The Fast Downward Planning
System

Ethan Coots

An example

Figure 1: A transportation planning task. Deliver parcel p; from C' to G and parcel py from £ to £,
using the cars cq, 9, c3 and truck ¢. The cars may only use inner-city roads (thin edges),
the truck may only use the highway (thick edge).

Propositional En

Variables:

coding

at-pl-a, at-pl-b, at-pl-c, at-pl-d, at-pl-e, at-pl-£f, at-pl-g,
at-p2-a, at-p2-b, at-p2-c, at-p2-d, at-p2-e, at-p2-f, at-p2-gq,
at-cl-a, at-cl-b, at-cl-c, at-cl-d,
at-c2-a, at-c2-b, at-c2-c, at-c2-d,
at-c3-e, at-c3-f, at-c3-g,

at-t—-d, at-t-e,

in-pl-cl, in-pl-c2, in-pl-c3, in-pl-t,
in-p2-cl, in-p2-c2, in-p2-c3, in-p2-t

Init:

at-pl-c, at-p2-f, at-cl-a, at-c2-b, at-c3-g, at-t-e

Goal:

at-pl-g, at-p2-e

Operator
PRE:
Operator
PRE:
Operator
PRE:
Operator
PRE:
Operator
PRE:
Operator
PRE:
Operator
PRE:
Operator
PRE:
Operator
PRE:

drive-cl-a-d:

at-cl-a ADD: at-cl-d DEL: at-cl-a

drive-cl-b-d:

at-cl-b ADD: at-cl-d DEL: at-cl-b

drive-cl-c-d:

at-cl-c¢ ADD: at-cl-d DEL: at-cl-c

load-cl-pl-a:
at-cl-a, at-pl-a ADD: in-pl-cl
load-cl-pl-b:
at-cl-b, at-pl-b ADD: in-pl-cl
load-cl-pl-c:
at-cl-c, at-pl-c¢ ADD: in-pl-cl

unload-cl-pl-a:
at-cl-a, in-pl-cl ADD: at-pl-a
unload-cl-pl-b:
at-cl-b, in-pl-cl ADD: at-pl-b
unload-cl-pl-c:
at-cl-c, in-pl-cl ADD: at-pl-c

DEL:

DEL:

DEL:

DEL:

DEL:

DEL:

at-pl-a

at-pl-b

at-pl-c

in-pl-cl

in-pl-cl

in-pl-cl

Domain Transition Graphs

N

Figure 3: Domain transition graph for the parcels p; and po. Indicates how a parcel can change
its state. For example, the arcs between “at D and “in ¢” correspond to the actions of
loading/unloading the parcel at location D with the truck .

0 ®
@*—*(? (—®
@

Figure 4: Domain transition graphs for the cars ¢y and c2 (left), truck ¢ (centre), and car c3 (right).
Note how each graph corresponds to the part of the roadmap that can be traversed by the
respective vehicle.

Causal Graph

C1 Co C3 t
P1 P2

Figure 6: Causal dependencies in the transportation planning task.

Fast Downward Planning System

* Goal: develop an algorithm that efficiently solves general
propositional planning tasks by exploiting the hierarchical
structure inherent in causal graphs

* Obstacles:
* Encoding PDDL representations to FDR
* Cycles (Some causal graphs are not hierarchical in nature)
* Finding a solution is difficult (still PSPACE-complete)

Three stages

Translation -

e o o o

Normalization
Invariant synthesis
Grounding
Translation to MPT

Figure 9: The three phases of Fast Downward’s execution.

Knowledge
Compilation

Domain transition
graphs

Causal graph
Successor generator
Axiom evaluator

Search

—

e @ o o

Causal graph heuristic

FF heuristic

Greedy best-first search

Multi-heuristic best-first search

Focused iterative-broadening search

Translation

* Turns PDDL input into multi-valued planning task

* As previously discussed, four stages:
* Normalization
* Invariant synthesis
* Grounding
* Translation to multi-valued planning task

Knowledge Compilation

e Generates four data structures:

* Domain transition graphs: encode how state variables can change their
values

* Causal graphs: shows hierarchical dependencies between state variables

* Successor generator: determines the set of applicable operators for a
given state

* Axiom evaluator: computes values of derived variables

Robot Domain Graph

r=(2,2), k = carried

r = (3,1), k = carried

Figure 10: Domain transition graphs of a GRID task. Top left: DTG(r) (robot); right: DTG(k)
(key); bottom left: DTG(d) (door).

Relaxing/Eliminating cycles

T r
a a
l kfl ;Iu’.'-g l k 1 kg

Figure 15: Causal graph of a GRID task (left) and of a relaxed version of the task (right). State
variable r encodes the location of the robot, a encodes the status of the robot arm (empty
or carrying a key), [encodes the status of the locked location (locked or open), and k1
and k2 encode the locations of the two keys.

Search

* Uses three different search functions:
* Best-first search using causal graph heuristic

* Multi-heuristic best-first search (combines causal graph and FF
heuristics)

* Focused iterative-broadening search: estimates “usefulness” of operators

The Causal Graph Heuristic

* Centerpiece of Fast Downward’s heuristic search

* Estimates cost of reaching goal by solving a sample of
subproblems within small “windows” of the causal graph

* Computing costs for a variable-value pairing is similar to Dijkstra’s
algorithm within the causal graph

* Caching this data improves performance
* Definitions:
* Derived predicates: occur in the head of an axiom
* Fluent predicates: occur in the initial state or in the effects of operators

algorithm compute-costs(I1, s, v, d):

Let DTG be the pruned domain transition graph of v.
costy(d,d) :== 0
costy(d,d") := oo forall d’ € D, \ {d}
local-state := s restricted to V'
unreached := D,
while unreached contains a value d’ € D,, with cost,(d,d') < oo:
Choose such a value d’ € unreached minimizing cost,(d,d’).
unreached := unreached \ {d'}
for each transition ¢ in DTG leading from d’ to some d” € unreached:
transition-cost := (0 if v 1s a derived variable; 1 if v i1s a fluent
for each pair v' = ¢’ in the condition of ¢:
e := local-state y (V")
call compute-costs (I1, s, v’, €).
transition-cost := transition-cost + cost, (e, €')
if cost,(d, d") + transition-cost < cost,(d,d"):
costy(d,d") := cost,(d,d") + transition-cost
local-state g = local-state g
for each pair v = ¢ in the condition of ¢:
local-state g (V') := €'

Let V' be the set of immediate predecessors of v in the pruned causal graph of II.

Figure 18: Fast Downward’s implementation of the causal graph heuristic: the compute-costs algo-
rithm for computing the estimates cost,(d, d') for all values d’ € D,, in a state s of an

MPT II.

	Slide 1: The Fast Downward Planning System
	Slide 2: An example
	Slide 3: Propositional Encoding
	Slide 4: Domain Transition Graphs
	Slide 5
	Slide 6: Causal Graph
	Slide 7: Fast Downward Planning System
	Slide 8: Three stages
	Slide 9: Translation
	Slide 10: Knowledge Compilation
	Slide 11: Robot Domain Graph
	Slide 12: Relaxing/Eliminating cycles
	Slide 13: Search
	Slide 14: The Causal Graph Heuristic
	Slide 15

