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● Planning problems can be efficiently solved by SAT algorithms

Introduction

●  A polynomial reduction from planning to SAT is always possible

○ However, it is not always practical

○ O(n3) size increase 

○ O(n4) size increase 

● Planning graphs could be interpreted as propositional CNF formulas

○ Different routes of reducing are available
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● Nodes

○ Literal node

■ A single ground predicate literal

○ Step node

■ A ground action

● Mutexes

○ Define which steps cannot be taken at the same level

GraphPlan Structure



1. Set G to be the list of goals, and n to be the last level 

in the graph

2. If n = 0, return the plan as a solution

3. Choose a set of steps S which achieve all goals in G

a. Every set of steps must not be mutexed

4. Add all the steps in S to the plan

5. Let G be the set of all preconditions of the steps in S

6. Return to step 2 with n = n - 1

7. If a plan cannot be found, add a level to the graph 

and start back at step 1

Solving a Graphplan
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● Conjunctive Normal Form (CNF)

○ Ex:  (x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬x ∨ z)

● Every variable must be assigned a truth value

○ In the above example, x = true, y = false, and z = true, satisfies the expression

● SAT is NP-complete

SAT
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● Defined using standard STRIPS notation

○ Ops - A set of operator definitions

■ Defined by Preconditions, an Add List, and Delete List

■ (A Delete List is not needed if negations are used)

○ Dom - A domain of individuals

○ S0 - Initial State

○ S1 - Final State

Definitions

Move(x, y, z)
PRE:  CLEAR(x), ON(x, y), CLEAR(z)
ADD: CLEAR(y), ON(x, z)
DEL: CLEAR(z), ON(x, y)



Definitions

Move(x, y, z)
PRE:  CLEAR(x), ON(x, y), CLEAR(z)
ADD: CLEAR(y), ON(x, z)
DEL: CLEAR(z), ON(x, y)

Action - The instantiation of 

an operator over a domain.

Ex:  Move(x, y, z)

Fluent - The instantiation of 

a predicate over a domain.

Ex:  On(x, y)



● A sequence of actions defines a solution to a problem if:

○ It transforms the initial state into a superset of the goal state

○ The preconditions of each action appear in the current state

○ No action both adds and deletes the same fluent

● The problem can also be bounded by a maximum number of levels so it will 

never enter an infinite loop when there is no solution

○ Number of Actions = (Ops)*(Dom)AOps

○ Number of Fluents = (Pred)*(Dom)APred

Finding a Solution
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● Adds a time parameter

○ Excludes unintended models that are problematic for SAT

● The reduction yields the following clauses

○ The Closed World Assumption holds (what is not true is false)

○ If an action holds at time i:

■ Its preconditions hold at time i

■ Its added fluents hold at time i + 1

■ The negation of each of its deleted fluents hold at time i + 1

○ The Classical Frame condition holds for all actions

■ Fluents which aren’t affected by an action remain constant

○ Exactly one action occurs at each time instant

Linear Encodings



● A reduction to SAT is not always feasible

○ The difficulty is dominated by the number of arguments of an operator

Linear Encodings - Operator Splitting

Move(A, B, C)
PRE:  CLEAR(A), ON(A, B), CLEAR(C)
ADD: CLEAR(B), ON(A,  C)
DEL: CLEAR(C), ON(A, B)

Source(A, 3) Object(B, 3) Destination(C, 3)∧ ∧

● One resolution is to split up actions



● If the truth value of a fluent changes, then an add or delete occurred

● If none of those actions occurred, then the fluent stays the same

○ Results in null actions not being needed

● This creates a frame axiom which has less clauses, but each clause is longer

○ In the worst case, the resulting formula is the same size as with operator 

splitting

Linear Encodings - Explanatory Frame Axioms



● Multiple actions can occur at the same time step

○ Reduces the size of the encoding

● First creates a partial order

● Creates a total order at the end

Parallelized Encodings



● Operators imply their preconditions

Parallelized Encodings - Graphplan Based

Load(A, R, L, 2) → (At(A, L, 1) ∧ At(R, L, 
1))

● Each fact implies it’s preconditions

In(A, R, 3) → (Load(A, R, L, 2) ∨ Load(A, R, P, 2) ∨ Maintain(In(A, R), 
2))

● Conflicting actions are mutually exclusive

¬Load(A, R, L, 2) ∨ ¬Move(R, L, P, 
2)



Parallelized Encodings - Graphplan Based

Load(A, R, L, 2)

At(A, L, 1)

At(R, L, 1)

¬Move(R, L, P, 2)

Load(A, R, L, 2) → (At(A, L, 1) ∧ At(R, L, 
1))

¬Load(A, R, L, 2) ∨ ¬Move(R, L, P, 
2)



● Provides the best result asymptotically

● |S0| = |SG| = |Dom| = n

○ O(n2) Boolean Variables

○ O(n3) Literal Occurrences

● The Lifted SAT problem

○ An NP-Complete problem more general than SAT

Lifted Encodings



Example - Sussman Anomaly

Move(A, B, C)
PRE:  CLEAR(A), ON(A, B), CLEAR(C)
ADD: CLEAR(B), ON(A,  C)
DEL: CLEAR(C), ON(A, B)

C

A

Place 1

B

Place 2 Place 3

Goal:  A on B ∧ B on C



Example - Sussman Anomaly

Move(A, B, C)
PRE:  CLEAR(A), ON(A, B), CLEAR(C)
ADD: CLEAR(B), ON(A,  C)
DEL: CLEAR(C), ON(A, B)

CA

Place 1

B

Place 2 Place 3

Goal:  A on B ∧ B on C



Example - Sussman Anomaly

Move(A, B, C)
PRE:  CLEAR(A), ON(A, B), CLEAR(C)
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Example - Sussman Anomaly

Move(A, B, C)
PRE:  CLEAR(A), ON(A, B), CLEAR(C)
ADD: CLEAR(B), ON(A,  C)
DEL: CLEAR(C), ON(A, B)

C

A

Place 1

B

Place 2 Place 3

Goal:  A on B ∧ B on C

● 3 Blocks and 3 Places = 63 = 216 possible actions



● Ground causal link
○ An assertion of the form oiΦ→oj 

● Complete causal plan
○ An assignment of ground actions to step names
○ A set of causal links
○ A set of step ordering assertions

■ Every prerequisite has a cause
■ Every causal link is true
■ The ordering constraints are consistent (transitive property)

● If oi < ok and ok < oj, then oi < oj

A Complete Causal Plan



Example - Sussman Anomaly

Move(B, Place2, C)  On(B, C)→ Final

C

A

Place 1

B

Place 2 Place 3

Goal:  A on B ∧ B on C

Move(A, Place1, B)  On(A, B)→ Final

Move(C, A, Place3)  Clear(A)→ Move(A, Place1, B)



● Utilized concise SAT encodings

○ Allowed SAT algorithms to outperform planning systems

● Polynomial-time reductions from STRIPS planning to CNF formulas

● Described lifted causal encodings

Conclusion



Questions?


