
FF: The Fast-Forward Planning System
by Jorg Hoffmann

Presented by Fairoz Nower Khan

Background of FF

● Most successful planner in Artificial Intelligence Planning
and Scheduling (AIPS’00) planning systems competition

● Advanced successor of HSP
● Like HSP, FF relies on forward search through the state

space

Differences with HSP
● Heuristics: Better heuristic evaluation considering positive

interactions between facts
● Enforced hill climbing: local search strategy using

systematic search to escape plateaus and local minima
● Pruning: identifies successors of a search node that may

be most helpful in reaching the goal

Relaxed Graphplan for Heuristic
● Expanding to larger states
● But without adding negative effects
● “Ignoring the delete lists”
● Actions can make things True but cannot make things

False anymore

Relaxed Graphplan in FF
● FastForward uses a special version of Graphplan to

compute a heuristic value
● Domain given to Graphplan contains no negative effects
● Thus, no mutual exclusion among actions or literals
● Thus, no need for backtracking
● Length of Graphplan’s solution to relaxed problem from a

node is heuristic value for that node

Initial State: Empty
Goals: {G1, G2}
Actions:
opG1: Preconditions P ⇒ Add G1
opG2: Preconditions P ⇒ Add G2
opP: No preconditions ⇒ Add P

How FF uses plan graphs in its heuristic

Initial Level Level 2 Level 3

 P

G2

G1

OpP

OpG1

OpG2

How FF uses plan graphs in its heuristic
 Initial Level Level 2 Level 3

 P

G2

G1

OpP

OpG1

OpG2

HSP Estimate
Cost of G1 = 2
Cost of G2 = 2
Cost of Goal = 2+2 = 4

Relaxed Graphplan Estimate
Selects opP only once,
resulting in a plan containing
only three actions

Initial State: Empty
Goals: {G1, G2}
Actions:
opG1: Preconditions P ⇒ Add G1
opG2: Preconditions P ⇒ Add G2
opP: No preconditions ⇒ Add P

Shared
preconditions

Search Strategy
● A hill-climbing algorithm is a greedy search strategy that

moves to the neighbor with better heuristic
● Often finds a good local maxima, but not the optimal

solution

Hill-Climbing in State Space
● HSP uses standard hill-climbing and a heuristic based on

the relaxations as previously discussed
● When no successor is a better state, and goals are not

met, make arbitrary choice
● No backtracking, so a bad choice can make the problem

unsolvable

Enforced Hill-Climbing

● FF uses a slightly modified hill-climbing algorithm
● Instead of choosing the best successor, perform

breadth-first search for the first strictly better descendent
● Less likely to randomly wander around plateaus

Helpful Actions
● For a state S, the set H(S) of helpful actions is defined as

H(S) := {o|pre(o) ⊆ S, add(o) ∩ G1 ̸= ∅}

● H(S) is the set of helpful actions for a given search state S. These
helpful actions are those whose preconditions are satisfied by the
current state S, and their effects include at least one goal from the
set G1.

● Restrict any state’s successors to those generated by the first
action set in its relaxed solution.

Helpful Actions
There are two rooms, A and B, and two balls,

which will be moved from room A to room B, using a robot. Say the
robot is in room A and has picked up both balls. The relaxed solution
that the heuristic extracts is

< {moveAB},
{ drop ball1 B left,

drop ball2 B right } >

Performance Evaluation

● Eight experiments were conducted by turning the three features of
FF on or off.

● FF’s estimates improve run-time performance in about half of the
domains across all switch alignments

● With enforced hill climbing in the background, FF’s estimates have
clear advantages in terms of solution length

● Helpful actions strategy performs better in domains where a
significant number of actions can be cut. Solutions are shorter.

Thank You!

