The Fast Downward
Planning System

Malte Helmert, Journal of Artificial Intelligence Research
(20006)

Presenter: Cameron Egbert

The Fast Downward Planning System: Overview

, Knowledge
=== Translation [e=— Compilation pr—- Search —
e Normalization e Domain transition e Causal graph heuristic
e Invariant synthesis graphs e FF heuristic
e Grounding e Causal graph e Greedy best-first search
e Translation to MPT e Successor generator e Multi-heuristic best-first search
e Axiom evaluator e Focused iterative-broadening search

Knowledge Compilation: Domain Transition Graphs

d = open

r = (1,1), k = carried

r =(2,2), k = carried

r = (3,1), k = carried

Figure 10: Domain transition graphs of a GRID task. Top left: DTG(r) (robot); right: DTG(k)
(key); bottom left: DTG(d) (door).

Knowledge Compilation: Domain Transition Graphs

Definition 5 Domain transition graphs

Let 11 = (V, s¢, Sx, A, O) be a multi-valued planning task, and let v € V be a state variable of 1L
The domain transition graph of v, in symbols DTG (v), is a labelled directed graph with vertex

set Dy. If v is a fluent, DTG(v) contains the following arcs:

e For each effect cond — v := d’ of an operator o with precondition pre such that pre U cond
contains some condition v = d, an arc from d to d’ labelled with pre U cond \ {v = d}.

e For each effect cond — v := d' of an operator o with precondition pre such that pre U cond
does not contain the condition v = d for any d € D,, an arc from each d € D, \ {d'} to d’
labelled with pre U cond.

Arcs of domain transition graphs are called transitions. Their labels are referred to as the
conditions of the transition.

Domain transition graphs can be weighted, in which case each transition has an associated
non-negative integer weight. Unless stated otherwise, we assume that all transitions derived from
operators have weight 1 and all transitions derived from axioms have weight 0.

Knowledge Compilation: Causal Graphs

Ex: GRID Task Causal Graph:

r - robot location

a - arm (holding or free)
| -locked (or not)

k - key location

Knowledge Compilation: Causal Graphs

Definition 6 Causal graphs
Let 11 be a multi-valued planning task with variable set V. The causal graph of 11, in symbols
CG(IN), is the directed graph with vertex set V containing an arc (v,v’) iff v # v’ and one of the
following conditions is true:

o The domain transition graph of v' has a transition with some condition on v.
o The set of affected variables in the effect list of some operator includes both v and v'.

In the first case, we say that an arc is induced by a transition condition. In the second case we say
that it is induced by co-occurring effects.

Knowledge Compilation: Pruning Causal Graphs

- All state variables which are not ancestors of variables mentioned in the goal

are completely irrelevant.
- So eliminate them

- To produce an acyclic graph:
- Compute strongly connected components
- The weight of an edge is n if it is induced by n axioms or operators
- Pick a vertex v with minimal cumulated weight of incoming arcs
- Setv<yV
Consider V \ {v} and repeat.

- Only keep edges (v, V) if v <V’
- Remove dominated conditions

Example:

r r
a a
[k1 ko l k1 ko

Figure 15: Causal graph of a GRID task (left) and of a relaxed version of the task (right). State
variable 7 encodes the location of the robot, a encodes the status of the robot arm (empty
or carrying a key), [encodes the status of the locked location (locked or open), and k1
and k9 encode the locations of the two keys.

Successor Generation

Definition 8 Successor generators
A successor generator for an MPTI1 = (V, sq, Sx, A, O) is a tree consisting of selector nodes and
generator nodes.

A selector node is an internal node of the tree. It has an associated variable v € V called the
selection variable. Moreover, it has | D, |+ 1 children accessed via labelled edges, one edge labelled
v = d for each value d € D,, and one edge labelled T. The latter edge is called the don’t care
edge of the selector.

A generator node is a leaf node of the tree. It has an associated set of operators from O called
the set of generated operators.

Each operator o € O must occur in exactly one generator node, and the set of edge labels
leading from the root to this node (excluding don’t care edges) must equal the precondition of o.

Avoid checking all operators!

Search: The Causal Graph Heuristic

Estimates the cost of changing the value of v from d to d’

Use the sum over the costs cost_v((s(v), s*(v))) for all variables v for which a goal
condition s*(v) is defined

They compute the cost for all d’ using a method that like dijkstra's.

Helpful Transitions:

generates a set of applicable operators considered useful for steering search
towards the goal.

Helpful operators are used in a relaxed plan and applicable in the current state

Search: The Causal Graph Heuristic

algorithm compute-costs(1l, s, v, d):
Let V' be the set of immediate predecessors of v in the pruned causal graph of II. s
Let DTG be the pruned domain transition graph of v.
cost,(d,d) :=0
costy(d,d) :== oo forall d’ € D, \ {d}
local-state 4 = s restricted to V'
unreached := D,,
while unreached contains a value d’ € D,, with cost,(d,d’) < oo:

Choose such a value d’ € unreached minimizing cost,(d,d’).
unreached := unreached \ {d'}
for each transition ¢ in DTG leading from d’ to some d” € unreached:
transition-cost := 0 if v is a derived variable; 1 if v is a fluent
for each pair v’ = €’ in the condition of ¢:
e := local-state y (V")
call compute-costs(II, s, 7', e).
transition-cost := transition-cost + cost, (e, €’) r=(1,1).k = carried

if cost, (d,d') + transition-cost < cost,(d,d"):

cost,(d,d") := cost,(d,d") + transition-cost
local-state g := local-state g r=(3,1), k= carried
for each pair v’ = €’ in the condition of ¢:

local-state gn (V') = €'

Search: The FF Heuristic

Helpful Actions:

generates a set of applicable operators considered useful for steering search
towards the goal.

Actions applicable the current state of a relaxed plan are helpful.

Compatibility with MV Ts looks like variables in superposition

Heuristic: # of operators used in the relaxed plan

Search: Greedy BFS

Preferred operators: Helpful transitions and helpful actions are treated as
Alternate between two successor lists: all and preferred

Deferred Heuristic Evaluation:

Expand before computing the heuristic

Keeps from evaluating heuristic for every successor
Useful for high branching factors

Less time for more space

Search: Multi-Heuristic BFS

Different heuristics have different strengths

Keep two open lists for each heuristic.

Alternate between all lists.

Search: Focused lterative-Broadening Search

Focuses on one goal at a time.

Definition 9 Modification distances
Let 11 be an MPT, let o be an operator of 11, and let v be a variable of 11.

The modification distance of o with respect to v is defined as the minimum, over all variables
v’ that occur as affected variables in the effect list of o, of the distance from v’ to v in CG(II).

lteratively broaden the considered operators when modification thresholds prevent
solutions.

- Concurrently attempt to satisfy each goal.

- Halt when one is met.

- Concurrently attempt to satisfy remaining goals in addition to previously
satisfied goals. (in fact they forbid operators that undo goals)

Search: Focused lterative-Broadening Search

algorithm reach-one-goal(Il, v, d, cond):
for each ¥ € {0, 1,. .., max-threshold}:
Let Oy be the set of operators of II whose modification distance with respect to v
is at most ¥} and which do not affect any state variable occurring in cond.
Assign the cost c to each operator o € Oy with modification distance ¢ with
respect to v.
Call the uniform-cost-search algorithm with a closed list, using the operator set O,
to find a state satisfying {v = d} U cond.
return the plan if uniform-cost-search succeeded.
for each ¥ € {0, 1,. .., max-threshold}:
Let Oy be the set of operators of II whose modification distance with respect to v
is at most .
Assign the cost ¢ to each operator o € Oy with modification distance ¢ with
respect to v.
Call the uniform-cost-search algorithm with a closed list, using the operator set Oy,
to find a state satisfying {v = d} U cond.
return the plan if uniform-cost-search succeeded.

Experimental Setups

1. G: Use greedy best-first search without preferred operators.
2. G + P: Use greedy best-first search with helpful transitions as preferred operators.

3. G + P*: Use greedy best-first search with helpful transitions as preferred operators. Use
helpful actions as preferred operators in states with no helpful transitions.

4. M: Use multi-heuristic best-first search without preferred operators.

5. M + P: Use multi-heuristic best-first search with helpful transitions and helpful actions as
preferred operators.

6. F: Use focused iterative-broadening search.

Domain #Tasks | G G+PG+P™ M M+P F |Any| CG FF LPG
Resu|ts BLOCKSWORLD 351 0 0 0 0 0 17 1] 0 0 4 0
DEPOT 221 12 13 13 12 8 11 7 14 3 0
DRIVERLOG 20| 2 0 0 1 0 1 0 3 5 0
FREECELL (IPC2) 60 | 4 4 12 11 12 40 3 2 3 55
FREECELL (IPC3) 20 O 0 5 1 2 14 0 0 2 19
GRID 5] 1 2 1 1 0 4 0 1 0 1
GRIPPER 20| O 0 0 0 0 0 0 0 0 0
LoaisTics (IPC1) 351 1 0 0 4 0 26 0 0 0 4
LogaisTics (IPC2) 28| O 0 0 0 0 0 0 0 0 0
MicoNIC-STRIPS 150 O 0 0 0 0 0 0 0 0 0
MOVIE 30 O 0 0 0 0 0 0 0 0 0
MYSTERY 30| 1 2 1 0 0 13 0 1 12 15
MPRIME 351 0 0 0 2 0 14 0 1 3 7
ROVERS 20| 2 0 0 0 0 2 0 3 0 0
SATELLITE (IPC3) 20| 1 0 0 0 0 6 0 0 0 0
ZENOTRAVEL 201 O 0 0 0 0 0 0 0 0 0
Total 550 24 21 32 32 22 148 | 10 | 25 32 101

Figure 23: Number of unsolved tasks for the STRIPS domains from IPC1, IPC2, and IPC3.

Results s 100 7

495 (90%)

440 (80%)

Solved Tasks

A G + P (Fast Downward)
M + P (Fast Downward) ------- |
G (Fast Downward) --------
G+PT (Fast Downward)
g M (Fast Downward) --—-——
F (Fast Downward) - -.-.-
1 1 | | |

Os 50s 100s 150s 200s 250s 300s
Search Time

385 (70%)

Figure 24: Number of tasks solved vs. runtime for the STRIPS domains from IPC1, IPC2 and IPC3.
This graph shows the results for the various configurations of Fast Downward.

Results

550 (100%) T T T T T

495 (90%)

440 (80%) "

Solved Tasks

Any (Fast Downward) _

385 (70%) G + P (Fast Downward) -------

1 1 1 1 1
Os 50s 100s 150s 200s 250s 300s
Search Time

Figure 25: Number of tasks solved vs. runtime for the STRIPS domains from IPC1, IPC2 and IPC3.
This graph shows the results for CG, FF and LPG and the hypothetical “Any” planner
which always chooses the best configuration of Fast Downward. The result for greedy
best-first search with helpful transitions is repeated for ease of comparison with Fig. 24.

M+P configuration emerges as a clear-cut winner

The end

