Planning as Satisfiability using Plan Graphs

Written by: Henry Kautz, David McAllester, and Bart Selman Presented by: Wyatt Scott

TABLE OF CONTENTS

Introduction

Introduction

Introduction

- Planning problems can be efficiently solved by SAT algorithms
- A polynomial reduction from planning to SAT is always possible
 - However, it is not always practical
 - O(n³) size increase
 - O(n⁴) size increase
- Planning graphs could be interpreted as propositional CNF formulas
 - Different routes of reducing are available

Review of Graphplan

GraphPlan Structure

- Nodes
 - Literal node
 - A single ground predicate literal
 - Step node
 - A ground action
- Mutexes
 - Define which steps cannot be taken at the same level

Solving a Graphplan

- Set G to be the list of goals, and n to be the last level in the graph
- 2. If n = 0, return the plan as a solution
- 3. Choose a set of steps S which achieve all goals in G
 - a. Every set of steps must not be mutexed
- 4. Add all the steps in S to the plan
- 5. Let G be the set of all preconditions of the steps in S
- 6. Return to step 2 with n = n 1
- 7. If a plan cannot be found, add a level to the graph and start back at step 1

SAT

- Conjunctive Normal Form (CNF)
 - Ex: $(x \lor \neg y) \land (\neg y \lor \neg z) \land (\neg x \lor z)$
- Every variable must be assigned a truth value
 - In the above example, x = true, y = false, and z = true, satisfies the expression
- SAT is NP-complete

Definitions

- Defined using standard STRIPS notation
 - Ops A set of operator definitions
 - Defined by Preconditions, an Add List, and Delete List
 - (A Delete List is not needed if negations are used)
 - Dom A domain of individuals
 - \circ S₀ Initial State
 - S₁ Final State

Move(x, y, z)	
PRE: CLEAR(x), ON(x, y), CLEAR(z)	
ADD: CLEAR(y), ON(x, z)	
DEL: CLEAR(z), ON(x, y)	

Definitions

Move(x, y, z) PRE: CLEAR(x), ON(x, y), CLEAR(z) ADD: CLEAR(y), ON(x, z) DEL: CLEAR(z), ON(x, y)

Action – The instantiation of an operator over a domain. Ex: Move(x, y, z) Fluent – The instantiation of a predicate over a domain. Ex: On(x, y)

Finding a Solution

- A sequence of actions defines a solution to a problem if:
 - It transforms the initial state into a superset of the goal state
 - The preconditions of each action appear in the current state
 - No action both adds and deletes the same fluent
- The problem can also be bounded by a maximum number of levels so it will

never enter an infinite loop when there is no solution

- Number of Actions = $(Ops)^*(Dom)^{AOps}$
- Number of Fluents = $(Pred)*(Dom)^{APred}$

Encodings

Linear Encodings

- Adds a time parameter
 - Excludes unintended models that are problematic for SAT
- The reduction yields the following clauses
 - The Closed World Assumption holds (what is not true is false)
 - If an action holds at time i:
 - Its preconditions hold at time i
 - Its added fluents hold at time i + 1
 - The negation of each of its deleted fluents hold at time i + 1
 - The Classical Frame condition holds for all actions
 - Fluents which aren't affected by an action remain constant
 - Exactly one action occurs at each time instant

Linear Encodings - Operator Splitting

• A reduction to SAT is not always feasible

- The difficulty is dominated by the number of arguments of an operator
- One resolution is to split up actions

Linear Encodings - Explanatory Frame Axioms

- If the truth value of a fluent changes, then an add or delete occurred
- If none of those actions occurred, then the fluent stays the same
 - Results in null actions not being needed
- This creates a frame axiom which has less clauses, but each clause is longer
 - In the worst case, the resulting formula is the same size as with operator splitting

Parallelized Encodings

- Multiple actions can occur at the same time step
 - Reduces the size of the encoding
- First creates a partial order
- Creates a total order at the end

Parallelized Encodings - Graphplan Based

• Operators imply their preconditions

• Each fact implies it's preconditions

• Conflicting actions are mutually exclusive

Parallelized Encodings - Graphplan Based

Lifted Encodings

- Provides the best result asymptotically
- $|S_0| = |S_G| = |Dom| = n$
 - O(n²) Boolean Variables
 - O(n³) Literal Occurrences
- The Lifted SAT problem
 - An NP-Complete problem more general than SAT

Move(A, B, C) PRE: CLEAR(A), ON(A, B), CLEAR(C) ADD: CLEAR(B), ON(A, C) DEL: CLEAR(C), ON(A, B) Goal: A on $B \land B$ on C

Move(A, B, C) PRE: CLEAR(A), ON(A, B), CLEAR(C) ADD: CLEAR(B), ON(A, C) DEL: CLEAR(C), ON(A, B) Goal: A on $B \land B$ on C

Move(A, B, C) PRE: CLEAR(A), ON(A, B), CLEAR(C) ADD: CLEAR(B), ON(A, C) DEL: CLEAR(C), ON(A, B) Goal: A on B \land B on C

Place 2

Move(A, B, C) PRE: CLEAR(A), ON(A, B), CLEAR(C) ADD: CLEAR(B), ON(A, C) DEL: CLEAR(C), ON(A, B)

• 3 Blocks and 3 Places = 6³ = 216 possible actions

Place 1

Place 2

A Complete Causal Plan

- Ground causal link
 - An assertion of the form $o_i \Phi \rightarrow o_i$
- Complete causal plan
 - An assignment of ground actions to step names
 - A set of causal links
 - A set of step ordering assertions
 - Every prerequisite has a cause
 - Every causal link is true
 - The ordering constraints are consistent (transitive property)
 - If $o_i < o_k$ and $o_k < o_j$, then $o_i < o_j$

Move(C, A, Place3) $^{Clear(A)} \rightarrow Move(A, Place1, B)$

Move(B, Place2, C) $^{On(B, C)} \rightarrow$ Final

Move(A, Place1, B) $^{On(A, B)} \rightarrow$ Final

Place 1

Place 2

Conclusion

- Utilized concise SAT encodings
 - Allowed SAT algorithms to outperform planning systems
- Polynomial-time reductions from STRIPS planning to CNF formulas
- Described lifted causal encodings

Questions?