Planning as Satisfiability using Plan Graphs

Written by: Henry Kautz, David McAllester, and Bart Selman
Presented by: Wyatt Scott

TABLE OF CONTENTS

01 Introduction

02 Review of

04 General Framework

05 Encodings

Introduction

- Planning problems can be efficiently solved by SAT algorithms
- A polynomial reduction from planning to SAT is always possible
- However, it is not always practical
- $O\left(n^{3}\right)$ size increase
- $O\left(n^{4}\right)$ size increase
- Planning graphs could be interpreted as propositional CNF formulas
- Different routes of reducing are available

02

Review of Graphplan

GraphPlan Structure

- Nodes
- Literal node

have(Cake)

- A single ground predicate literal
- Step node
- A ground action
- Mutexes
- Define which steps cannot be taken at the same level

Solving a Graphplan

1. Set G to be the list of goals, and n to be the last level in the graph
2. If $\mathbf{n}=0$, return the plan as a solution
3. Choose a set of steps \mathbf{S} which achieve all goals in \mathbf{G}
a. Every set of steps must not be mutexed
4. Add all the steps in S to the plan
5. Let G be the set of all preconditions of the steps in S
6. Return to step $\mathbf{2}$ with $\mathbf{n}=\mathbf{n - 1}$
7. If a plan cannot be found, add a level to the graph
 and start back at step 1

03

Review of SAT

SAT

- Conjunctive Normal Form (CNF)
- Ex: $(x \vee \neg y) \wedge(\neg y \vee \neg z) \wedge(\neg x \vee z)$
- Every variable must be assigned a truth value
- In the above example, $x=$ true, $y=$ false, and $z=$ true, satisfies the expression - SAT is NP-complete

$$
\begin{aligned}
& \text { (且) (田) (且) }
\end{aligned}
$$

04

General

Framework

Definitions

- Defined using standard STRIPS notation
- Ops - A set of operator definitions
- Defined by Preconditions, an Add List, and Delete List
- (A Delete List is not needed if negations are used)
- Dom - A domain of individuals
- $\mathbf{S}_{\mathbf{o}}$ - Initial State
- S_{1} - Final State

```
Move(x, y, z)
    PRE: CLEAR(x), ON(x, y), CLEAR(z)
    ADD: CLEAR(y), ON(x,z)
    DEL: CLEAR(z), ON(x,y)
```


Definitions

```
Move(x, y, z)
    PRE: CLEAR(x), ON(x,y), CLEAR(z)
    ADD: CLEAR(y), ON(x, z)
    DEL: CLEAR(z),ON(x, y)
```

Action - The instantiation of
an operator over a domain.
Ex: $\operatorname{Move(x,~y,~z)~}$

Fluent - The instantiation of a predicate over a domain. Ex: On(x,y)

Finding a Solution

- A sequence of actions defines a solution to a problem if:
- It transforms the initial state into a superset of the goal state
- The preconditions of each action appear in the current state
- No action both adds and deletes the same fluent
- The problem can also be bounded by a maximum number of levels so it will never enter an infinite loop when there is no solution
- Number of Actions $=(\mathrm{Ops})^{*}(\mathrm{Dom})^{\text {AOps }}$
- Number of Fluents $=(\text { Pred })^{*}(\text { Dom })^{\text {APred }}$

05

Encodings

Linear Encodings

- Adds a time parameter
- Excludes unintended models that are problematic for SAT
- The reduction yields the following clauses
- The Closed World Assumption holds (what is not true is false)
- If an action holds at time i:
- Its preconditions hold at time i
- Its added fluents hold at time i + 1
- The negation of each of its deleted fluents hold at time i+1
- The Classical Frame condition holds for all actions
- Fluents which aren't affected by an action remain constant
- Exactly one action occurs at each time instant

Linear Encodings - Operator Splitting

- A reduction to SAT is not always feasible
- The difficulty is dominated by the number of arguments of an operator
- One resolution is to split up actions

Linear Encodings - Explanatory Frame Axioms

- If the truth value of a fluent changes, then an add or delete occurred
- If none of those actions occurred, then the fluent stays the same
- Results in null actions not being needed
- This creates a frame axiom which has less clauses, but each clause is longer
- In the worst case, the resulting formula is the same size as with operator splitting

Parallelized Encodings

- Multiple actions can occur at the same time step
- Reduces the size of the encoding
- First creates a partial order
- Creates a total order at the end

Parallelized Encodings - Graphplan Based

- Operators imply their preconditions

```
Load(A, R, L, 2) ->(At(A, L, 1) ^At(R,L,
```

- Each fact implies it's preconditions

$$
\begin{aligned}
& \ln (A, R, 3) \rightarrow(\operatorname{Load}(A, R, L, 2) \vee \operatorname{Load}(A, R, P, 2) \vee \text { Maintain(In(A, R), } \\
& 2))
\end{aligned}
$$

- Conflicting actions are mutually exclusive

Parallelized Encodings - Graphplan Based

Lifted Encodings

- Provides the best result asymptotically
- $\left|\mathbf{S}_{\mathbf{0}}\right|=\left|\mathbf{S}_{\mathbf{G}}\right|=\mid$ Dom $\mid=\mathbf{n}$
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Boolean Variables
- $O\left(n^{3}\right)$ Literal Occurrences
- The Lifted SAT problem
- An NP-Complete problem more general than SAT

Example - Sussman Anomaly

```
Move(A, B, C)
    PRE: CLEAR(A), ON(A, B), CLEAR(C)
    ADD: CLEAR(B), ON(A, C)
    DEL: CLEAR(C), ON(A, B)
```

Goal: A on B \wedge B on C

Place 3

Example - Sussman Anomaly

```
Move(A, B, C)
    PRE: CLEAR(A), ON(A, B), CLEAR(C)
    ADD: CLEAR(B), ON(A, C)
    DEL: CLEAR(C), ON(A, B)
```


Goal: A on B \wedge B on C

Example - Sussman Anomaly

```
Move(A, B, C)
    PRE: CLEAR(A), ON(A, B), CLEAR(C)
    ADD: CLEAR(B), ON(A, C)
    DEL: CLEAR(C), ON(A, B)
```


Place 2
Place 3

Example - Sussman Anomaly

```
Move(A, B, C)
    PRE: CLEAR(A), ON(A, B), CLEAR(C)
    ADD: CLEAR(B), ON(A, C)
    DEL: CLEAR(C), ON(A, B)
```

- 3 Blocks and 3 Places $=6^{3}=216$ possible actions

Place 1
Place 2
Goal: A on B \wedge B on C

A Complete Causal Plan

- Ground causal link
- An assertion of the form $\mathbf{o}_{\mathbf{i}} \mathbf{\Phi} \rightarrow \mathbf{o}_{\mathbf{j}}$
- Complete causal plan
- An assignment of ground actions to step names
- A set of causal links
- A set of step ordering assertions
- Every prerequisite has a cause
- Every causal link is true
- The ordering constraints are consistent (transitive property)
- If $0_{i}<0_{k}$ and $o_{k}<o_{j}$, then $o_{i}<o_{j}$

Example - Sussman Anomaly

Goal: A on B \wedge B on C

$$
\text { Move(C, A, Place3) }{ }^{\text {Clear(A) }} \rightarrow \operatorname{Move(A,~Place1,~B)~}
$$

```
Move(B, Place2,C) On(B,C)}->\mathrm{ Final
```

$$
\text { Move }(A, \text { Place1, B) } \quad \text { On }(\mathrm{A}, \mathrm{~B}) \rightarrow \text { Final }
$$

Place 2

Conclusion

- Utilized concise SAT encodings
- Allowed SAT algorithms to outperform planning systems
- Polynomial-time reductions from STRIPS planning to CNF formulas
- Described lifted causal encodings

Questions?

