

 Abstract

McAllester and Rosenblitts’ (1991) systematic nonlinear
planner (SNLP) removes threats as they are discovered. In
other planners such as SIPE (Wilkins, 1988), and NOAH
(Sacerdoti, 1977), threat resolution is partially or completely
delayed. In this paper, we demonstrate that planner
efficiency may be vastly improved by the use of alternatives
to these threat removal strategies. We discuss five threat
removal strategies and prove that two of these strategies
dominate the other three--resulting in a provably smaller
search space. Furthermore, the systematicity of the planning
algorithm is preserved for each of the threat removal
strategies. Finally, we confirm our results experimentally
using a large number of planning examples including
examples from the literature.

1 Introduction

McAllester and Rosenblitt (1991) present a simple
elegant algorithm for systematic nonlinear planning
(SNLP). Much recent planning work (Barrett & Weld,
1993; Collins & Pryor, 1992; Harvey, 1993; Kambhampati,
1993a; Penberthy & Weld, 1992; Peot & Smith, 1992) has
been based upon this algorithm (or the Barrett & Weld
(1993) implementation of it).

In the SNLP algorithm, when threats arise between steps
and causal links in a partial plan, those threats are resolved
before attempting to satisfy any remaining open conditions
in the partial plan. From a practical standpoint, we know
that this is not always the most efficient course. When there
are only a few loosely coupled threats in a problem, it is
generally more efficient to delay resolving those threats
until the end of the planning process.

1

 However, if there are
many tightly-coupled threats (causing most partial plans to
fail), those threats should be resolved early in the planning
process to avoid extensive backtracking. These two
options, resolve threats immediately, and resolve threats at
the end, represent two extreme positions. There are several

1

Hacker (Sussman, 1973), Noah (Sacerdoti, 1977), and (to
a certain extent) Sipe (Wilkins, 1988), delay the resolution
of threats until the end of the planning process. Yang (1993)
has also explored this strategy.

Threat-Removal Strategies for Partial-Order Planning

other options, such as waiting to resolve a threat until it is
no longer separable, or waiting until there is only one way
of resolving the threat. Given a reasonable mix of
problems, what is the best strategy or strategies?

In this paper, we introduce four alternative threat
removal strategies and show that some are strictly better
than others. In particular, we show that delaying separable
threats generates a smaller search space of possible plans
than the SNLP algorithm.

In Section 2 we give preliminary definitions and a
version of the SNLP algorithm. In Section 3 we introduce
four different threat removal strategies and investigate the
theoretical relationships between them. In Section 4 we
give empirical results that confirm the analysis of Section
3. In Section 5, we discuss work related to the work in this
paper.

2 Preliminaries

Following (Kambhampati, 1992), (Barrett & Weld,
1993), (Collins & Pryor, 1992) and (McAllester &
Rosenblitt, 1991), we define causal links, threats and plans
as follows:

Definition 1:

An open condition,

g

,

is a precondition of an
operator in the plan that has no corresponding causal link.

Definition 2:

A causal link,

L

:

, protects effect

g

of the establishing plan step,

s

e

, so that it can be used to
satisfy a precondition of the consuming plan step,

s

c

.

Definition 3:

An ordering constraint

O

:

 restricts
step s

1

 to occur after step s

2

.

Definition 4:

A plan is a tuple where

S

denotes the set of steps in the plan,

L

 denotes the set of
causal links,

O

 denotes the set of ordering constraints,

G

denotes the outstanding open conditions, and

B

 denotes the
set of equality and inequality constraints on variables con-
tained in the plan.

Definition 5:

A threat

T

:

 represents a

potential conflict between an effect of a step in the plan,

s

t

,

se sc
g
→

s1 s2>

S L O G B, , , ,〈 〉

st se sc→()
b g
⊗

Mark A. Peot

Department of Engineering-Economic Systems
Stanford University

Stanford, California 94305
peot@rpal.rockwell.com

David E. Smith

Rockwell International
444 High St.

Palo Alto, California 94301
de2smith@rpal.rockwell.com

In

Proceedings of the Eleventh National Conference

on Artificial Intelligence

(AAAI-93), 1993

October 11, 1994 2

and a causal link .

s

t

 threatens causal link

, if

s

t

 can occur between

s

e

 and

s

c

 and an effect,

e

, of

s

t

 possibly unifies with either

g

 or

¬g

 when the addi-
tional binding constraints

b

 are added to the plan bindings.
Unification of two literals,

e

 and

g

, under bindings

b

 is

denoted by . If , we refer to

T

 as a

positive

threat

. If , we refer to

T

 as a

negative threat

.

To make our analysis easier, we will work with the

following modified version of the SNLP algorithm given

below. The primary difference between this algorithm and
the algorithms given in (Barrett, Soderland & Weld, 1991;

Collins & Pryor, 1992; and Kambhampati 1993a) is that

threat resolution takes place immediately after

Add-Link

and

Add-Step

. As a result, the set of partial plans being

considered never contains any plans with unresolved

threats.

Plan (initial-conditions, goal)

:

1.

Initialization

: Let

Finish

 be a plan step having pre-
conditions equal to the goal conditions and let

Start

 be a
plan step having effects equal to the initial conditions. Let

Q

 be the set consisting of the single partial plan
,

where

G

 is the set of open conditions corresponding to the
goals.

2.

Expansion:

 While

Q

 is not empty, select a partial plan
 and remove it from

Q

.

A.

Termination:

 If the open conditions

G

 are empty,
return a topological sort of

S

 instantiated with the bind-
ings

B

.

B.

Establish Open Condition:

 Select some and
do the following:

i.

Add Link:

 For each with an effect

e

 such that

 and

s

 is possibly prior to call

se sc
g
→

se sc
g
→

be g≡ be g≡

b
e g

¬≡

Start Finish{ , } ∅ Start Finish<{ } G ∅, , , ,〈 〉

p S L O G B, , , ,〈 〉=

g G∈

s S∈

be g≡ sc

Resol v e Thr eat s(S− L
g

s sc→

+ O s sc<() ,+, ,

G g− Gs+ B b)+,

ii.

Add Step:

 For each with an effect

e

 such that

 call

 where

A

 denotes the set of all action descriptions,

s

denotes the new plan step constructed by copying

a

with a fresh set of variables and

G

S

 is the precondi-
tions of

S

.

Resolve-Threats (S, L, O, G, B):

1. Let

T

 be the set of threats between steps in

S

 and
causal links in

L

.

2. If

T

 is empty add to

Q

.

3. If

T

 is not empty select some threat

 and do the following:

A.

Demotion

: If is consistent with

O

.

2

B.

Promotion

: If is consistent with

O

.

C.

Separation

: For each :

where denotes the set of the first

i - 1

equality constraints in

b

.

3

3 Threat Delay Strategies

In the SNLP algorithm, when threats arise in a partial plan,

they are immediately resolved before attempting to satisfy
any remaining open conditions. There are three ways that a

threat can be resolved: separation, promotion, and

2

The criterion for separation, promotion, and demotion,
used in (Barrett & Weld, 1993) and (Collins & Pryor, 1992)
are not mutually exclusive. In order to preserve systematic-
ity, one must either restrict separation so that the threaten-
ing step occurs between the producer and consumer steps,
or restrict the variable bindings for promotion and demo-
tion so that separation is not possible. For our purposes, the
latter restriction is simpler.

3

The addition of equality constraints during separation is
required to maintain systematicity [3].

a A∈

be c≡

Resolve-Threats (S s+ L
g

s sc→

+ O s sc<() ,+, ,

G g− Gs+ B b)+,

S L O G B, , , ,〈 〉

b
st

g
se sc→

⊗ T∈

st se<
Resolve-Threats S L O st se<+ G B b+, , , ,()

sc st<

Resolve-Threats S L O sc st<+ G B b+, , , ,()

x i y i=() b∈

Resolve-Threats (S L O G, , ,
B x k y k={ }

k 1=
i 1− x i y i≠())+ +

x k y k={ }
k 1=
i 1−

October 11, 1994 3

demotion. Separation forces the variable bindings in the

clobbering step to be different than those in the threatened
causal link. Promotion forces the clobbering step to come

before the producing step in the causal link, and demotion

forces the clobbering step to come after the consumer of the
causal link. If all three of these are possible, there will be at

least a three way branch in the search space of partial plans.

In fact, it can be worse than this, because there may be
many alternative ways of doing separation, and all of them

must be considered.

In practice, however, threat removal is often deferred in
order to improve planning performance. Harvey (1993) has

shown that any threat removal order may be used in the

SNLP algorithm without compromising the algorithm’s
systematicity. In this section, we describe four alternative

threat deferral strategies and the effect of these strategies

on the size of the planner search space.

3.1 Separable Delay

Many of the threats that occur during planning are

ephemeral. As planning continues, variables in both the
clobbering step and the causal link may get bound, causing

the threat to go away. This causes the promotion and

demotion branches for that partial plan to go away, and
causes all but one of the separation branches for the plan to

go away. Thus, it would seem to make heuristic sense to

postpone resolving a threat until the threat becomes
definite; that is, until the bindings of the clobbering step

and the causal link are such that the threat is guaranteed to

occur. Thus we could modify the SNLP algorithm in the
following way:

Resolve-Threats (S, L, O, G, B):

1. Let be the set of unseparable threats
between steps and causal links . These
threats are those that are guaranteed to occur regardless of
the addition of additional binding constraints.

2. If

T

 is empty add to

Q

.

3. If

T

 is not empty select some threat,

 , and do the following:

A.

Demotion

: If is consistent with

O

B.

Promotion

: If is consistent with

O

.

T
∅

s l⊗{ }=
s S∈ l L∈

S L O G B, , , ,〈 〉

st

g
se sc→

 ⊗ T
∅

∈

st se<

Resolve-Threats S L O st se<+ G B, , , ,()

sc st<

Resolve-Threats S L O sc st<+ G B, , , ,()

We refer to this threat resolution strategy as DSep. Note

that DSep is a complete, systematic planning algorithm that
does not require the use of separation.

Theorem 1:

The space of partial plans generated by DSep
is no larger than (and often smaller than) the space of par-
tial plans generated by SNLP. (We are assuming that the
two algorithms use the same strategy to decide which open
conditions to work on.)

Sketch of Proof:

The essence of the proof is to show that
each partial plan generated by DSep has a unique corre-
sponding partial plan generated by SNLP. Let

 be a partial plan generated by DSep
and let be the sequence of planner opera-
tions (add-link, add-step, demote, and promote) used by
DSep to construct

p

. For each threat

t

 introduced by an
operation in

Z

, there are three possibilities:

1.

t

 became unseparable and was resolved using a later

Promote

 or

Demote

 operation .

2.

t

 is still separable and hence is unresolved in

p

3.

t

 was separable, but eventually disappeared because of
binding or ordering constraints introduced by a later oper-
ation .

For each threat

t

, we perform the corresponding
modification to the sequence

Z

 indicated below:

1. move to immediately after .

2. add a

Separate

 operation for

t

 immediately after

3. add the appropriate

Promote

,

Demote

, or

Separate

operation immediately after that mimics the way in
which the threat is eventually resolved.

In this new sequence , all threats are resolved
immediately after they are introduced. As a result, is

now the sequence of planning operations that would have

been generated by SNLP. The plan
generated by this sequence differs from the original plan

only in that 1) is augmented with separation constraints

for each unresolved threat in

p

, and 2)

O

 and may differ
in redundant ordering constraints, but

. As a result, the mapping

from DSep plans to SNLP plans is one to one, and the
theorem follows.

 n

Although the space of partial plans generated by DSep is

smaller than that generated by SNLP, we cannot guarantee
that DSep will always be faster than SNLP. There are two

reasons for this:

p S L O G B, , , ,〈 〉=
Z z1 … zn, ,=

zt

zr

zr

zr zt

zt

zt

Z'

Z'

p' S L O' G B', , , ,〈 〉=

B'

O'

Closure O() Closure O'()=

October 11, 1994 4

1. There is overhead associated with delaying threats
because the planner must continue to check separability.

2. When a threat becomes unseparable, DSep must check
to see if demotion or promotion are possible. Because the
space of partial plans may have grown considerably since
the threat was introduced, there might be more of these
checks than if resolution had taken place at the time the
threat was introduced. (Of course, the reverse can also
happen.)

3.2 Delay Unforced Threats

A natural extension of the DSep idea would be to delay

resolving a threat until there is only one (or no) threat
resolution option remaining. (This is the ultimate least-

commitment strategy with regard to threats.) Thus, if

demotion were the only possibility for resolving a threat,
the appropriate ordering constraint would be added.

Alternatively, if separation were the only option, and there

was only one way of separating the variables, the
appropriate not-equals constraint would be added to the

plan. We refer to this threat resolution strategy as DUnf.

The threat resolution procedure for DUnf is shown below:

Resolve-Threats (S, L, O, G, B):

1. Let be the set of threats
between steps in

S

 and causal links in

L

 such that either:

A. is consistent with

O

, , and

B. is consistent with

O

, , and .

C. and

b

 contains exactly one constraint.

2. If

T

 is empty add to

Q

.

3. If

T

 is not empty select some threat

 and do the following:

A.

Demotion

: If is consistent with

O

B.

Promotion

: If is consistent with

O

.

C.

Separation

: For the single binding constraint,
,

 .

It might seem that this strategy would always expand fewer

partial plans than DSep. Unfortunately this is not the case

T st

g
se sc→

 b
⊗=

st se< st sc≤ b ∅=

sc st< st se≥ b ∅=

se st sc≤ ≤

S L O G B, , , ,〈 〉

st

g
se sc→

 ⊗ T
b

∈

st se<

Resolve-Threats S L O st se<+ G B b+, , , ,()

sc st<

Resolve-Threats S L O sc st<+ G B b+, , , ,()

x y=()

Resolve-Threats S L O G B x y≠()+, , , ,()

for at least two reasons. First of all, it is possible to

construct examples where both promotion and demotion
are possible for each individual threat, but the entire set of

threats is unsatisfiable (a direct conclusion from the fact

that the problem of determining whether a set of threats
might be resolved by the addition of ordering constraints is

NP-Complete (Kautz, 1993)). For such a case, the DUnf

planner would choose not to work on the threats and
therefore wouldn’t recognize that the plan was impossible.

In contrast, SNLP and DSep would commit to either

promotion or demotion for each threat, and would therefore
discover that the plan was impossible earlier than would the

DUnf strategy. In addition, when the DUnf strategy

postpones the addition of ordering constraints to a plan, it
allows plan branches to be developed that contain Add-

links that might have been illegal if those ordering

constraints were added earlier in the planning process.

On the other hand, it is also easy to construct domains

where DSep is clearly inferior to DUnf. Therefore we can

conclude:

Theorem 2:

Neither DUnf nor DSep are guaranteed to
generate a smaller search space than the other for all plan-
ning problems.

Another possible drawback to DUnf is that checking to see

if there is only one option for resolving a threat may be

costly, whereas the separability criterion used in DSep is
relatively easy to check.

3.3 Delay Resolvable Threats

An alternative to DUnf would be to ignore a threat until it
becomes impossible to resolve, and then simply discard the

partial plan. We refer to this alternative as DRes:

Resolve-Threats (S, L, O, G, B):

1. Let

T

 be the set of threats between steps in

S

 and
causal links in

L

.

2. For all if either

b

 is nonempty,
 is consistent with

O

, or is consistent with

O

, then add to

Q

.

To see the difference between DUnf and DRes, consider a
partial plan with a threat that can only be resolved by

demotion. Using DUnf, we would generate a new partial

plan with the appropriate ordering constraint. This ordering
constraint could, in turn, prevent any number of possible

add-link operations, and could reduce the possible ways of

st

g
se sc→

 ⊗ T
b

∈
st se< sc st<

S L O G B, , , ,〈 〉

October 11, 1994 5

resolving other threats. If DRes were used, this additional

ordering constraint would not be present. As a result, DUnf
will consider fewer partial plans than DRes.

It is relatively easy to show that:

Theorem 3:

The space of partial plans generated by DRes
is at least as large as the space generated by DUnf.

Since the cost of checking to see if a threat is unresolvable
is just as expensive as checking to see if a threat has only

one resolution, there should be no advantage to DRes over

DUnf.

3.4 Delay Threats to the End

The final extreme approach is to delay resolving threats

until all open conditions have been satisfied. We refer to
this algorithm as DEnd. Threat resolution strategies similar

to DEnd are used in (Sussman, 1973; Sacerdoti, 1977;

Wilkins, 1988; and Yang 1993).

The primary advantage to this approach is that there is no

cost associated with checking or even generating threats

until the plan is otherwise complete. In problems where
there are few threats, or the threats are easy to resolve by

ordering constraints, this approach is a win. However, if

most partial plans fail because of unresolvable threats, this
technique will generate many partial plans that are

effectively dead.

It is relatively easy to show that:

Theorem 4:

The space of partial plans generated by DRes
is no larger than (and is sometimes smaller than) the space
generated by DEnd.

The search space relationships between the five threat

removal strategies is summarized in Figure 1.

Figure 1:

Search space relationships for five threat
removal strategies.

SNLP

DSep

DUnf

DRes

DEnd

Fe
w

er
 p

la
ns

4 Empirical Results

We tested the five threat resolution strategies on several

problems in each of several different domains; a discrete

time version of Minton’s machine shop scheduling domain
(1988), a route planning domain, Russell’s tire changing

domain, and Barrett & Weld’s (1993) artificial domains

D

m

S

1

 and D

1

S

1

 (also called the ART-MD and ART-1D
domains), and ART-1D-RD and ART-MD-RD,

Kambhampati’s (1993a) variations on these domains.

Ordinarily, the performance of a planner depends heavily
on first, the order in which the partial plans are selected,

and second, the order in which open conditions are

selected. In order to try to filter out these effects, we tested
each domain using several different strategies.

We used the A* search algorithm in our testing. The ‘g’

function is the length of the partial plan, and ‘h’ is the
number of open conditions. We did not include the number

of threats in ‘h’ because this number varies across different

threat resolution strategies. The search algorithm is
engineered so that it always searches partial plans with

equivalent causal structures (generated by the same chain

of add-link and add-step operations) in the same order
regardless of the threat resolution strategy selected. These

tests demonstrate the relative search space theorems by

showing that an inefficient threat resolution strategy (for
example, SNLP) generates at least one (and often more

than one) partial plan for each equivalent partial plan

generated by one of the more efficient threat resolution
strategies (for example, DSep).

For selecting open conditions, we used a LIFO strategy, a

FIFO strategy, and a more sophisticated least-commitment
strategy. The LIFO and FIFO strategies refer to the order

that open conditions are attacked: oldest or youngest first.

The least-commitment strategy selects the open condition
to expand that would result in the fewest immediate

children. For example, assume that two open conditions A

and B are under consideration. Open condition A can be
satisfied by adding either of two different operators to the

plan. Condition B, on the other hand, can only be satisfied

by linking to a unique initial condition. In this situation, the
least-commitment strategy would favor working on B first.

Note that the least-commitment strategy violates the

assumption of Theorem 1; the action of the least-

October 11, 1994 6

commitment strategy can depend on previous threat

resolution actions.

The planner used for these demonstrations differs from the

algorithm described in this paper in that it can ignore

positive threats.

4

 For most of our testing, we turned off
detection of positive threats in order to reduce the amount

of time spent in planning.

In the following plots, we have made no attempt to
distinguish between individual planning problems. Instead,

we have plotted the relative size of the search space of each

problem in the sample domain. Each line corresponds to a
single problem/conjunct-ordering-strategy pair. The

relative size plotted in these figures is the quotient of the

number of nodes explored by the planner when using a
particular threat resolution strategy and the number of

nodes explored when using a reference strategy. For

example, in Figure 2, all of the search spaces sizes are
normalized relative to the size of the most efficient threat

resolution strategy for this domain, DSep. The shapes of

these plots demonstrate the superiority of the DSep and
DUnf threat resolution strategies over all of the other threat

resolution strategies. The pseudoconvex shape of each of

these curves illustrates the dominance relationships
illustrated in Figure 1.

Figures 2 through 4 illustrate the relative search space size

of several problems drawn from the tire changing, machine
shop and route planning domains, respectively. Figures 5

and 6 illustrate the relative search space sizes for a variety

of problems drawn from the ART-MD-RD and ART-1D-
RD domains. The choice of threat delay strategy has no

effect on the D

m

S

1

 and D

1

S

1

 domains (that is, the relative

search space sizes are identical).

4

and is, therefore, nonsystematic.

R
el

at
iv

e
S

ea
rc

h
 S

p
ac

e
S

iz
e

0

0.5

1

1.5

2

2.5

SNLP DSep DUnf DRes DEnd

Search limit exceeded

Figure 2: Russell’s Tire Changing Domain (3 Problems)

R
el

at
iv

e
S

ea
rc

h
 S

p
ac

e
S

iz
e

0.9

0.95

1

1.05

1.1

1.15

1.2

SNLP DSep DUnf DRes DEnd
Figure 3: Machine Shop (3 Problems)

R
el

at
iv

e
S

ea
rc

h
 S

p
ac

e
S

iz
e

0

0.5

1

1.5

2

2.5

3

3.5

SNLP DSep DUnf DRes DEnd
Figure 4: Route Planning Domain (5 Problems)

October 11, 1994 7

Figure 5:

ART-MD-RD Planning Domain (29 Problems)

Figure 6:

ART-1D-RD Domain (29 Problems)

Note that the artificial domains are propositional. Thus
DSep has exactly the same effect as the default SNLP

strategy because threats are never separable.

In Figure 7, we plot the CPU time required for planning
using three of the threat resolution strategies on an

assortment of ART-MD-RD problems. On small problems,

the additional computation required for the more
complicated threat resolution strategies dominates. For

larger problems, however, we expect that these factors will

1

10

100

1000

SNLP DSep DUnf DRes DEnd

R
el

at
iv

e
S

ea
rc

h
 S

p
ac

e
S

iz
e

R
el

at
iv

e
S

ea
rc

h
 S

p
ac

e
S

iz
e

1

10

100

SNLP DSep DUnf DRes DEnd

Search limit exceeded

become unimportant and that we will realize a savings that

is roughly exponential in the number of threats.

Figure 7:

CPU time required for ART-1D-RD Problems

5 Related Work

Recently, Kambhampati (1993a) performed tests with
several different planning algorithms, including SNLP, and

argues that systematicity reduces the redundancy of the

search space at the expense of increased commitment by
the planner. He shows data indicating that for some classes

of problems SNLP performs more poorly than planners that

are nonsystematic.

Although we find these results interesting (and find

Kambhampati’s multi-contributor planners intriguing) we

are left wondering to what extent his results would be
affected by a more judicious selection of threat resolution

strategies.

In his tests, Kambhampati also considers a variant of SNLP
where positive threats are ignored (NONLIN). It is possible

to construct examples where ignoring a positive threat in

SNLP results in an arbitrarily large increase in search.
Conversely, we believe that the consideration of positive

threats does not cost a great deal. In particular, if t is the

potential number of positive threats in a partial plan, we
conjecture that considering positive threats in the delayed

separability algorithm will never result in more than a

factor of increase in the size of the search space of
partial plans.

0.01

0.1

1

10

100

1000

DUnf

DRes

DEnd

Easier Problems Harder Problems

C
P

U
 S

ec
on

ds

3 t

October 11, 1994 8

Kambhampati (1993b) also observes that the DSep threat

resolution strategy is identical to SNLP if the definition for
threats is modified. In particular, we would only recognize

a threat when the post condition of a potentially threatening

operator unifies with a protected precondition regardless of
any bindings that might be added to the plan. Thus, with the

appropriate threat definition, separation is not required for a

complete, systematic variation of SNLP.

In addition, Kambhampati claims that these threat

resolution strategies can be applied to planners that use

multi-contributor causal structures (Kambhampati, 1992).

Yang (1993) has investigated the use of constraint

satisfaction methods for resolving sets of threats. In our

experience, the time at which the planner resolves threats
has far more impact on performance than the method used

for resolving sets of threats.

In (Smith & Peot, 1993), we have been investigating a
more involved method of deciding when to work on

threats. In particular, we show that for certain kinds of

threats it is possible to prove that the threats can always be
resolved at the end, and can therefore be postponed until

planning is otherwise complete. The work reported in this

paper is complementary since it suggests strategies for
resolving threats that cannot be provably postponed.

Acknowledgments

This work was supported by DARPA contract F30602-91-

C-0031 and a NSF Graduate Fellowship. Thanks to Will

Harvey, Rao Kambhampati, and Dan Weld for their
contributions to this paper.

References

Barrett, A., and Weld, D., Partial Order Planning: Evaluat-
ing Possible Efficiency Gains, to appear in

Artificial
Intelligence

, 1993.

Collins, G., and Pryor, L.,

Representation and performance
in a partial order planner

, technical report 35, The
Institute for the Learning Sciences, Northwestern Uni-
versity, 1992.

Harvey, W., Deferring Conflict-Resolution Retains System-
aticity, Submitted to AAAI, 1993.

Kambhampati, S., Characterizing Multi-Contributor Causal
Structures for Planning, Proceedings of the First Inter-
national Conference on Artificial Intelligence Planning
Systems, College Park, Maryland, 1992.

Kambhampati, S., On the utility of systematicity: under-
standing trade-offs between redundancy and commit-
ment in partial-ordering planning, submitted to IJCAI,
1993a.

Kambhampati, S., A comparative analysis of search space
size, systematicity and performance of partial-order
planners. CSE Technical Report, Arizona State Univer-
sity, 1993b.

Kautz, Henry. Personal communication, April 6, 1992.

McAllester, D., and Rosenblitt, D., Systematic nonlinear
planning, In

Proceedings of the Ninth National Confer-
ence on Artificial Intelligence

, pages 634–639, Ana-
heim, CA, 1991.

Minton, S.,

Learning Effective Search Control Knowledge:
An Explanation-Based Approach.

 Ph.D. Thesis, Com-
puter Science Department, Carnegie Mellon Univer-
sity, 1988.

Penberthy, J., S., Weld, D., UCPOP: A sound, complete,
partial order planner for ADL, In

Proceedings of the
Third International Conference on Knowledge Repre-
sentation and Reasoning

, Cambridge, MA, 1992.

Peot, M., and Smith, D., Conditional nonlinear planning, In

Proc. First International Conference on AI Planning
Systems

, College Park, Maryland, 1992.

Sacerdoti, E.,

A Structure for Plans and Behavior

, Elsevier,
North Holland, New York, 1977.

Smith, D. and Peot, M., Postponing conflicts in nonlinear
planning, AAAI Spring Symposium on Foundations of
Planning, Stanford, CA, 1993, to appear.

Sussman, G.,

A Computational Model of Skill Acquisition

,
Report AI-TR-297, MIT AI Laboratory., 1973.

Wilkins, D.,

Practical Planning: Extending the Classical
AI Planning Paradigm

, Morgan Kauffman, San Mateo,
1988.

Yang, Q., A Theory of Conflict Resolution in Planning,

Artificial Intelligence

, 58 (1992) pg. 361-392.

