Recent Advances
in Al Planning

Article by Dan Weld
Presented by Stephen G. Ware

/ Narrative
i/ Intelligence

% University of
7 ntetigence Kentucky

History of Planning

* The search space of planning problems explode
quickly.

* Abstraction helps by grouping many choices into a
single choice.

* The abstractions discussed so far require
complicated plan-space search techniques which
may never terminate.

* Highly accurate heuristics may allow for
traditional state-space search.

Plan-Space Search

Plan 0

Fix Flaw Fix Flaw

Fix |Flaw

Plan 1 Plan 2 Plan 3

Fix Flaw Fix Flaw Fix Flaw Fix Flaw

Plan 4 Plan 5 Plan 6 Plan 7

State-Space Search

State 0

Action Action

Action

State 1 State 2 State 3

Action Action Action Action

State 4 State 5 State 6 State 7

Plan Graphs: Concept

By abstracting the state space, we can get accurate
estimates from a data structure that is much smaller
and easier to build.

State Space

State Space Abstracted

Level 0

lll

Actions

lll

Level 1 States

*

Actions

lll

Level 2 States

ll

Plan Graph

A plan graph is a directed, leveled graph with two
kinds of nodes:

* A literal nodes represents a single ground
predicate literal.

* A step node represents a ground action.

Literal Nodes

A node for literal L appears at level 0 if L is true in
the initial state.

A node for literal L appears at level n > 0 if:

* A node for L appears at level n — 1.

* There exists a step node at level n whose step has
L as an effect.

Step Nodes

No step nodes exist at layer 0.

A node for step S appears at level n > 0 if, for every
precondition literal P of S, a node for P appears at
level n — 1.

Cake Domain

Initial State: have(Cake)
Goal: have(Cake) A eaten(Cake)

Action: eat(Cake)
Precondition: have(Cake)
Effect: eaten(Cake) N —have(Cake)

Action: bake(Cake)
Precondition: mhave(Cake)
Effect: have(Cake)

lllllllllllllllllllllll

bake(Cake)

have(Cake) have(Cake) have(Cake)

—have(Cake) —have(Cake)

eat(Cake) eat(Cake)

eaten(Cake)

4 —eaten(Cake) E —eaten(Cake) E

eaten(Cake)

—eaten(Cake)

Features of Plan Graphs

* The literals and steps at each level are
monotonically increasing.

* It is possible that the literals X and =X appear at
the same level. This impossible state is the price
we pay for abstraction.

* A plan graph can be built in polynomial time!

Plan Graphs Heuristics

* The level at which a literal first appears gives us a
good estimate of how many steps need to be taken
before the literal can be achieved.

* The level at which a step first appears gives us a
good estimate of how many steps need to be taken
before that step can be taken.

* Are these estimates admissible? Yes

* Will they ever underestimate? Yes

lll

bake(Cake)

have(Cake) have(Cake) have(Cake)

—have(Cake) —have(Cake)

eat(Cake) eat(Cake)

eaten(Cake)

4 —eaten(Cake) E —eaten(Cake) E

eaten(Cake)

—eaten(Cake)

Can these two literals ever be true in the same state?

| | have(Cake)

—have(Cake)

Can these two literals ever be true in the same state?

¥ { ¥

—eaten(Cake)

| —have(Cake)

Can these two actions be taken in parallel without interfering with one another?

bake(Cake)

+ eat(Cake)

Increasing Accuracy

e We know that some literals cannot co-occur.

* We know that some steps cannot co-occur.

Improvement: Record mutual exclusion (or mutex)
relations that express these ideas.

Persistence Steps

A persistence step for some literal L is a dummy
step which has L as its precondition and L as its effect.

Persistence steps represent frame axioms (i.e. things
that do not change from one moment to the next).

Level 0 Level 1 Level 2

lll

B bake(Cake)

have(Cake) L have(Cake) : have(Cake)

—have(Cake) —have(Cake)

eat(Cake)

eaten(Cake) g : eaten(Cake)

—eaten(Cake) —eaten(Cake) —eaten(Cake)

Step Mutex Relations

Two steps cannot be taken in parallel when:

* Inconsistent Effects: One action negates an
effect of the other.

* Interference: One action negates a precondition
of the other.

* Competing Needs: Actions have mutually
exclusive preconditions.

Literal Mutex Relations

Two literals cannot occur at the same time when:

* Opposites: One literal is the negation of the other.

* Inconsistent Support: Every possible pair of
actions that could achieve the literals are mutually
exclusive.

Level 0 Level 1 Level 2

lll

B bake(Cake)

have(Cake) L have(Cake) : have(Cake)

—have(Cake) —have(Cake)

eat(Cake)

eaten(Cake) g : eaten(Cake)

—eaten(Cake) —eaten(Cake) —eaten(Cake)

Inconsistent Effects: One action negates an effect of the other.

Level 0 Level 1 Level 2

W hake(Cake)

have(Cake) L have(Cake) : have(Cake)

—have(Cake) —have(Cake)

eat(Cake)

eaten(Cake) pm eaten(Cake)

—eaten(Cake) —eaten(Cake) —eaten(Cake)

Inconsistent Effects: One action negates an effect of the other.

Level 0 Level 1 Level 2

lll

have(Cake)

‘H’ —have(Cake)

eat(Cake) eat(Cake)

L\

eaten(Cake) eaten(Cake)

—eaten(Cake) —eaten(Cake) g —eaten(Cake)

Interference: One action negates a precondition of the other.

Level 0 Level 1 Level 2

W hake(Cake)

have(Cake) L have(Cake) : have(Cake)

—have(Cake) —have(Cake)

eat(Cake)

eaten(Cake) pm eaten(Cake)

—eaten(Cake) —eaten(Cake) —eaten(Cake)

Interference: On action negates a precondition of the other.

Level 0 Level 1 Level 2

lll

Pl bake(Cake)
have(Cake) L have(Cake) VE have(Cake)
—have(Cake) ‘ ﬂhave(Cake)
eat(Cake) eat(Cake)

L\

eaten(Cake) eaten(Cake)

—eaten(Cake) —eaten(Cake) g —eaten(Cake)

Opposites: One literal is the negation of the other.

Level 0 Level 1 Level 2

W hake(Cake)

have(Cake) L have(Cake) : have(Cake)

—have(Cake) —have(Cake)

eat(Cake)

eaten(Cake) g : eaten(Cake)

—eaten(Cake) —eaten(Cake) —eaten(Cake)

Opposites: One literal is the negation of the other.

Level 0 Level 1 Level 2

W hake(Cake)

have(Cake) L have(Cake) : have(Cake)

—have(Cake) .H —have(Cake)

eat(Cake)

eaten(Cake) eaten(Cake)

—eaten(Cake) —eaten(Cake) g —eaten(Cake)

Inconsistent Support: Every pair of actions that achieves the literals is mutually exclusive.

Level 0 Level 1 Level 2

W hake(Cake)

have(Cake) L have(Cake) : have(Cake)

—have(Cake) —have(Cake)

eat(Cake)

eaten(Cake) pm eaten(Cake)

—eaten(Cake) —eaten(Cake) —eaten(Cake)

Inconsistent Support: Every pair of actions that achieves the literals is mutually exclusive.

Level 0 Level 1 Level 2

W bake(Cake)

have(Cake) L : have(Cake)

—have(Cake) —have(Cake)

eat(Cake) eat(Cake)

eaten(Cake) eaten(Cake)

—eaten(Cake) g —eaten(Cake)

d —eaten(Cake) §

Competing Needs: Actions have mutually exclusive preconditions.

Level 0 Level 1 Level 2

W hake(Cake)

have(Cake) L have(Cake) : have(Cake)

—have(Cake) —have(Cake)

eat(Cake)

eaten(Cake) pm eaten(Cake)

—eaten(Cake) —eaten(Cake) —eaten(Cake)

Competing Needs: Actions have mutually exclusive preconditions.

Level 0 Level 1 Level 2

Wb ake(Cak

s . e)
have(Cake) : have(Cake) h‘ have(Cake)

—have(Cake) ' —have(Cake)
eat(Cake)

eaten(Cake) pm eaten(Cake)

—eaten(Cake) —eaten(Cake) —eaten(Cake)

Level 0

have(Cake)

d —eaten(Cake) §

Level 1 Level 2

W hake(Cake)

. h‘ have(Cake)

have(Cake) ' l
ﬂhave(Cake) A ‘ —have(Cake)

\ @y,

eat(Cake) \ eat(Cake) ‘

eaten(Cake)

—eaten(Cake) g

Mutexes

Do these mutex relations cover every possible set of
nodes which are mutex?

No. Consider this Block’s World problem:
Goal: on(4,B) Aon(B,C) Aon(C,A)

The three goal literals are mutually exclusive, but no
pair of them is mutually exclusive.

Plan Graph Algorithm

Plan graphs are not only useful for heuristics. There
exists a family of algorithms that search the plan
graph for a plan.

Graphplan Algorithm

Extend the plan graph until all goals are non-mutex.
Let G be the current goals, initially the problem’s goals.
Let n be the current level, initially the highest level.
To satisfy the goals in G at level n:
If n = 0, return the plan as a solution.
Choose a set of steps S which achieve all the goals in G.
(Every pair of steps in S must be non-mutext).
Add all steps in S to the plan.
Let G = all the preconditions of the steps in S.

Recursively satisfy all the goals in G at level n - 1.

If satisfying G fails, add a level to the graph and try again.

Level 0

have(Cake)

d —eaten(Cake) §

Level 1 Level 2

W hake(Cake)

. h‘ have(Cake)

have(Cake) ' l
ﬂhave(Cake) A ‘ —have(Cake)

\ @y,

eat(Cake) \ eat(Cake) ‘

eaten(Cake)

—eaten(Cake) g

Level 0

have(Cake)

d —eaten(Cake) §

Goals: have(Cake) A eaten(Cake)
Level 1 Level 2

W hake(Cake)

. h‘ have(Cake)

\\
have(Cake)
o' (/|
—have(Cake) A —have(Cake)
Py

eat(Cake) \ eat(Cake) ‘

eaten(Cake)

—eaten(Cake) g

Level 0

have(Cake)

d —eaten(Cake) §

Goals: have(Cake) A eaten(Cake)
Level 1 Level 2

W bake(Cake)

. h‘ have(Cake)

\\
have(Cake)
o' (/|
—have(Cake) A —have(Cake)
Py

eat(Cake) \ eat(Cake) ‘

eaten(Cake)

—eaten(Cake) g

Goals: mhave(Cake) A eaten(Cake)

Level 0 Level 1 Level 2

W bake(Cake)

. ‘h‘ have(Cake)

have(Cake) : have(Cake)

[") o
—have(Cake) .“J' —have(Cake)

eat(Cake) \ eat(Cake) ‘

eaten(Cake)

f —eaten(Cake) g —eaten(Cake) g

Goals: mhave(Cake) A eaten(Cake)

Level 0 Level 1 Level 2

W bake(Cake)

. ‘h‘ have(Cake)

have(Cake) : have(Cake)

[") o
—have(Cake) .“J' —have(Cake)

eat(Cake) \ eat(Cake) ‘

eaten(Cake)

f —eaten(Cake) g —eaten(Cake) g

Goals: have(Cake)
Level 0

have(Cake)

A cat(Cake) \

d —eaten(Cake) §

Level 1 Level 2

W bake(Cake)

. ‘h‘ have(Cake)

\\
have(Cake)
1))
—have(Cake) A —have(Cake)
Py

eat(Cake)

L\

eaten(Cake)

—eaten(Cake) g

Backtracking Search

This search procedure is a backtracking search. In
other words, if we can’t find any way to satisty the
goals at some low level, we have to go back to the
higher levels and try to solve them differently.

As you might have guessed, since building the plan
graph is only P-TIME-hard, this search is P-SPACE
hard.

When a complete backtracking search fails to satisty
a set of goals at some level, it means that set cannot
be achieved at that level.

We can record this set as a no-good. Later, if we
are asked to solve that set of goals at that level

again, we can automatically fail without doing the
search again.

No-goods are just many-node mutexes.

Extending the Plan Graph

Once a literal appears at some level, it will appear at

all higher levels.

Once a step appears at some level, it will appear at

all higher levels.

Once a mutex appears, it might disappear at higher
levels. (Things which were mutex early on might
become non-mutex later.)

Once a no-good appears, it might disappear at a

higher level.

Leveling Off and Termination

Eventually, the literals and goals at each level will
stop Increasing.

Eventually, the mutexes and no-goods will stop
decreasing.

When both of these conditions have occurred, the
graph has leveled off. If search fails once the graph
has leveled off, we know no solution to the problem
exists.

	Slide 1: Recent Advances in AI Planning
	Slide 2: History of Planning
	Slide 3: Plan-Space Search
	Slide 4: State-Space Search
	Slide 5: Plan Graphs: Concept
	Slide 6: State Space
	Slide 7: State Space Abstracted
	Slide 8: Plan Graph
	Slide 9: Literal Nodes
	Slide 10: Step Nodes
	Slide 11: Cake Domain
	Slide 12
	Slide 13: Features of Plan Graphs
	Slide 14: Plan Graphs Heuristics
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Increasing Accuracy
	Slide 20: Persistence Steps
	Slide 21
	Slide 22: Step Mutex Relations
	Slide 23: Literal Mutex Relations
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Mutexes
	Slide 37: Plan Graph Algorithm
	Slide 38: Graphplan Algorithm
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Backtracking Search
	Slide 46: No-Goods
	Slide 47: Extending the Plan Graph
	Slide 48: Leveling Off and Termination

