at(C2,MSY)

Plan: HSP Estimate: 6 steps

1. load(C1,P1,ATL) Plan Graph Estimate: 2 steps
Z. load(C2,P1,ATL) FF Estimate: 7 steps
3 fly(P1,ATL, MSY)
4
5.

. unload(C1,P1,MSY)

. unload(C2,P1,MSY)
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Cargo Problem

Initial State: at(C1,ATL) A at(C2,ATL) A at(P1,ATL)
Goal: at(C1,MSY) A at(C2,MSY)

Plan: HSP Estimate: 6 steps

1. load(C1,P1,ATL) Plan Graph Estimate: 2 steps
Z. load(C2,P1,ATL) FF Estimate: 5 steps
3 fly(P1,ATL, MSY)
4
5.

. unload(C1,P1,MSY)

. unload(C2,P1,MSY)




Graphplan vs. HSP vs. FF

* All three are solving a relaxed version of the
problem by never deleting facts.

* Simply using the level of the plan graph at which
the goal first appears is admissible but often
underestimates dramatically.

* HSP does not account for synergy between goals
and so is more prone to overestimate.

* FF accounts for synergy between goals and so
often gives more accurate estimates.




Mutexes

FF does not compute mutexes when extending the
plan graph. This is for two reasons:

* In practice, the extra accuracy gained by using
mutexes is not worth the cost of computing them.

* Graphplan solution extraction is P-SPACE-hard
because of mutexes. FF must re-compute the plan
graph at every iteration of the search, so extracting
a solution with mutexes is way too expensive.

Without mutexes, solution extraction can be done
greedily and is only P-TIME-hard.




Fast-Downward

* Created by Malte Helmert and Silvia Richter

* Winner of the fourth International Planning
Competition (2004)

* Every winning planner since then up until the
present has been based on FD




Fast-Downward

* Translates propositional problem representation
into a variable / value representation, which allows
for smaller and faster data structures.

* Computes domain transition graph to describe
how a variable’s value can change.

* Relaxed plans extracted from domain transition
graphs.




Propositional Representation

Given 1 plane and 4 airports, there are 8 literals the need
to be expessed:

1. at(P1,ATL) Traditionally, a state has been
2. —at(P1,ATL) represented as an array of

3. at(P1,MSY) Boolean variables. Given a

4. —at(P1,MSY) problem with p planes and a
5 at(P1,SFO) airports, how many indices are
6. —at(P1,SFO) needed in this array?

7. at(P1,DFW) p - a

8 —at(P1,DFW)




Variable / Value Representation

Rather than representing literals as Boolean values,
FD infers a set of variables which can have one of
many possible values:

1. location(P1) = ATL Given a problem with p

2. location(P1) = MSY planes and a airports,
| how many indices are

3. location(P1) = SFO needed in this new array?
4. location(P1) = DFW

p




Domain Transition Graphs

fly(P1,ATL, MSY)
location(P1) = ATL location(P1) = MSY
fly(P1, MSY, ATL)

fly(P1,SF0, ATL)

fly(P1,ATL, DFW) fly(P1,DFW, MSY)

fly(P1,DFW,ATL) fly(P1,MSY, SFO)

fly(P1,ATL,SFO) fly(P1,SFO, MSY)

Fly(P1,MSY,DFW)

fly(P1,SFO,DFW)

location(P1) = SFO location(P1) = DFW
fly(P1,DFW, SFO)




FD Heuristic (Overview)

* FD calculates it heuristic by considering domain
transition graphs (DTGs).

 Given the current value of a variable (current node
in the DTG) , follow edges (steps) until we reach
the value of that variable in the goal.

* The order in which variables are considered is
decided based on how goals interact.

* FD is essentially breaking down each goal into a
causal chain (remember causal links?).




HSP vs. FF vs. FD

All three planners calculate their heuristics by

solving a relaxed version of the problem that is only
P-TIME-hard instead of P-SPACE-hard:

* HSP does not account for synergy or interference.

* FF accounts for synergy but not interference.

* FD accounts for synergy and some interference.




History of Planning

* State space planning would be the most straight-
forward way to approach the problem, but the
search space explodes so quickly that this is only
viable with highly accurate heuristics.

* Other approaches to planning (e.g. POCL and
Graphplan) are developed. They use abstraction to
reduce the number of decisions the planner makes.




History of Planning

* Plan graphs leads to the development of accurate
heuristics.

* Heuristics become progressively more accurate by
solving relaxed problems which are more and more
similar to the original problem.

* Other ideas developed early in the history of
planning research (e.g. causal links) are often
helptul in developing new approaches.
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