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Introduction

e Planning problems can be efficiently solved by SAT algorithms

e A polynomial reduction from planning to SAT is always possible
o However, it is not always practical
o 0O(n3) size increase Qf
o 0O(n?) size increase é@

e Planning graphs could be interpreted as propositional CNF formulas

o Different routes of reducing are available
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GraphPlan Structure

e Nodes
o Literal node have (Cake)

m  Asingle ground predicate literal
o Step node
m A ground action

e Mutexes have(Cake)

o Define which steps cannot be taken at the same level

—have(Cake)

________________________




Level 0 Level 1 Level 2

solving a Graphplan ...................... ........................................... ...........................

—have(Cake) H
eat(Cake)

have(Cake) i

have(Cake) have(Cake)

—have(Cake)

1. Set G to be the list of goals, and n to be the last level

eaten(Cake) o eaten(Cake)

in the graph

—eaten(Cake) g

—eaten(Cake —eaten(Cake)

2. If n=0, return the plan as a solution

w

Choose a set of steps S which achieve all goals in G Level0 Level 1 Level 2

i bake(Cake)

' l have(Cake)

—have(Cake) H

hav e(Cake) :

a. Every set of steps must not be mutexed m

Add all the steps in S to the plan

—have (Cake) :

eaten(Cake) r

—eaten (Cake)

If a plan cannot be found, add a level to the graph C— L S S —

eat (C ake)

'l eaten(Cake)

—eaten(Cake) H

Let G be the set of all preconditions of the stepsin S

Return to step 2 withn=n -1

N O o b

and start back at step 1
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SAT

e Conjunctive Normal Form (CNF)
o Exx(xV-y)A(YyV-z)A(=xV2z)
e Every variable must be assigned a truth value
o Inthe above example, x = true, y = false, and z = true, satisfies the expression

e SATis NP-complete
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Definitions

e Defined using standard STRIPS notation

(@]

@)

(@]

(@]

________________________

Ops - A set of operator definitions

m Defined by Preconditions, an Add List, and Delete List

m (A Delete List is not needed if negations are used)

Dom - A domain of individuals
S0 - Initial State
S1 - Final State

Move(x, v, z)
PRE: CLEAR(x), ON(x, y), CLEAR(2)
ADD: CLEAR(y), ON(x, 2)
DEL: CLEAR(z), ON(x, y)




Definitions

Move(x, y, z)
PRE: CLEAR(x), ON(x, y), CLEAR(2)
ADD: CLEAR(y), ON(x, 2)
DEL: CLEAR(z), ON(x, y)

Action - The instantiation of Fluent - The instantiation of
an operator over a domain. a predicate over a domain.
Ex: Move(x, Y, z) Ex: On(x,y)

________________________




Finding a Solution

A sequence of actions defines a solution to a problem if:
o It transforms the initial state into a superset of the goal state
o The preconditions of each action appear in the current state
o No action both adds and deletes the same fluent
The problem can also be bounded by a maximum number of levels so it will

never enter an infinite loop when there is no solution

o Number of Actions = (Ops)*(Dom)A°Ps
o Number of Fluents = (Pred)*(Dom)*Frd

P
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Linear Encodings @

__________

e Adds atime parameter
o Excludes unintended models that are problematic for SAT
e The reduction yields the following clauses
o The Closed World Assumption holds (what is not true is false)
o If an action holds at time i:
m Its preconditions hold at time i
m Its added fluents hold at time i +1
m The negation of each of its deleted fluents hold at time i +1
o The Classical Frame condition holds for all actions
m Fluents which aren’t affected by an action remain constant

Q o Exactly one action occurs at each time instant



Linear Encodings - Operator Splitting

e Areduction to SAT is not always feasible

©)

The difficulty is dominated by the number of arguments of an operator

e One resolution is to split up actions

________________________

Move(A, B, C)
PRE: CLEAR(A), ON(A, B), CLEAR(C)
ADD: CLEAR(B), ON(A, C)
DEL: CLEAR(C), ON(A, B)

Y

Source(A, 3) /\ Object(B, 3) /\ Destination(C, 3)




Linear Encodings - Explanatory Frame Axioms

e If the truth value of a fluent changes, then an add or delete occurred
e If none of those actions occurred, then the fluent stays the same

o Results in null actions not being needed
e This creates a frame axiom which has less clauses, but each clause is longer

o Inthe worst case, the resulting formula is the same size as with operator

splitting
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Parallelized Encodings @

__________

e Multiple actions can occur at the same time step
o Reduces the size of the encoding
e First creates a partial order

e Creates a total order at the end



Parallelized Encodings - Graphplan Based

e Operators imply their preconditions

Load(A R, L, 2) > (At(A L, 1) A At(R, L,

1)
77

—_

e Each fact implies it’s preconditions

In(A, R, 3) > (Load(A, R, L, 2) V Load(A, R, P, 2) V Maintain(In(A, R),

2\
<]7

e Conflicting actions are mutually exclusive

—Load(A R, L, 2) V -Move(R, L, P,

Lo
<]




Parallelized Encodings - Graphplan Based

At(A L, 1)
I —-Move(R, L, P, 2)
Load(A, R, L, 2)
At(R, L, 1)

N
177 71
Z]
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Lifted Encodings

Provides the best result asymptotically
IS, =S, = IDom| =n

o 0O(n?) Boolean Variables

o O(nd) Literal Occurrences
The Lifted SAT problem

o An NP-Complete problem more general than SAT



Example - Sussman Anomaly

Move(A, B, C) Goal: AonBABonC
PRE: CLEAR(A), ON(A, B), CLEAR(C)

ADD: CLEAR(B), ON(A, C)
DEL: CLEAR(C), ON(A, B)

_____________

A B
N



Example - Sussman Anomaly

Move(A, B, C)
PRE: CLEAR(A), ON(A, B), CLEAR(C)
ADD: CLEAR(B), ON(A, ©)
DEL: CLEAR(C), ON(A, B)

__________________________

A B

Goal: AonBABonC

_____________




Example - Sussman Anomaly

Move(A, B, C)
PRE: CLEAR(A), ON(A, B), CLEAR(C)
ADD: CLEAR(B), ON(A, ©)
DEL: CLEAR(C), ON(A, B)

_____________

A

Goal: AonBABonC

_____________




Example - Sussman Anomaly

Move(A, B, C)
PRE: CLEAR(A), ON(A, B), CLEAR(C)
ADD: CLEAR(B), ON(A, ©)
DEL: CLEAR(C), ON(A, B)

e 3Blocks and 3 Places = 63 = 216 possible actions

Goal: AonBABonC

_____________

_____________

C
N



A Complete Causal Plan

e Ground causal link
o An assertion of the form oid>-)oj
e Complete causal plan
o An assignment of ground actions to step names
o A set of causal links
o A set of step ordering assertions
m Every prerequisite has a cause
m Every causal link is true
m The ordering constraints are consistent (transitive property)
e Ifo,<o, ando, < o, then o, < o,

P



Example - Sussman Anomaly

Goal: AonBABonC

_____________

Move(C, A, Place3) ©*aA)> Move(A, Placel, B)

Move(B, Place2, C) °"B ) Final ..

Move(A, Placel, B) ©"A B3 Final S j

C
N




Conclusion

Utilized concise SAT encodings
o Allowed SAT algorithms to outperform planning systems
Polynomial-time reductions from STRIPS planning to CNF formulas

Described lifted causal encodings
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