The Fast Downward Planning System

Ethan Coots

An example

Figure 1: A transportation planning task. Deliver parcel p_1 from C to G and parcel p_2 from F to E, using the cars c_1 , c_2 , c_3 and truck t. The cars may only use inner-city roads (thin edges), the truck may only use the highway (thick edge).

Propositional Encoding

```
Variables:
  at-p1-a, at-p1-b, at-p1-c, at-p1-d, at-p1-e, at-p1-f, at-p1-g,
  at-p2-a, at-p2-b, at-p2-c, at-p2-d, at-p2-e, at-p2-f, at-p2-g,
  at-c1-a, at-c1-b, at-c1-c, at-c1-d,
  at-c2-a, at-c2-b, at-c2-c, at-c2-d,
  at-c3-e, at-c3-f, at-c3-q,
  at-t-d, at-t-e,
  in-p1-c1, in-p1-c2, in-p1-c3, in-p1-t,
  in-p2-c1, in-p2-c2, in-p2-c3, in-p2-t
  at-p1-c, at-p2-f, at-c1-a, at-c2-b, at-c3-q, at-t-e
Goal:
  at-p1-q, at-p2-e
Operator drive-c1-a-d:
  PRE: at-c1-a ADD: at-c1-d DEL: at-c1-a
Operator drive-c1-b-d:
  PRE: at-c1-b ADD: at-c1-d DEL: at-c1-b
Operator drive-c1-c-d:
  PRE: at-c1-c ADD: at-c1-d DEL: at-c1-c
Operator load-c1-p1-a:
 PRE: at-c1-a, at-p1-a ADD: in-p1-c1 DEL: at-p1-a
Operator load-c1-p1-b:
 PRE: at-c1-b, at-p1-b ADD: in-p1-c1 DEL: at-p1-b
Operator load-c1-p1-c:
  PRE: at-c1-c, at-p1-c ADD: in-p1-c1 DEL: at-p1-c
Operator unload-c1-p1-a:
  PRE: at-c1-a, in-p1-c1 ADD: at-p1-a DEL: in-p1-c1
Operator unload-c1-p1-b:
  PRE: at-c1-b, in-p1-c1 ADD: at-p1-b DEL: in-p1-c1
Operator unload-c1-p1-c:
  PRE: at-c1-c, in-p1-c1 ADD: at-p1-c DEL: in-p1-c1
```

Domain Transition Graphs

Figure 3: Domain transition graph for the parcels p_1 and p_2 . Indicates how a parcel can change its state. For example, the arcs between "at D" and "in t" correspond to the actions of loading/unloading the parcel at location D with the truck t.

Figure 4: Domain transition graphs for the cars c_1 and c_2 (left), truck t (centre), and car c_3 (right). Note how each graph corresponds to the part of the roadmap that can be traversed by the respective vehicle.

Causal Graph

Figure 6: Causal dependencies in the transportation planning task.

Fast Downward Planning System

- Goal: develop an algorithm that efficiently solves general propositional planning tasks by exploiting the hierarchical structure inherent in causal graphs
- Obstacles:
 - Encoding PDDL representations to FDR
 - Cycles (Some causal graphs are not hierarchical in nature)
 - Finding a solution is difficult (still PSPACE-complete)

Three stages

Figure 9: The three phases of Fast Downward's execution.

Translation

- Turns PDDL input into *multi-valued planning task*
- As previously discussed, four stages:
 - Normalization
 - Invariant synthesis
 - Grounding
 - Translation to multi-valued planning task

Knowledge Compilation

- Generates four data structures:
 - Domain transition graphs: encode how state variables can change their values
 - Causal graphs: shows hierarchical dependencies between state variables
 - Successor generator: determines the set of applicable operators for a given state
 - Axiom evaluator: computes values of derived variables

Robot Domain Graph

Figure 10: Domain transition graphs of a GRID task. Top left: DTG(r) (robot); right: DTG(k) (key); bottom left: DTG(d) (door).

Relaxing/Eliminating cycles

Figure 15: Causal graph of a GRID task (left) and of a relaxed version of the task (right). State variable r encodes the location of the robot, a encodes the status of the robot arm (empty or carrying a key), l encodes the status of the locked location (locked or open), and k_1 and k_2 encode the locations of the two keys.

Search

- Uses three different search functions:
 - Best-first search using causal graph heuristic
 - Multi-heuristic best-first search (combines causal graph and FF heuristics)
 - Focused iterative-broadening search: estimates "usefulness" of operators

The Causal Graph Heuristic

- Centerpiece of Fast Downward's heuristic search
- Estimates cost of reaching goal by solving a sample of subproblems within small "windows" of the causal graph
- Computing costs for a variable-value pairing is similar to Dijkstra's algorithm within the causal graph
 - Caching this data improves performance
- Definitions:
 - Derived predicates: occur in the head of an axiom
 - Fluent predicates: occur in the initial state or in the effects of operators

```
algorithm compute-costs(\Pi, s, v, d):
       Let \mathcal{V}' be the set of immediate predecessors of v in the pruned causal graph of \Pi.
       Let DTG be the pruned domain transition graph of v.
       cost_v(d,d) := 0
       cost_v(d, d') := \infty for all d' \in \mathcal{D}_v \setminus \{d\}
       local-state<sub>d</sub> := s restricted to \mathcal{V}'
       unreached := \mathcal{D}_v
       while unreached contains a value d' \in \mathcal{D}_v with cost_v(d, d') < \infty:
               Choose such a value d' \in unreached minimizing cost_v(d, d').
               unreached := unreached \setminus \{d'\}
              for each transition t in DTG leading from d' to some d'' \in unreached:
                      transition-cost := 0 if v is a derived variable; 1 if v is a fluent
                      for each pair v' = e' in the condition of t:
                              e := local\text{-state}_{d'}(v')
                             call compute-costs (\Pi, s, v', e).
                              transition-cost := transition-cost + cost_{v'}(e, e')
                      if cost_v(d, d') + transition-cost < cost_v(d, d''):
                              cost_v(d, d'') := cost_v(d, d') + transition-cost
                              local-stated'' := local-stated'
                             for each pair v' = e' in the condition of t:
                                     local-state_{d''}(v') := e'
```

Figure 18: Fast Downward's implementation of the causal graph heuristic: the *compute-costs* algorithm for computing the estimates $cost_v(d, d')$ for all values $d' \in \mathcal{D}_v$ in a state s of an MPT Π .