
Journal of Arti�cial Intelligence Research 5 (1996) 95{137 Submitted 3/96; published 9/96Accelerating Partial-Order Planners: Some Techniques forE�ective Search Control and PruningAlfonso Gerevini gerevini@ing.unibs.itDipartimento di Elettronica per l'Automazione, Universit�a di BresciaVia Branze 38, I-25123 Brescia, ItalyLenhart Schubert schubert@cs.rochester.eduDepartment of Computer Science, University of RochesterRochester, NY 14627-0226, USA AbstractWe propose some domain-independent techniques for bringing well-founded partial-order planners closer to practicality. The �rst two techniques are aimed at improvingsearch control while keeping overhead costs low. One is based on a simple adjustment tothe default A* heuristic used by ucpop to select plans for re�nement. The other is basedon preferring \zero commitment" (forced) plan re�nements whenever possible, and usingLIFO prioritization otherwise. A more radical technique is the use of operator parameterdomains to prune search. These domains are initially computed from the de�nitions ofthe operators and the initial and goal conditions, using a polynomial-time algorithm thatpropagates sets of constants through the operator graph, starting in the initial conditions.During planning, parameter domains can be used to prune nonviable operator instances andto remove spurious clobbering threats. In experiments based on modi�cations of ucpop,our improved plan and goal selection strategies gave speedups by factors ranging from 5to more than 1000 for a variety of problems that are nontrivial for the unmodi�ed version.Crucially, the hardest problems gave the greatest improvements. The pruning techniquebased on parameter domains often gave speedups by an order of magnitude or more fordi�cult problems, both with the default ucpop search strategy and with our improvedstrategy. The Lisp code for our techniques and for the test problems is provided in on-lineappendices.1. IntroductionWe are concerned here with improving the performance of \well-founded" domain-independ-ent planners { planners that permit proofs of soundness, completeness, or other desirabletheoretical properties. A state-of-the-art example of such a planner is ucpop (Barrettet al., 1994; Penberthy & Weld, 1992), whose intellectual ancestry includes strips (Fikes &Nilsson, 1971), tweak (Chapman, 1987), and snlp (McAllester & Rosenblitt, 1991). Suchplanners unfortunately do not perform well at present, in comparison with more practicallyoriented planners such as sipe (Wilkins, 1988), prs (George� & Lansky, 1987), or O-Plan(Currie & Tate, 1991).However, there appear to be ample opportunities for bringing well-founded plannerscloser to practicality. In the following, we begin by suggesting some improvements tosearch control in planning, based on more carefully formulated strategies for selecting partialplans for re�nement, and for choosing open conditions in a selected partial plan. Our plan-c
1996 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Gerevini & Schubertselection strategy uses S+OC { the number of steps in a plan plus the number of openconditions still to be established { as a heuristic measure for ucpop's A* search of theplan space. (Addition of an attenuated term re
ecting the number of threats or \unsafeconditions" UC, such as 0.1UC, is sometimes advantageous.)1 Our
aw-selection strategy,which we term ZLIFO, prefers \zero commitment" plan re�nements to others, and otherwiseuses a LIFO (stack) discipline. Zero commitment re�nements are logically necessary ones:they either eliminate a plan altogether because it contains an irremediable
aw, or they adda unique step or unique causal link (from the initial state) to establish an open conditionthat cannot be established in any other way. The strategy is closely related to ones proposedby Peot & Smith (1993) and Joslin & Pollack (1994) but generally appears to perform betterthan either.We describe these two classes of techniques in Section 2 below, and in Section 3 wereport our experimental results based on slightly modi�ed versions of ucpop.2 For themore di�cult problems taken from the available ucpop test suite and elsewhere, we obtainimprovements by factors ranging from 5 to more than 1000, with the hardest problemsgiving the greatest improvements.We then turn to our proposal for using computed operator parameter domains duringplanning. In particular, in Section 4 we motivate and describe a method of precomput-ing parameter domains based on propagating sets of constants forward from the initialconditions.3 The process is iterative, but the algorithm runs within a time bound that ispolynomial in the size of the problem speci�cation. We provide details of the algorithm,along with theorems about its correctness and tractability, in Sections 4.2{4.3 and OnlineAppendix 1.In Section 5 we show how to use parameter domain information in a ucpop-style plan-ner. During planning, parameter domains can be used to prune operator instances whoseparameter domains are inconsistent with binding constraints, and to eliminate spuriousthreats that cannot, in fact, be realized without violating domain constraints. We illustratethe e�ectiveness of this technique with examples drawn from the ucpop test suite as well asfrom the trains transportation planning world developed at Rochester (Allen & Schubert,1991; Allen et al., 1995). In some of these tests, we apply the parameter domain informationin the context of the default ucpop search strategy. We demonstrate signi�cant gains onmost problems, particularly the more challenging ones (e.g., speedups of more than an orderof magnitude for several problems in the strips world, and a more than 900-fold speedupfor a trains problem).In another set of tests in the trains world, we use our own improved search strategiesas baseline, i.e., we ask whether additional speedups are obtainable by use of parameter1. The search strategy is described as \A* or IDA*" search in (Penberthy & Weld, 1992); in the code forucpop 2.0 it is described more generally as best-�rst, since arbitrary ranking functions, not necessarilycorresponding to A* heuristics, may be plugged in. But with choices like S+OC or S+OC+UC asplan-ranking heuristic (as discussed in Section 2.2), it is natural to view the strategy as an A* strategy.2. While the techniques we describe are applicable to other planners, our focus is on ucpop because it iswell-known and the Lisp code is readily available. The system can be obtained via anonymous ftp fromcs.washington.edu.3. We hope that the notion of a parameter domain, as a set of admissible bindings (constants), will causeno confusion with the notion of a planning domain, as a speci�ed set of operators, along with constraintson admissible initial conditions and goal conditions.96

Accelerating Partial-Order Plannersdomains, above those obtainable with the S+OC and ZLIFO search strategies. Our ex-perimental results again show speedups by about a factor of 10 through use of parameterdomains, on top of those obtained by the improved search strategies (the combined speedupis over 2000).As evidence that the e�ectiveness of using parameter domains in combination with oursearch strategy is not dependent on some peculiarity of the latter, we also include someresults for ucpop's default strategy, Joslin and Pollack's \least cost
aw repair" (LCFR)strategy (Joslin & Pollack, 1994) and for Peot and Smith's \least commitment" (LC) opencondition selection strategy (Peot & Smith, 1993) in Section 5.In Section 6, we state our conclusions, comment on some related work and mentionpossible extensions of our techniques.2. Plan Selection and Goal SelectionWe will be basing our discussion and experiments on ucpop, an algorithm exemplifying thestate of the art in well-founded partial-order planning. Thus we begin with a sketch of thisalgorithm, referring the reader to (Barrett et al., 1994; Penberthy & Weld, 1992) for details.In the next two subsections we then motivate and describe our improved plan-selection andgoal-selection strategies.2.1 UCPOPucpop uses strips-like operators, with positive or negative preconditions and positive ornegative e�ects. The initial state consists of positive predications with constant arguments(if any), and all other ground predications are false by default. Unlike strips, ucpop alsoallows conditional e�ects, expressed by 2-part when-clauses specifying a (possibly complex)extra condition needed by that e�ect and the (possibly complex) e�ect itself. For instance,an action PUTON(?x ?y ?z) (\put ?x on ?y from ?z") might have conditional e�ects statingthat when ?y is not the table, it will not be clear at the end of the action, and when z isnot the table, it will be clear at the end of the action. The \U" in ucpop indicatesthat universally quanti�ed conditions and e�ects are permitted as well. For instance, it ispermissible to have a precondition for a PICKUP(?x) action that says that for all ?y, (not(on ?y ?x)) holds. Universal statements are handled by explicit substitution of domainconstants and need not concern us at this point.In essence, ucpop explores a space of partially speci�ed plans, each paired with anagenda of goals still to be satis�ed and threats still to be averted. The initial plan containsa dummy *start* action whose e�ects are the given initial conditions, and a dummy*end* action whose preconditions are the given goals. Thus goals are uniformly viewed asaction preconditions, and are uniformly achieved through the e�ects of actions, includingthe *start* action.The plans themselves consist of a collection of steps (i.e., actions obtained by instanti-ating the available operators), along with a set of causal links, a set of binding constraints,and a set of ordering constraints. When an open goal (precondition) is selected from theagenda, it is established (if possible) either by adding a step with an e�ect that uni�eswith the goal, or by using an existing step with an e�ect that uni�es with the goal. (Inthe latter case, it must be consistent with current ordering constraints to place the existing97

Gerevini & Schubertstep before the goal, i.e., before the step whose preconditions generated the goal.) When anew or existing step is used to establish a goal in this way, there are several side e�ects:� A causal link (Sp; Q; Sc) is also added, where Sp indicates the step \producing" thegoal condition Q and Sc indicates the step \consuming" Q. This causal link serves toprotect the intended e�ect of the added (or reused) step from interference by othersteps.� Binding constraints are added, corresponding to the uni�er for the action e�ect inquestion and the goal (precondition) it achieves.� An ordering constraint is added, placing the step in question before the step whoseprecondition it achieves.� If the action in question is new, its preconditions are added to the agenda as newgoals (except that EQ/NEQ conditions are integrated into the binding constraints { seebelow).� New threats (unsafe conditions) are determined. For a new step and its causal link,other steps threaten the causal link if they have e�ects uni�able with the conditionprotected by the causal link (and these e�ects can occur temporally during the causallink); and the e�ects of the new step may similarly threaten other causal links. Ineither case, new threats are placed on the agenda. It is useful to distinguish de�nitethreats from potential threats: the former are those in which the uni�cation thatcon�rmed the threat involved no new binding of variables.Binding constraints assert the identity (EQ) or nonidentity (NEQ) of two variables or a variableand a constant. EQ-constraints arise from unifying open goals with action e�ects, and NEQ-constraints arise (i) from NEQ-preconditions of newly instantiated actions, (ii) from matchingnegative goals containing variables to the initial state, and (iii) from averting threats by\separation", i.e., forcing non-equality of two variables or a variable and a constant thatwere uni�ed in threat detection. NEQ-constraints may be disjunctive, but are handled simplyby generating separate plans for each disjunct.The overall control loop of ucpop consists of selecting a plan from the current list ofplans (initially the single plan based on *start* and *end*), selecting a goal or threat fromits agenda, and replacing the plan by the corresponding re�ned plans. If the agenda item isa goal, the re�ned plans are those corresponding to all ways of establishing the goal usinga new or existing step. If the agenda item is a de�nite threat to a causal link (Sp; Q; Sc),then there are at most three re�ned plans. Two of these constrain the threatening stepto be before step Sp (demotion) or after step Sc (promotion), thus averting the threat.A third possibility arises if the e�ect threatening (Sp; Q; Sc) is a conditional e�ect of thethreatening action. Such a conditional threat can be averted by creating a goal denyingsome precondition needed by the conditional e�ect.ucpop has a \delay separation" switch, *d-sep*, and when this is turned on, onlyde�nite threats are dealt with. Note that potential threats may become de�nite as a resultof added binding constraints. (They may also \expire" as a result of added binding andordering constraints, i.e., the threatening e�ect may no longer unify with the threatenedcondition or it may be forced to occur before or after the threatened causal link. Expired98

Accelerating Partial-Order Plannersthreats are removed from the agenda when selected.) When *d-sep* is o�, potential threatsas well as de�nite ones are averted, with separation as an additional method of doing sobesides the three methods above.Inconsistencies in binding constraints and ordering constraints are detected when they�rst occur (as a result of adding a new constraint) and the corresponding plans are elim-inated. Planning fails if no plans remain. The success condition is the creation of a planwith consistent binding and ordering constraints and an empty agenda.The allowance for conditional e�ects and universal conditions and e�ects causes onlyminor perturbations in the operation of ucpop. For instance, conditional e�ects can leadto multiple matches against operators for a given goal, each match generating di�erentpreconditions. (Of course, there can be multiple matches even without conditional e�ects,if some predicates occur more than once in the e�ects.)The key issues for us right now are the strategic ones: how plans are selected from thecurrent set of plans (discussed in Section 2.2), and how goals are selected for a given plan(discussed in Section 2.3).2.2 The Trouble with Counting Unsafe ConditionsThe choice of the next plan to re�ne in the ucpop system is based on an A* best-�rstsearch. Recall that A* uses a heuristic estimate f(p) of overall solution cost consisting ofa part g(p) = cost of the current partial solution (plan) p and a part h(p) = estimate ofthe additional cost of the best complete solution that extends p. In the current context itis helpful to think of f(p) as a measure of plan complexity, i.e., \good" plans are simple(low-complexity) plans.There are two points of which the reader should be reminded. First, in order for A*to guarantee discovery of an optimal plan (i.e., the \admissibility" condition), h(p) shouldnot overestimate the remaining solution cost (Nilsson, 1980). Second, if the aim is notnecessarily to �nd an optimal solution but to �nd a satisfactory solution quickly, then f(p)can be augmented to include a term that estimates the remaining cost of �nding a solution.One common way of doing that is to use a term proportional to h(p) for this as well, i.e.,we emphasize the h-component of f relative to the g-component. This is reasonable to theextent that the plans that are most nearly complete (indicated by a low h-value) are likelyto take the least e�ort to complete. Thus we will prefer to pursue a plan p0 that seems closerto being complete to a plan p further from completion, even though the overall complexityestimate for p0 may be greater than for p (Nilsson, 1980) (pages 87{88). Alternatively, wecould add a heuristic estimate of the remaining cost of �nding a solution to f(p) that ismore or less independent of the estimate h(p).With these considerations in mind, we now evaluate the advisability of including thevarious terms in ucpop's function for guiding its A* search, namelyS, OC, CL, and UC,where S is the number of steps in the partial plan, OC is the number of open conditions(unsatis�ed goals and preconditions), CL is the number of causal links, and UC is thenumber of unsafe conditions (the number of pairs of steps and causal links where the step99

Gerevini & Schubertthreatens the causal link). The default combination used by ucpop is S+OC+UC.4 Thisbecomes S+OC+UC+F if special open conditions called \facts" are present. These areconditions that are not state-dependent (e.g., a numerical relation like (add-one ?x ?y), ora geometrical one like (loc-in-room ?x ?y ?room)) and are established by Lisp functions(Barrett et al., 1994). Since few of our test problems involved facts, we will not discuss theF term further except to say that we followed the ucpop default strategy of including thisterm where it is relevant (see the TileWorld problems in Section 3.2 and also some remarksin Section 5.2 in connection with the parameter-domain experiments).2.2.1 S: the number of steps currently in the planThis can naturally be viewed as comprising g(p), the plan complexity so far. Intuitively, aplan is complex to the extent that it contains many steps. While in some domains we mightwant to make distinctions among the costs of di�erent kinds of steps, a simple step countseems like a reasonable generic complexity measure.2.2.2 OC: the number of open conditionsThis can be viewed as playing the role of h(p), since each remaining open condition must beestablished by some step. The catch is that it may be possible to use existing steps in theplan (including *start*, i.e., the initial conditions) to establish remaining open conditions.Thus OC can overestimate the number of steps still to be added, forfeiting admissibility.Despite this criticism, several considerations favor retention of the OC term. First, abetter estimator of residual plan complexity seems hard to come by. Perhaps one couldmodify OC by discounting open conditions that are matched by existing actions, but thispresumes that all such open conditions can actually be achieved by action re-use, which isimprobable if there are remaining threats, or remaining goals requiring new steps.5 Second,the possibility that OC will overestimate the residual plan complexity will rarely be actu-alized, since typically further steps still need to be added to achieve some of the goals, andthose steps will typically introduce further open conditions again requiring new steps. Fi-nally, to the extent that OC does at times overestimate the residual plan complexity, it canbe viewed as emphasizing the the h(p) term of f(p), thus promoting faster problem-solvingas explained above.2.2.3 CL: the number of causal linksOne might motivate the inclusion of this term by arguing that numerous causal links areindicative of a complex plan. As such, CL appears to be an alternative to step-counting.4. This is in no way the \recommended" strategy. The ucpop implementation makes available variousoptions for controlling search, to be used at the discretion of experimenters. Our present work hasprompted the incorporation of our particular strategies as an option in ucpop 4.0.5. Note that threats and remaining goals impose constraints that may not be consistent with seeminglypossible instances of action re-use. This is clear enough for threats, which often imply temporal orderingconstraints inconsistent with re-use of an action. It is also fairly clear for remaining goals. For instance,in Towers of Hanoi the small disk D1 is initially on the medium disk D2, which in turn is on the big diskD3, and D3 is on peg P1. The goal is to move the tower to the third peg P3, so it seems to ucpop initiallyas if (on D1 D2) and (on D2 D3) could be achieved by \re-use" of *start*. However, the third goal (onD3 P3) implies that various actions must be added to the plan which are inconsistent with those twoseemingly possible instances of action re-use. 100

Accelerating Partial-Order PlannersHowever, note that CL is in general larger than S, since every step of a plan establishesat least one open condition and thus introduces at least one causal link. The larger CL isrelative to S, the more subgoals are achieved by action re-use. Hence, if we use CL insteadof (or in addition to) S in the g(p) term, we would in e�ect be saying that achieving multiplesubgoals with a single step is undesirable; we would tend to search for ways of achievingmultiple goals with multiple steps, even when they can be achieved with a single step. Thisis clearly not a good idea, and justi�es the exclusion of CL from f(p).2.2.4 UC: the number of unsafe conditionsWe note �rst of all that this is clearly not a g-measure. While the number of threats willtend to increase if we establish more and more subgoals without curtailing threats, threatsas such are not elements of the plan being constructed and so do not contribute to itscomplexity. In fact, when the plan is done all threats will be gone.Can UC then be viewed as an h-measure? One argument of sorts for the a�rmative isthe following. Not all partial plans are expandable into complete plans, and a high value ofUC makes it more likely that the partial plan contains irresolvable con
icts. If we regardimpossible plans as having in�nite cost, then inclusion of a term increasing with UC as partof the h-measure is reasonable. This carries a serious risk, though, since in the case wherethe partial plan does have a consistent completion (despite a high UC-count), inclusion ofsuch a term can greatly overestimate the residual plan complexity.Another possible a�rmative argument is that conditional threats are sometimes resolvedby \confrontation", which introduces a new goal denying a condition required for the threat-ening conditional e�ect. This new goal may in turn require new steps for its achievement,adding to the plan complexity. However, this link to complexity is very tenuous. In the �rstplace, many of the ucpop test domains involve no conditional e�ects, and threat removalby promotion, demotion or separation adds no steps. Even when conditional e�ects arepresent, many unconditional as well as conditional threats are averted by these methods.Furthermore, UC could swamp all other terms since threats may appear and expire ingroups of size O(n), where n is the number of steps in the plan. For instance, considera partial plan that involves moves by a robot R to locations L1, ..., Ln, so that thereare n causal links labeled (at R L1), ..., (at R Ln). If a new move to location L isnow added, initially with an inde�nite point of departure ?x, this produces e�ects (atR L) and (not (at R ?x)). The latter can threaten all of the above n causal links, atleast if the new move is at �rst temporally unordered relative to the n existing moves. Ifthis new action subsequently happens to be demoted so as to precede the �rst move (orpromoted so as to follow the last), or if ?x becomes bound to a constant distinct fromL1, ..., Ln, all n threats expire. Keeping in mind that di�erent steps in a plan mayhave similar e�ects, we can see that half of the steps could threaten the causal links of theothers. In such a case we could have O(n2) unsafe conditions, destined to expire as a resultof O(n) promotions/demotions. In fact even a single new binding constraint may causeO(n2) threats to expire. For instance, if there are n=2 e�ects (not (P ?x)) threateningn=2 causal links labeled (P ?y), then if binding constraint (NEQ ?x ?y) is added, all n2=4threats expire. Recall that when expired threats are selected from the agenda by ucpop,they are recognized as such and discarded without further action.101

Gerevini & SchubertOur conclusion is that it would be a mistake to include UC in full in a general h-measure,though some increasing function of UC that remains small enough not to mask OC may beworth including in h.Finally, can UC be regarded as a measure of the remaining cost of �nding a solution?Here, similar arguments to those above apply. On the a�rmative side, we can argue thata high value of UC indicates that we may be facing a combinatorially explosive, time-consuming search for a set of promotions and demotions that produce a con
ict-free stepordering. In other words, a high value of UC may indicate a high residual problem-solvingcost. (And at the end of such a search, we may still lack a solution, if no viable stepordering exists.) On the other hand, we have already noted that unsafe conditions includemany possible con
icts which may expire as a result of subsequent partial ordering choicesand variable binding choices not speci�cally aimed at removing these con
icts. So countingunsafe conditions can arbitrarily overestimate the number of genuine re�nement steps, andhence the problem-solving e�ort, still needed to complete the plan.So UC is scarcely more trustworthy as a measure of residual planning cost than as ameasure of residual plan cost.Thus we conclude that the most promising general heuristic measure for plan selection isS+OC, possibly augmented with an attenuated form of the UC term that will not dominatethe S+OC component. (For instance, one might add a small fraction of the term, such asUC/10, or more subtly { to avoid swamping by a quadratic component { a term proportionalto UC:5.)2.3 The Goal Selection StrategyAn important opportunity for improving planning performance independently of the domainlies in identifying forced re�nements, i.e., re�nements that can be made deterministically.Speci�cally, in considering possible re�nements of a given partial plan, it makes sense togive top priority to open conditions that cannot be achieved; and then preferring openconditions that can be achieved in only one way { either through addition of an action notyet in the plan, or through a unique match against the initial conditions.The argument for giving top priority to unachievable goals is just that a plan containingsuch goals can be eliminated at once. Thus we prevent allocation of e�ort to the re�nementof doomed plans, and to the generation and re�nement of their doomed successor plans.The argument for preferring open conditions that can be achieved in only one wayis equally apparent. Since every open condition must eventually be established by someaction, it follows that if this action is unique, it must be part of every possible completionof the partial plan under consideration. So, adding the action is a \zero-commitment"re�nement, involving no choices or guesswork. At the same time, adding any re�nement ingeneral narrows down the search space by adding binding constraints, ordering constraintsand threats, which constrain both existing steps and subsequently added steps. For uniquere�nements this narrowing-down is monotonic, never needing revocation. For example,suppose some re�nement happens to add constraints that eliminate a certain action instanceA as a possible way of achieving a certain open condition C. If the re�nement is unique,then we are assured that no completion of the plan contains A as a way of establishing C.If it is not unique, we have no such assurance, since some alternative re�nement may be102

Accelerating Partial-Order Plannerscompatible with the use of A to achieve C. In short, the zero-commitment strategy cutsdown the search space without loss of access to viable solutions.Peot and Smith (1993) studied the strategy of preferring forced threats to unforcedthreats, and also used a \least commitment" (LC) strategy for handling open conditions.Least commitment always selects an open condition which generates the fewest re�nedplans. Thus it entails the priorities for unachievable and uniquely achievable goals above(while also entailing a certain prioritization of nonuniquely achievable goals). Joslin andPollack (1994) studied the uniform application of such a strategy to both threats and openconditions in ucpop, terming this strategy \least cost
aw repair" (LCFR). Combining thiswith ucpop's default plan selection strategy, they obtained signi�cant search reductions(though less signi�cant running time reductions, mainly for implementation reasons, butalso because of the intrinsic overhead of computing the \repair costs") for a majority of theproblems in the ucpop test suite.Joslin & Pollack (1994) and subsequently Srinivasan & Howe (1995) proposed somevariants of LCFR designed to reduce the overhead incurred by LCFR for
aw selection.These strategies employ various assumptions about the
aw repair costs, allowing the morearduous forms of cost estimation (requiring look-ahead generation of plans) to be con�nedto a subset of the
aws in the plan, while for the rest an approximation is used that doesnot signi�cantly increase the overhead. Both teams obtained quite signi�cant reductionsin overhead costs in many cases, e.g., by factors ranging from about 3 to about 20 for themore di�cult problems. However, overall performance was sometimes adversely a�ected.Joslin and Pollack found that their variant (QLCFR) solved fewer problems than LCFR,because of an increase in the number of plans generated in some cases. Each of Srinivasan &Howe's four strategies did slightly better than LCFR in some of their 10 problem domainsbut signi�cantly worse in others. In terms of plans examined during the search, their bestoverall strategy, which uses similar action instances for similar
aws, did slightly better on4 of the domains, slightly worse on 4, and signi�cantly worse on 2 (and in those cases thenumber of plans examined was also more than a factor of 20 above that of default ucpop).In the unmodi�ed form of ucpop, goals are selected from the agenda according to aLIFO (last-in �rst-out, i.e., stack) discipline. Based on experience with search processesin AI in general, such a strategy has much to recommend it, as a simple default. In the�rst place, its overhead cost is low compared to strategies that use heuristic evaluation orlookahead to prioritize goals. As well, it will tend to maintain focus on the achievement ofa particular higher-level goal by regression { very much as in Prolog goal chaining { ratherthan attempting to achieve multiple goals in breadth-�rst fashion.Maintaining focus on a single goal should be advantageous at least when some of thegoals to be achieved are independent. For instance, suppose that two goals G1 and G2 canboth be achieved in various ways, but choosing a particular method of achieving G1 doesnot rule out any of the methods of achieving G2. Then if we maintain focus on G1 untilit is solved, before attempting G2, the total cost of solving both goals will just be the sumof the costs of solving them individually. But if we switch back and forth, and solutionsof both goals involve searches that encounter many dead ends, the combined cost can bemuch larger. This is because we will tend to search any unsolvable subtree of the G1 searchtree repeatedly, in combination with various alternatives in the G2 search tree (and viceversa). This argument should still have some validity even if G1 and G2 are not entirely103

Gerevini & Schubertindependent; i.e., as long as G1 gives rise to subproblems that tend to fail in the sameway regardless of choices made in the attempt to solve G2 (or vice versa), then shiftingattention between G1 and G2 will tend to generate a set of partial plans that unnecessarily\cross-multiplies" alternatives.We have therefore chosen to stay with ucpop's LIFO strategy whenever there are nozero commitment choices. This has led to very substantial improvements over LCFR in ourexperiments.Thus our strategy, which we term ZLIFO (\zero-commitment last-in �rst-out"), choosesthe next
aw according to the following preferences:1. a de�nite threat (*d-sep* is turned on), using LIFO to pick among these;2. an open condition that cannot be established in any way;3. an open condition that can be resolved in only one way, preferring open conditionsthat can be established by introducing a new action to those that can be establishedby using *start*;64. an open condition, using LIFO to pick among these.Hence the overhead incurred by ZLIFO for
aw selection is limited to the open con-ditions, and is lower for these than the overhead incurred by LCFR. Furthermore, it canalso be signi�cantly lower in practice than the overhead incurred by LC, because testingwhether an OC is not a zero-commitment choice (i.e., whether it can be established in morethan one way) is less expensive than computing the total number of ways to achieve it.In Online Appendix 1 we give the pseudocode of ZLIFO for the selection of the opencondition (preferences 2{4). Very recently this implementation has also been packaged intoucpop 4.0, a new version of ucpop which is available by anonymous ftp to cs.washington.edu.3. Experiments Using UCPOPIn order to test our ideas we modi�ed version 2.0 of ucpop (Barrett et al., 1994), replac-ing its default plan-selection strategy (S+OC+UC) and goal-selection strategy (LIFO) toincorporate strategies discussed in the previous sections.We tested the modi�ed planner on several problems in the ucpop suite, emphasizingthose that had proved most challenging for previous strategies, on some arti�cial problemsdue to Kambhampati et al. (1995), in the trains transportation domain developed inRochester (Allen & Schubert, 1991; Allen et al., 1995), and in Joslin & Pollack's TileWorlddomain (Joslin & Pollack, 1994). We brie
y describe the test problems and the platformsand parameter settings we used, and then present the experimental results for our improvedsearch strategies.6. 2. and 3. are zero-commitment choices. In our experiments, which are described in the next section, thesub-preference in 3. gave improvements in the context of Russell's tire changing domain (in particularwith Fix3), without signi�cant deterioration of performance in the other domains.104

Accelerating Partial-Order Planners3.1 Test Problems and Experimental SettingsThe ucpop problems include Towers of Hanoi (T of H), Fixa, Fix3, Fixit, Tower-Invert4,Test-Ferry, and Sussman-Anomaly. In the case of T of H, we added a 3-operator version tothe ucpop single-operator version, since T of H is a particularly hard problem for ucpopand its di�culty has long been known to be sensitive to the formalization (e.g., (Green,1969)). Fixa is a problem from Dan Weld's \fridge domain", in which the compressorin the fridge is to be exchanged, requiring unscrewing several screws, stopping the fridge,removing the backplane, and making the exchange. Fix3 is from Stuart Russell's \
at tiredomain", where a new wheel is to be mounted and lowered to the ground (the old wheel hasbeen jacked up already and the nuts loosened); this requires unscrewing the nuts holdingthe old wheel, removing the wheel, putting on the new wheel, screwing on the nuts, jackingdown the hub, and tightening the nuts. Fixit is more complicated, as the wheel is not yetjacked up initially and the nuts not yet loosened, the spare tire needs to be in
ated, andthe jack, wrench and pump all need to be taken out of the trunk and stowed again at theend. Tower-Invert4 is a problem in the blocks world, requiring the topmost block in a stackof four blocks to be made bottom-most. Test-Ferry is a simple problem requiring two carsto be moved from A to B using a one-car ferry, by boarding, sailing, and unboarding foreach car.The arti�cial problems correspond to two parameter settings for ART-#est-#clob, oneof the two arti�cial domains that served as a testbed for Kambhampati et al.'s extensivestudy of the behavior of various planning strategies as a function of problem parameters(Kambhampati et al., 1995). ART-#est-#clob provides two layers of 10 operators each,where those in layer 1 achieve the preconditions of those in layer 2, and each operator inlayer 2 achieves one of the 10 goals. However, some operators in each layer can establishor clobber the preconditions of their neighbors, and this can force operators to be used ina certain order.The version of the trains domain that we encoded involves four cities (Avon, Bath,Corning, Dansville) connected by four tracks in a diamond pattern, with a �fth city (Elmira)connected to Corning by a �fth track. The available resources, which are located at variouscities, consist of a banana warehouse, an orange warehouse, an orange juice factory, threetrain engines (not coupled to any cars), 4 boxcars (suitable for transporting oranges orbananas), and a tanker car (suitable for transporting orange juice). Goals are typically todeliver oranges, bananas, or orange juice to some city, requiring engine-car coupling, carloading and unloading, engine driving, and possibly OJ-manufacture.The TileWorld domain consists of a grid on which holes and tiles are scattered. A giventile may or may not �t into a particular hole. The goals are to �ll one or more holes byusing three possible actions: picking up a tile, going to an x-y location on the grid, anddropping a tile into a hole. The agent can carry at most four tiles at a time.Formalizations of these domains in terms of ucpop's language are provided in OnlineAppendix 2. The experiments for all problems except Fixit, the trains problems and theTileWorld problems were conducted on a sun 10 using Lucid Common Lisp 4.0.0, whilethe rest (Tables X{XI in the next subsection) were conducted on a sun 20 using AllegroCommon Lisp 4.2. Judging from some repeated experiments, we do not think that the105

Gerevini & SchubertGoal-selection Plan-selection CPU sec PlansLIFO S+OC+UC 204.51 160,911/107,649LIFO S+OC 0.97 751/511ZLIFO S+OC+UC 6.90 1816/1291ZLIFO S+OC 0.54 253/184Table I: Performance of plan/goal selection strategies on T-of-H1di�erences in the platforms signi�cantly impact performance improvements.7 Among thesearch control functions provided by ucpop, we used the default bestf-search when theproblem was solvable within the search limit of 40,000 plans generated, while we used thefunction id-bf-search (an implementation of the linear-space best-�rst search algorithmgiven by Korf, 1992), when this limit was exceeded.8 In all of the experiments the delay-separation switch, *d-sep*, was on, except for those using the LCFR strategy.3.2 Experimental Results for ZLIFO and S+OCTables I{XI show the CPU time (seconds) and the number of plans created/explored byucpop on twelve problems in the domains described above: Towers of Hanoi with threedisks and either one operator (T-of-H1) or three operators (T-of-H3), the fridge domain(Fixa), the tire changing domain (Fix3 and Fixit), the blocks world (Tower-Invert4 andSussman-anomaly), the ferry domain (Test-Ferry), the arti�cial domain ART-#est-#clob(speci�cally, ART-3-6 and ART-6-3), the trains domain (Trains1, Trains2 and Trains3)and the TileWorld domain (tw-1, ..., tw-6). Both the number of plans created/explored andthe CPU time are important performance measures. The number of plans, which indicatessearch space size, is a more stable measure in the sense that it depends only on the searchalgorithm, not the implementation.9 But the time is still of interest since an improvementin search may have been purchased at the price of a more time-consuming evaluation ofalternatives. It turns out that we do pay some price in overhead when we substitute ourstrategies for the defaults (factors ranging from about 1.2 to 1.9, and rarely higher, per plancreated). This may be due to slightly greater inherent complexity of ZLIFO versus LIFO,but we think the di�erences could be reduced by substituting modi�ed data structures forthose of ucpop { we were committed to not altering these.Tables I and II show that for the T of H the plan selection strategy S+OC gives dramaticimprovements over the default S+OC+UC strategy. (In these tests the default LIFO goalselection strategy was used.) In fact, ucpop solved T-of-H1 in 0.97 seconds using S+OCversus 204.5 seconds using S+OC+UC. T-of-H3 proved harder to solve than T-of-H1, re-7. The di�erences were the result of what was available at di�erent times and locales over the course ofnearly two years of experimentation.8. This choice was motivated by the observation that when the problem is relatively easy to solvebestf-search appears to be more e�cient than id-bf-search, while for hard problems it can be veryine�cient because of the considerable amount of space used at run time and the CPU time spent ongarbage collection, which in some cases made Lisp crash, reporting an internal error.9. It is also worth noting that the number of plans created implicitly takes into account plan size, sinceaddition of a step to a plan is counted as creation of a new plan in ucpop.106

Accelerating Partial-Order PlannersGoal-selection Plan-selection CPU sec PlansLIFO S+OC+UC > 600 > 500,000LIFO S+OC 8.54 5506/3415ZLIFO S+OC+UC > 600 > 500,000ZLIFO S+OC 1.24 641/420Table II: Performance of plan/goal selection strategies on T-of-H3Goal-selection Plan-selection CPU sec PlansLIFO S+OC+UC 2.45 2131/1903LIFO S+OC 2.48 2131/1903ZLIFO S+OC+UC 0.33 96/74ZLIFO S+OC 0.33 96/74Table III: Performance of plan/goal selection strategies on Fixaquiring 8.5 seconds using S+OC and an unknown time in excess of 600 CPU seconds usingS+OC+UC.Our ZLIFO goal-selection strategy can signi�cantly accelerate planning compared withthe simple LIFO strategy. In particular, when ZLIFO was combined with the S+OC plan-selection strategy in solving T of H, it further reduced the number of plans generated by afactor of 3 in T-of-H1 and by a factor of 8 in T-of-H3. The overall performance improvementfor T-of-H1 was thus a factor of 636 in terms of plans created and factor of 379 in terms ofCPU time (from 204.5 to 0.54 seconds).Tables III{VIII provide data for problems that are easier than T of H, but still challeng-ing to ucpop operating with its default strategy, namely Fixa (Table III), Fix3 (Table IV),Tower-Invert4 (Table V), Test-Ferry (Table VI) and the arti�cial domain ART-#est-#clobwith #est = 3 and #clob = 6 (Table VII) and with #est = 6 and #clob = 3 (Table VII).The results show that the combination of S+OC and ZLIFO substantially improves theperformance of ucpop in comparison with its performance using S+OC+UC and LIFO.The number of plans generated dropped by a factor of 22 for Fixa, by a factor of 5.9 forGoal-selection Plan-selection CPU sec PlansLIFO S+OC+UC 6.50 3396/2071LIFO S+OC 0.43 351/215ZLIFO S+OC+UC 1.12 357/221ZLIFO S+OC 1.53 574/373Table IV: Performance of plan/goal selection strategies on Fix3107

Gerevini & SchubertGoal-selection Plan-selection CPU sec PlansLIFO S+OC+UC 1.35 808/540LIFO S+OC 0.19 148/105ZLIFO S+OC+UC 2.81 571/378ZLIFO S+OC 0.36 142/96Table V: Performance of plan/goal selection strategies on Tower-Invert4Goal-selection Plan-selection CPU sec PlansLIFO S+OC+UC 0.63 718/457LIFO S+OC 0.32 441/301ZLIFO S+OC+UC 0.24 136/91ZLIFO S+OC 0.22 140/93Table VI: Performance of plan/goal selection strategies on Test-FerryGoal-selection Plan-selection CPU sec PlansLIFO S+OC+UC .67 568/392LIFO S+OC 1.36 1299/840ZLIFO S+OC+UC 0.16 72/49ZLIFO S+OC 0.18 79/54Table VII: Performance of plan/goal selection strategies on ART-#est-#clob with #est = 3and #clob = 6 (averaged over 100 problems)Goal-selection Plan-selection CPU sec PlansLIFO S+OC+UC 1.32 985/653LIFO S+OC 2.08 1743/1043ZLIFO S+OC+UC 0.14 57/37ZLIFO S+OC 0.14 57/37Table VIII: Performance of plan/goal selection strategies on ART-#est-#clob with #est = 6and #clob = 3 (averaged over 100 problems)Goal-selection Plan-selection CPU sec PlansLIFO S+OC+UC 0.06 44/26LIFO S+OC 0.04 36/21ZLIFO S+OC+UC 0.12 67/43ZLIFO S+OC 0.07 41/25Table IX: Performance of plan/goal selection strategies on Sussman-anomaly108

Accelerating Partial-Order Planners
1101001000
10 100 1000 10000 100000 1e+06 1e+07Problem sizeSussman-anomalyART-3-6 Test-ferryTower-invert4FixaFix3 T-of-H1 Trains1ART-6-3 FixitPerformanceImprovement

2 2222 2 2 2 2 2
2 Search space reductionSpeedupFigure 1: Performance improvement due to ZLIFO and S+OC, relative to the number ofplans generated by LIFO and S+OC+UC (log-log scale). The improvements forthe problems that ucpop was unable to solve even with a very high search limit(Trains2, Trains3, and T-of-H3) are not included.Fix3, by a factor of 5.7 for Tower-Invert4, by a factor of 5.1 for Test-Ferry, by a factor of 7for ART-3-6, and by a factor of 17 for ART-6-3.Concerning ART-#est-#clob, note that the performance we obtained with unenhanceducpop (568 plans generated for ART-3-6 and 985 for ART-6-3) was much the same as(just marginally better than) reported by Kambhampati et al. (1995) for the best plannersconsidered there (700 { 1500 plans generated for ART-3-6, and 1000-2000 for ART-6-3).This is to be expected, since ucpop is a generalization of the earlier partial-order planners.Relative to standard ucpop and its predecessors, our \accelerated" planner is thus an orderof magnitude faster. Interestingly, the entire improvement here can be ascribed to ZLIFO(rather than S+OC plan selection, which is actually a little worse than S+OC+UC). Thisis probably due to the unusual arrangement of operators in ART-#est-#clob into a \clobber-ing chain" (An�;1 clobbers An��1;1's preconditions, ..., A1;1 clobbers A0;1's preconditions;similarly for Ai;2), which makes immediate attention to new unsafe conditions an unusuallygood strategy.In experimenting with various combinatorially trivial problems that unmodi�ed ucpophandles with ease, we found that the S+OC and ZLIFO strategy is neither bene�cial norharmful in general; there may be a slight improvement or a slight degradation in perfor-mance. Results for the Sussman anomaly in Table IX provide an illustrative example.We summarize the results of Tables I{X in Figure 1, showing the performance improve-ments obtained with the combined ZLIFO goal selection strategy and S+OC plan selection109

Gerevini & SchubertTrains1 Trains2 Trains3 FixitZLIFO & Plans 4097/2019 17,482/10,907 31,957/19,282 5885/3685S+OC Time 13.7 80.6 189.8 32.5LC & Plans 438/242 34,805/24,000 253,861/168,852 71,154/46,791S+OC Time 2.6 368.9 1879.9 547.8LCFR & Plans 1093/597 >1,000,000 >1,000,000 190,095/117,914S+OC Time 10.65 >10,905 >9918 4412.36LIFO & Plans 1,071,479/432,881 > 10,000,000 > 1,000,000 8,090,014/4,436,204S+OC+UC Time 3050.15 > 37,879 > 2539 27,584.9Table X: Performance of the plan selection strategy S+OC in combination with the goalselection strategies ZLIFO, LCFR and LC in solving problems which are veryhard for the default strategies of ucpop (S+OC+UC/LIFO). (The CPU secondsdo not include Lisp garbage collection. The number of plans generated for LCFRdoes not include those created in order to estimate the repair cost of the
aws.)Problem ZLIFO* LCFRname CPU time Plans CPU time Planstw-1 0.09 26/15 0.10 26/15tw-2 0.61 72/39 0.66 72/39tw-3 2.55 138/71 3.17 139/72tw-4 7.80 224/111 10.97 227/114tw-5 19.41 330/159 30.17 336/165tw-6 42.57 456/215 71.10 466/225Table XI: Performance of UCPOP in the TileWorld domain using ZLIFO* and LCFR forgoal selection, and S+OC+F+0.1UC for plan selectionstrategy as a function of problem di�culty (as indicated by the number of plans generatedby the default LIFO plus S+OC+UC strategy). The trend toward greater speedups formore complex problems (though somewhat dependent on problem type) is quite apparentfrom the log-log plot.For direct comparison with Joslin and Pollack's LCFR strategy and Peot and Smith'sLC strategy, we implemented their strategies and applied them to several problems. Theydid very well (sometimes better than ZLIFO) for problems on the lower end of the di�cultyspectrum, but poorly for harder problems. (For all the problems we ran, LC with the*d-sep* switch on performed better than LCFR in terms of plans explored and CPUtime required.) For T-of-H1 LCFR in combination both with the default S+OC+UC planselection strategy, and with our S+OC plan strategy did not �nd a solution within a searchlimit of 200,000 plans generated (cf. 253 for ZLIFO with S+OC, and 751 for ZLIFO withS+OC+UC), requiring an unknown CPU time in excess of 4254 seconds with S+OC+UC,110

Accelerating Partial-Order Plannersand in excess of 4834 seconds with S+OC (cf. 0.54 seconds for ZLIFO with S+OC).10LC performed much better than LCFR but still considerably worse than ZLIFO, solvingT-of-H1 by generating/exploring 8313/6874 plans with S+OC and 8699/6441 plans withS+OC+UC, and requiring 44.4 CPU secs. and 48.95 CPU secs. respectively. For T-of-H3, LC found a solution by generating/exploring 21,429/15,199 plans with S+OC+UCand 17,539/14,419 plans with S+OC, requiring 145.18 CPU secs. and 77.84 CPU secs.respectively.Table X shows the results for the plan strategy S+OC, with the goal strategies ZLIFO,LCFR and LC, applied to three problems (Trains1, Trains2 and Fixit). As shown by the datain the table these are very hard for the default strategies of ucpop (LIFO & S+OC+UC),but become relatively easy when S+OC is used in combination either with ZLIFO, LCFRor LC. While LCFR and LC did slightly better than ZLIFO for Trains1 (the easiest ofthese problems), they performed quite poorly for Fixit, Trains2 and Trains3 (the hardestproblems) compared to ZLIFO.Joslin and Pollack (1994) tested their LCFR strategy on six problems in the TileWorld(tw-1, ..., tw-6), �ve of which are very hard for default ucpop, but easy for ucpop usingLCFR.11 We tested our ZLIFO strategy in the TileWorld using the same six problems.ZLIFO did well for tw-1{4, but for tw-5 and tw-6 its performance dropped well below thatof LCFR. This raised the question whether for these particular problems it is crucial tominimize \repair cost" in
aw selection uniformly, rather than just in certain special cases(ZLIFO does minimize the repair cost when no threat is on the
aw list, and at least one zero-commitment open condition is present). However, further experiments aimed at answeringthis question suggested that the poor choices made by ZLIFO for some TileWorld problemswere not due to selection of \high cost" over \low cost"
aws. Instead two factors appear becrucial for improving ZLIFO: (a) emphasizing zero-commitment open conditions by givingthem higher priority than threats; (b) when there are no zero-commitment open conditions,resolving threats as soon as they enter the agenda. (We realized the relevance of (b) byobserving that the performance of a modi�ed versions of LCFR, where the *d-sep* switchis implicitly forced on, dramatically degraded for tw-6 in a slightly di�erent formulation ofthe TileWorld.)We extended our ZLIFO strategy to include (a) and (b), and we brie
y tested theresulting variant of ZLIFO (ZLIFO*). Table XI shows the results for ZLIFO* together withthe plan selection strategy S+OC+0.1UC+F, where as discussed in Section 2.3 we includedan attenuated form of the UC term (UC/10), and an F term equal to the number of factssince TileWorld uses facts to track the number of tiles carried by the agent.12 ZLIFO*10. This was with *d-sep* turned o�, which is the implicit setting in LCFR (Joslin, 1995). In our experimentswe also tested a variant of LCFR, where the switch is forced to be on. The resulting goal strategy incombination with our plan strategy S+OC performed signi�cantly better for T-of-H1, solving the problemgenerating/exploring 7423/6065 plans, and using 110.45 CPU seconds. Note also that a comparison ofour implementation of LCFR and Joslin & Pollack's implementation used for the experiments discussedin (Joslin & Pollack, 1994) showed that our implementation is considerably faster (Joslin, 1995).11. In their experiments tw-2, the easiest among tw-2{6, was not solved by ucpop even when allowed to runfor over eight hours. On the other hand, ucpop using LCFR solves tw-6, the hardest problem, withoutever reaching a dead-end node in the search tree.12. In the ZLIFO* experiments the re�ned plans generated by resolving a threat were added to the
aw listin the following order: �rst the plan generated by promotion, then the plan generated by demotion, and�nally the plan generated by confrontation or separation.111

Gerevini & Schubertperformed very e�ciently for all six TileWorld problems, in fact a little better than LCFR.Note that for these problems ZLIFO* is more e�cient than LCFR in terms of the CPU time,even though the number of plans generated/explored by the two strategies is approximatelythe same. This is because the overhead of selecting the next
aw to be handled is higherin LCFR than in ZLIFO* (and ZLIFO). In fact, while LCFR needs to compute the \repaircost" of each
aw (including the threats) in the current plan, ZLIFO* (ZLIFO) only needs tocheck for the presence of zero-commitment open conditions, without processing the threats.Additional experiments indicated that the average performance of ZLIFO* is comparableto that of ZLIFO for most of the other problems we used in our experiments, in terms ofplans created/explored. However, the CPU time tends to increase since the overhead ofcomputing the goal selection function is higher for ZLIFO* than for ZLIFO, because of theextra agenda-management costs. Because of this overhead, we do not regard ZLIFO* asgenerally preferable to ZLIFO. However, the TileWorld experiments underscored for us thatin some worlds re�nements of ZLIFO are advantageous.Finally, another possible variant of ZLIFO, which was suggested to us by David Smith,is based on the following preferences of the next
aw to be handled: (i) a threat that cannotbe resolved; (ii) an open condition that cannot be established; (iii) a threat that has onlyone possible resolution; (iv) an open condition that can only be established in one way; (v)other threats; (vi) other open conditions (using LIFO to pick among these). We observethat while this strategy could give further savings in terms of plans created/explored, italso imposes an additional overhead with respect to both ZLIFO and ZLIFO* which coulddegrade performance in terms of CPU time.4. Precomputing Parameter DomainsEven with the speedups obtained through improved search, a ucpop-like algorithm remainsseverely limited in the complexity of problems it can solve. We believe that signi�cantfurther progress requires fuller use of global properties of the search space, as determined bythe structure of the operators, initial conditions, and goals. One way to do that would bethrough a more in-depth analysis of alternatives during the search, but this can lead to highoverhead costs. Another is to precompute constraints on the search space, and to use theseduring planning to prune the search. The parameter domain method we now motivate anddescribe is of the latter type.4.1 How Can Parameter Domains Help?In our previous experimentation with ucpop strategies, we found that ucpop goal regres-sion often hypothesized steps that were doomed to be abandoned eventually, because theystipulated impossible parameter bindings. A clear example of this occurred in the Molgendomain, as encoded in the ucpop test suite. The goal of the \Rat-insulin" test problem is(and (bacterium ?b) (molecule ?m)(contains IG ?m) (contains ?m ?b) (pure ?b)),where ?b and ?m are existentially quanti�ed variables. What this means is that we wishto create a puri�ed bacterial culture ?b, where ?b contains a molecule ?m (necessarily an112

Accelerating Partial-Order Plannersexosome, it turns out), and this molecule in turn contains the insulin gene, IG. We areusing the abbreviations IG, EE, JE, L for insulin-gene, e-coli-exosome, junk-exosome,and linker; and E, J, A1 for e-coli, junk, and antibiotic-1. Roughly speaking, the solutioninvolves processing the initially given mRNA form of the insulin gene so as to produce aform of insulin DNA that can be spliced into the e-coli-exosome, using a ligate operator.In turn, the exosome is inserted into the e-coli bacterium using a transform operator, andthe bacterial culture is then puri�ed using a screen operator, with antibiotic-1. (The junkbacterium and exosome merely serve to complicate the task { they are nearly, but not quite,substitutable for the e-coli bacterium and exosome; the junk exosome, unlike e-coli-exosome,is not resistant to antibiotic-1, violating a precondition of screen.)Now, in the initial regression the goals (bacterium ?b) and (molecule ?m) can beestablished only with the *start* operator, i.e., with the initial conditions, and thus willnot be instantiated to bizarre values. (The initial conditions supply E and J as the onlyinstances of bacterium, and IG, EE, JE, and L as the only instances of molecule.) Onthe other hand, the remaining goals turn out to match the e�ects of various instances ofthe ligate, transform, and screen operators of Molgen, as follows:(contains IG ?m): (ligate IG ?m), (transform IG ?m)(contains ?m ?b): (ligate ?m ?b), (transform ?m ?b)(pure ?b): (screen ?b ?y ?z)ucpop will happily regress on these actions. Yet two of them, (transform IG ?m) and(ligate ?m ?b), are doomed to fail, perhaps after a great deal of e�ort has been expendedon trying to satisfy their preconditions. In particular, examination of the constants that can\
ow into" the transform operator from the initial conditions and other Molgen operatorsshows that its �rst argument is restricted to domain fEE, JEg, i.e., it must be one ofthe given exosomes, and the second is restricted to fE, Jg, i.e., it must be one of thegiven bacteria. Consequently the instance (transform IG ?m) is unrealizable, as its �rstargument IG is not in fEE, JEg. (Note that distinct constants denote distinct entitiesaccording to the unique-names assumption made by ucpop.) The (ligate ?m ?b) actionis doomed for slightly more subtle reasons. It is the result of a match between (contains ?m?b) and a \when-clause" (conditional e�ect) of the ligate operator, whose preconditionscan be reached only if the second parameter ?b lies in the set of molecules fIG, JE, EEg;yet ?b is also restricted to the set of bacteria fE, Jg, as a result of the goal condition(bacterium ?b). The fact that these sets are disjoint should allow us to eliminate the(transform IG ?m) action.Note that elimination of action candidates as above increases the number of zero com-mitment plan re�nements that can be made. In the example, we are left with exactly oneaction for each of the three goals, and so the ZLIFO and LCFR strategies will prefer toregress on these goals rather than regressing on (bacterium ?b) and (molecule ?m) {which would prematurely make arbitrary choices of ?b and ?m from the initial state.4.2 Description of the AlgorithmIn any completed plan, each precondition of each action must be instantiated by an e�ectof some earlier action. So the values of the parameters of the action can only be values that113

Gerevini & Schubertcan be \produced" by earlier actions, starting with the initial action, *start*. Moreover,suppose that a parameter x of a certain action occurs in each of preconditions P1, ..., Pk.Then a constant c is a possible value of x only if earlier actions can instantiate x to c ineach of P1, ..., Pk.Our algorithm find-parameter-domains is based on these observations. Beginning inthe initial state, it propagates positive atomic predications to all possible operator precon-ditions. For a propagated ground atom, if the atom matches an operator precondition,the algorithm adds the constants in that ground atom to the individual domains of theparameters they were uni�ed with. These individual domains are particular to speci�c pre-conditions. For instance, the individual domain of ?x for an operator with preconditions(on ?x ?y), (clear ?x) will in general be distinct for these two preconditions.As soon as we have nonempty individual domains for all parameters in all preconditionsof an operator, we form the intersection of the individual domains of each parameter ofthe operator. For example, if (on ?x ?y) has (so far) been matched by (on A B) and(on B C), and (clear ?x) has (so far) been matched by (clear A) and (clear Table),then the individual domain of x will be fA,Bg in the �rst precondition and fA,Tablegin the second. Thus (assuming there are no other preconditions) the intersected domainof ?x will be fAg at this point. If later (clear B) is also matched against (clear ?x),the intersected domain of ?x will grow to fA,Bg. When both ?x and ?y have nonemptyintersected domains, the e�ects (postconditions) of the operator can in turn be propagated,with ?x and ?y \bound" to their intersected domains.The propagated e�ects are again matched against all possible operator preconditions,and when a variable \bound" to an intersected domain is successfully uni�ed with a vari-able in a precondition, it passes its intersected domain to the individual domain of thatprecondition-variable (via a union operation). This can again lead to growth of the inter-sected domains of the operator whose precondition was matched, the e�ects of that operatormay then be propagated, and so on. The individual domains and intersected domains growmonotonically during the propagation process, and in the end represent the desired param-eter domains of the operators.We illustrate this process through an example. Consider the simple planning problemdepicted in Figure 2 where an \operator graph" (Smith & Peot, 1993) is used to describe thelogical dependencies among the operators, while the iterative computation of the parameterdomains is graphically illustrated with a \domain-propagation graph" below the operatorgraph.The initial conditions (P A) and (P B) unify with the precondition (P ?x) of op1. So,the individual domain of ?x relative to the precondition P of op1 is fA,Bg. On the otherhand, the precondition (Q ?x) of op1 cannot be satis�ed by the initial state, and so theindividual domain of ?x relative to Q is initially the empty set. Hence the intersected domainof ?x for op1 is also the empty set.For op2 we have a di�erent situation, since here we have only one precondition and itcan be established by the initial state. Therefore, the individual domain of ?y relative toprecondition R of op2 is the set of constants fB,Cg, and the intersected domain of ?y forop2 is the same set (because R is the only precondition of op2 involving ?y). Since theintersected domain of ?y has been enlarged (initially it was empty), it is propagated to theindividual domains of the other operators through the e�ect (Q ?y) of op2. In particular,114

Accelerating Partial-Order Planners
indicates bundle of edges

start *end*

(P ?x)

(Q ?x)

(R ?y)

(S ?z)

(T B)

op1

op2

op3

 effects: effects: effects:

op1: preconds: op3: preconds: (P ?x),(Q ?x)

(S ?x)

(R ?y)

(Q ?y)

op2: preconds: (S ?z)

(T ?z)

Init state:

Goal: (T B)

(P A),(P B),(R B),(R C),(S C)

id(?y)={B,C}

ID(P,?x)={A,B}
ID(Q,?x)={}

id(?x)={} id(?x)={B}

ID(P,?x)={A,B}
ID(Q,?x)={B,C}

id(?z)={A,B}

ID(S,?z)={A,B}ID(S,?z)={A}

id(?z)={A}

ID(R,?y)={B,C}

(S ?z)

(Q ?y)

(P B)

(P A)

(R C)

(R B)

S(A)

(R ?y)

(Q ?x)

(P ?x)

(S ?z)

(S ?x)

(Q ?x)op1

op2

op1

op3op3Figure 2: Operator and domain-propagation graphs for a simple planning problem.ID(?x,P) indicates the individual domain of the parameter ?x relative to pre-condition P; id(?x) indicates the intersected domain of the parameter ?x; �nalintersected domains are indicated using bold fonts.(Q ?y) matches the precondition (Q ?x) of op1. So, the individual domain of ?x relativeto precondition Q of op1 is updated by adding the constants of the intersected domain of ?yto it. Thus the intersected domain of ?x is enlarged to fBg, and can be propagated throughthe e�ect (S ?x) of op1.Similarly, the propagation of (S ?x) will enlarge the individual domain of ?z for op3,and also the intersected domain, to the set fA,Bg. Therefore, the �nal intersected domainsare: fBg for ?x in op1; fB,Cg for ?y in op2; fA,Bg for ?z in op3.Before presenting the algorithm a little more formally, we note that the parameter do-mains will sometimes be \too large", including values that would be found to be impossible115

Gerevini & Schubertif a more detailed state space exploration were conducted. However, all that is requiredfor soundness in our use of the domains is that they not be \too small" (i.e., that theycontain all parameter values that can actually occur in the problem under consideration).Of course, to be of practical use the parameter domains of an operator should excludesome of the constants occurring in the problem speci�cation, particularly those for whichit is intuitively obvious that they are of the wrong sort to �ll particular argument slots ofthe operator. This has turned out to be the case for all problem domains we have so farexperimented with.The preceding sketch of our method is an oversimpli�cation since preconditions ande�ects of ucpop operators may be particular to a when-clause. In this case we computeindividual domains and intersected domains separately for each when-clause. For example,consider the following schematic representation of an operator:(define (operator op1):parameters (?x ?y):precondition (and P1 P2):effect (and E1 E2(when P 0E 0)(when P"E"))),where all conditions starting with P or E denote atomic formulas that may involve ?x and ?y.We can think of this operator as consisting of a primary when-clause whose preconditionsP1 and P2 must always be satis�ed and whose e�ects E1 and E2 are always asserted, andtwo secondary when-clauses whose respective preconditions P 0 and P" may or may notbe satis�ed, and when they are, the corresponding e�ects E 0 and E" are asserted. Hereour algorithm would maintain individual domains for ?x and ?y for each of preconditionsP1, P2, P 0, and P", and it would maintain intersected domains for ?x and ?y for theprimary when-clause and each of the two secondary clauses. The intersected domains forthe secondary clauses would be based on the individual domains of ?x and ?y not onlyrelative to P 0 and P", but also on those relative to P1 and P2, since (as noted) the primarypreconditions must hold for the operator to have any of its e�ects, including conditionale�ects.Some further complications arise when ucpop operators contain universally quanti-�ed preconditions or e�ects, disjunctive preconditions, or facts (mentioned in Section 2.2).Rather than dealing with these complications directly, we will assume that no such op-erators occur in the input to the algorithm. Later we describe a semi-automated way ofhandling operators containing the additional constructs.The algorithm is outlined below (a more detailed description is given in Online Ap-pendix 1). W is a list of (names of) when-clauses whose e�ects are to be propagated.Individual parameter domains are initially nil, and intersected parameter domains are ini-tially either nil or T (where T is the universal domain). The intersected domain of aparameter, relative to a given when-clause, is T just in case the parameter occurs neitherin the preconditions of the when-clause nor in the primary preconditions. (In such a casethe successful instantiation of the when-clause is clearly independent of the choice of valuefor the parameter in question.) Uni�cation in step 2(a) is as usual, except that when ane�ect variable v is uni�ed with a constant c in a precondition, the uni�cation succeeds,116

Accelerating Partial-Order Plannerswith uni�er v = c, just in case c is an element of the intersected domain of v (for the rel-evant when-clause). The given inits (initial conditions) and goals (which may be omitted,i.e., nil) are treated as an operator *start* with no preconditions and an operator *end*with no e�ects. Variables in goals are treated like operator parameters. We use the terms\parameters" and \variables" interchangeably here.Algorithm: �nd-parameter-domains(operators,inits,goals)1. Initialize W to the initial conditions, so that it contains just the (primary) when-clauseof *start*.2. Repeat steps (a{c) until W = nil:(a) Unify the positive e�ects of all when-clauses in W with all possible operatorpreconditions, and mark the preconditions successfully matched in this way as\matched". (This marking is permanent.) Augment the individual domain ofeach matched precondition variable with a certain set C of constants, de�ned asfollows. If the precondition variable was uni�ed with a constant c, then C = fcg;if it was uni�ed with an e�ect variable, then C is the intersected domain of thate�ect variable (relative to the when-clause to which the e�ect belongs).(b) Mark those when-clauses as \propagation candidates" that have all their precon-ditions (including corresponding primary preconditions) marked as \matched"and that involve at least one variable for which some relevant individual domainwas augmented in step (a).(c) Reset W to nil. For all when-clauses that are propagation candidates, computenew intersected domains for their variables. If an intersected domain of a when-clause is thereby enlarged, and all intersected domains for the when-clause arenow nonempty, then add the when-clause to W.3. Further restrict intersected domains using equative preconditions of form (EQ u v),i.e., form a common intersected domain if both u and v are variables. If u is aconstant and v is a variable, reduce the intersected domain of v by intersecting itwith fug; similarly if u is a variable and v is a constant. If the equation belongs to aprimary when-clause, use it to reduce the intersected domains of u and v (whicheverare variables) in the secondary clauses as well.4. Return the intersected domains as the parameter domains, producing a sequence oflists with each list of form(op (x1 a1 b1 c1 :::) (x2 a2 b2 c2 :::) :::),where each operator op appears at least once. If op has k conditional e�ects, therewill be k + 1 successive lists headed by op, where the �rst provides the parameterdomains for the primary e�ects of op and the rest provide the parameter domains forthe conditional e�ects (in the order of appearance in the ucpop de�nition of op).Note that we do not match or propagate negative conditions. The problem with negativeconditions is that a very large number of them may be implicit in the initial conditions, given117

Gerevini & Schubertthe use of the Closed World Assumption in ucpop. For instance, in a world of n blocks,with at most O(n) on-relations (assuming that a block can be on only one other block), wenecessarily have O(n2) implicit (not (on ...)) relations. In fact, the individual variabledomains of negative preconditions or goals can really be in�nitely large. For instance, givenan empty initial state and a (paint-red ?x) operation with precondition (not (red ?x))and e�ect (red ?x), we can achieve (red c) for in�nitely many constants c. Perhapsnegative conditions could be e�ectively dealt with by maintaining anti-domains for them,but we have not explored this since in practice ignoring negative conditions seems to causeonly minimal \domain bloating". (We have proved that no actual domain elements can belost through neglect of some preconditions.)Our use of EQ-conditions could be re�ned by making use of them during the propagationprocess, and NEQ-conditions could also be used. However, doing so would probably havemarginal impact.As a �nal comment, we note that the output format speci�ed in step 4 of the algorithmis actually generalized in our implementation so as to report inaccessible preconditionsand goals. These inaccessible conditions are simply appended to the list of parameterdomains for the appropriate when-clause of the appropriate operator. For instance, if thepreconditions (oj ?oj) and (at ?oj ?city) in the ld-oj (\load orange juice") operatorof the trains world (see Online Appendix 2) are unreachable (say, because no oranges forproducing orange juice have been provided), the parameter domain list for the (unique)when-clause of ld-oj will have the appearance(ld-oj (?oj ...)(?car ...)(?city ...)(oj ?oj)(at ?oj ?city)).This feature turns out to be very useful for debugging operator speci�cations and detectingunreachable goals.4.3 Correctness and TractabilityIn keeping with the remarks in the previous section, we will call an algorithm for computingparameter domains correct if the domains it computes subsume all possible parameter valuesthat can actually occur (in a given primary or secondary when-clause) if we consider allpossible sequences of operator applications starting at the given initial state.The point is that this property will maintain the soundness of a planning algorithm thatuses the precomputed parameter domains to prune impossible actions (as well as spuriousthreats) from a partially constructed plan. We assert the following:Theorem 1 The find-parameter-domains algorithm is correct for computing parameterdomains of ucpop-style sets of operators (without quanti�cation, disjunction, or facts),initial conditions, and (possibly) goal conditions.The proof is given in Appendix A. A preliminary step is to establish termination, using themonotonic growth of domains and the �niteness of the set of constants involved. Correctnessis then established by showing that if there exists a valid sequence A0A1:::An of actions(operator instances) starting with A0 = *start*, and if An is an instance of the operatorOp, then the bindings that the parameters of Op received in instance An are eventually addedto the relevant intersected domains of Op (where \relevant" refers to the when-clauses of Opwhose preconditions are satis�ed at the beginning of An). This is proved by induction on n.118

Accelerating Partial-Order PlannersWe now indicate how we can deal with universally quanti�ed preconditions and e�ects,disjunctive preconditions, and facts. We make some simple changes to operator de�nitionsby hand in preparation for parameter domain precomputation, and then use the domainscomputed by find-parameter-domains, together with the original operators, in runningthe planner. The steps for preparing an operator for parameter domain precomputation areas follows:� Delete disjunctive preconditions, fact-preconditions,13 and universally quanti�ed pre-conditions (this includes universally quanti�ed goals; it would also include universallyquanti�ed sentences embedded within the antecedents of when-clauses, e.g., in themanner (:when (:forall(?x) �)), though these do not occur in any problemdomains we have seen).� Drop universal quanti�ers occurring positively in operator e�ects, i.e., occurring atthe top level or embedded by one or more :and's. For example, an e�ect(:and (at robot ?to)(:not (at robot ?from))(:forall (?x)(:when (:and (grasping ?x) (object ?x))(:and (at ?x ?to) (:not (at ?x ?from))))))would become(:and (at robot ?to)(:not (at robot ?from))(:when (:and (grasping ?x) (object ?x))(:and (at ?x ?to) (:not (at ?x ?from))))))Note that the universally quanti�ed variable should be renamed, if necessary, to bedistinct from all other such variables and from all operator parameters.In the example above the universally quanti�ed variable is unrestricted. When thequanti�ed variable includes a type restriction, as in (:forall (object ?x) �), thenthis type restriction needs to become an antecedent of the matrix sentence �. Inthe example at hand, � should be rewritten as the equivalent of (:when(object ?x)�). Since � is often a when-clause, this can be done by adding (object ?x) as aconjunct to the antecedent of the when-clause. In some cases � is a conjunction ofwhen-clauses, and in such a case the quanti�er restriction can be added into eachwhen-clause antecedent.� Drop existential quanti�ers in preconditions and goals, adding any restrictions on thequanti�ed variables as conjuncts to the matrix sentence. For example, the goal(:exists (bacterium ?y)(:exists (molecule ?x)(:and (contains IG ?x)(contains ?x ?y)(pure ?y))))13. E.g., in the strips-world we would drop (fact (loc-in-room ?x ?y ?room)), which checks whetherthe given coordinates lie in the given room. 119

Gerevini & Schubertbecomes(:and (bacterium ?y) (molecule ?x) (contains IG ?x)(contains ?x ?y) (pure ?y))(Actually, the :and is dropped as well, when supplying goals to find-parameter-domains.)With these reductions, find-parameter-domains will then compute correct parameterdomains for the operators and goals. To see this, note �rst of all that dropping pre-conditions (in the initial step above) will not forfeit correctness, since doing so can onlyweaken the constraints on admissible parameter values, and thus can only add constantsto the domains. The e�ect of dropping a universal quanti�er, from the perspective offind-parameter-domains, is to introduce a new parameter in place of the universal vari-able. (The operator normalization subroutine detects variables in operator preconditionsand e�ects that are not listed as parameters, and treats them as additional parameters.)While this is of course a drastic change in the meaning of the operator, it preserves correct-ness of the parameter domain calculation. This is because the domain of the new parameterwill certainly contain all constants (and hence, under the Closed World Assumption, all ob-jects) over which the quanti�ed variable ranges. For example, if ?x is treated as a parameterrather than a universally quanti�ed variable in the conditional e�ect(:forall(?x) (:when(object?x) (in?x box))),then the domain of ?x for the when-clause will consist of everything that can be an object, inany state where the operator can be applied. Thus the e�ect (in?x box) will also be prop-agated for all such objects, as is required. Finally, the elimination of existential quanti�ersfrom preconditions and goals can be seen to preserve the meaning of those preconditionsand goals, and hence preserves the correctness of the parameter domain calculation.Next we formally state our tractability claim for the algorithm, as follows (with sometacit assumptions, mentioned in the proof).Theorem 2 Algorithm find-parameter-domains can be implemented to run in O(mnpne(np+ne)) time and O(mnp) space in the worst case, where m is the number of constants in theproblem speci�cation, np is the combined number of preconditions for all operators (andgoals, if included), and ne is the combined number of operator e�ects (including those of*start*).Again the proof is in Appendix A. The time complexity of find-parameter-domains isdetermined as the sum of (1) the cost of all the uni�cations performed, (2) the costs of allthe individual domain updates attempted, and (3) the cost of all the intersected domainupdates attempted. The space complexity bound is easily derived by assuming that thereis a �xed upper bound on the number of arguments that a predicate (in a precondition ore�ect) can have, and from the fact that for each when-clause at most O(m) constants arestored.By adding some additional data structures in find-parameter-domains we can obtaina version of the algorithm whose worst-case time complexity is slightly improved. In fact,in step 2.(c) instead of propagating all of the e�ects of a when-clause with an enlarged120

Accelerating Partial-Order Plannersintersected domain (i.e., adding such a when-clause to the list W), it is su�cient to propagatejust those e�ects of the when-clause that involve an enlarged intersected-domain. This couldbe done by setting up for each when-clause a table that maps each parameter to a list ofe�ects (of that when-clause) involving that parameter.In the improved algorithm we use W to store the list of e�ects (instead of the list of when-clauses) that will be propagated in the next cycle of the algorithm, and steps 1, and 2 offind-parameter-domains are modi�ed in the following way:10. Initialize W to the list of the e�ects of *start*.20. Repeat steps (a{c) until W = nil:(a0) Unify the positive e�ects in W with all possible operator preconditions, and markthe preconditions successfully matched in this way as \matched" ...(b0) same as 2.(b).(c0) Reset W to nil. For all when-clauses that are propagation candidates, com-pute new intersected domains for their variables. If an intersected domain of awhen-clause is thereby enlarged, and all intersected domains for the when-clauseare now nonempty, then add to W the subset of the e�ects of the when-clauseinvolving at least one parameter whose intersected domain is enlarged.Note that the worst-case time complexity of the revised algorithm is improved, because noweach e�ect of each when-clause is propagated at most O(m) times. This decreases the upperbound on the number of uni�cations performed, reducing the complexity estimated in step(1) of the proof of Theorem 2 to O(mnenp). Hence we have proved the following corollary.Corollary 1 There exists an improved version of find-parameter-domains that can beimplemented to run in O(mn2pne) time in the worst case.5. Using Parameter Domains for Accelerating a PlannerWe have already used the example of Molgen to motivate the use of precomputed parameterdomains in planning, showing how such domains may allow us to prune non-viable actionsfrom a partial plan.More fundamentally, they can be used each time the planner needs to unify two predi-cations involving a parameter, either during goal regression or during threat detection. (Ineither case, one predication is a (sub)goal and the other is an e�ect of an action or aninitial condition.) If the uni�er is inconsistent with a parameter domain, it should countas a failure even if it is consistent with other binding constraints in the current (partial)plan. And if there is no inconsistency, we can use the uni�er to intersect and thus re�nethe domains of parameters equated by the uni�er.For example, suppose that G = (at ?x ?y) is a precondition of a step in the currentplan, and that E = (at ?w ?z) is an e�ect of another (possibly new) step, where ?x, ?y,?w and ?z are parameters (or, in the case of ?w and ?z, existentially quanti�ed variables)which have no binding constraints associated with them in the current plan. Assume alsothat the domains of the parameters are: 121

Gerevini & Schubert?x : {Agent1, Agent2, Agent3} ?y : {City1, City2}?w : {Agent1, Agent2} ?z : {City3, City4}The uni�cation of G and E gives the binding constraints f?x = ?w, ?y = ?zg, which arenot viable because the parameter domains of ?y and of ?z have an empty intersection.On the other hand, if the domain of ?z had been fCity2, City3, City4g, then the uni�-cation of G and E would have been judged viable, and the domains of the parameters wouldhave been re�ned to:?x : {Agent1, Agent2} ?y : {City2}?w : {Agent1, Agent2} ?z : {City2}Thus parameter domains can be incrementally re�ned as the planning search progresses;and the narrower they become, the more often they lead to pruning.5.1 Incorporating Parameter Domains into UCPOPThe preceding consistency checks and domain re�nements can be used in a partial-order,causal-link planner like ucpop as follows. Given a goal (open condition) G selected byucpop as the next
aw to be repaired, we can(1) restrict the set of new operator instances that ucpop would use for establishing G; aninstance of an operator with e�ect E (matching G) is disallowed if the precomputedparameter domains relevant to E are incompatible with the current parameter do-mains or binding constraints relevant to G; (note that the current parameter domainsassociated with G may be re�nements of the initial domains);(2) restrict the set of existing steps that ucpop would reuse for establishing G; reusing astep with e�ect E (matching G) is disallowed if the current parameter domains relevantto E are incompatible with the current parameter domains or binding constraintsrelevant to G.Moreover, given a potential threat by an e�ect Q against a protected condition P, inspectionof the relevant parameter domains may reveal that the threat is actually spurious. Thishappens if the uni�er of P and Q violates the (possibly re�ned) domain constraints of aparameter in P or Q. Thus we can often(3) reduce the number of threats that are generated by the planner when a new causallink is introduced into the plan (this happens when an open condition is establishedeither by reusing a step or by introducing a new one);(4) recognize that a threat on the list of the
aws to be processed is redundant, allowingits elimination. (Note that since parameter domains are incrementally re�ned duringplanning, even if we use (3) during the generation of the threats, it is still possible fora threat to becomes spurious after it has been added to the
aw list).These four uses of parameter domains cut down the search space without loss of viablesolutions, since the options that are eliminated cannot lead to a correct, complete plan.122

Accelerating Partial-Order PlannersNote that (3) and (4) can be useful even when the planner only deals with de�nitethreats (i.e., *d-sep* switch is turned on) for at least three reasons. First, determiningthat a threat is not a de�nite threat when *d-sep* is on incurs an overhead cost. So,earlier elimination of a spurious threat could lead to considerable savings if the threat isdelayed many times during the search. The second reason relates to the plan-selectionstrategies adopted. If one uses a function that includes an (attenuated) term correspondingto the number of threats currently on the
aw list, then eliminating spurious threats inadvance can give a more accurate measure of the \badness" of a plan. Finally, parameterdomains could be used in threat processing so as to prune the search even when *dsep* ison. In particular, suppose that we modify the notion of a de�nite threat, when we haveparameter domains, so that e.g., (P ?x) and (not (P ?y)) comprise a de�nite threat ifthe parameter domains associated with ?x and ?y are both c. So in that case, even withd-sep* on, we may discover early that a threat has become de�nite { in which case it mightalso be a forced threat, i.e., the choice between promotion and demotion may be dictatedby ordering constraints; and that can prune the search space. However, in our currentimplementation we do not exploit this third point.We have incorporated these techniques into ucpop (version 2.0), along with our earlierimprovements to the plan and goal selection strategies. Parameter domains are handledthrough an extension of the \varset" data structure (Weld, 1994) to include the domainsof the variables (parameters), and by extending the uni�cation process to implement the�ltering discussed above.14 We now describe our experiments with this enhanced system.5.2 Experimental Results Using Parameter DomainsOur main goal here is to show that while the overhead determined by computing the param-eter domains is not signi�cant (both at preprocessing time and at planning time), exploita-tion of the parameter domains during planning can signi�cantly prune the search. In theexperiments we used the version of find-parameter-domains which is described in Section4.2 and in Online Appendix 1. Note that for domains more complex than the ones we haveconsidered it might be worthwhile to use the improved version of the algorithm discussed inSection 4.3. (However, it remains to be seen whether problems signi�cantly more complexthan those we consider here can be solved by any ucpop-style planner.)The CPU times needed by our implementation of find-parameter-domains are negli-gible for the problems we have looked at. They were 10 msec or less for many problemsin the ucpop test suite (when running compiled Allegro CL 4.2 on a sun 20), 20 msec fortwo problems (Fixa from the fridge repair domain and Fixit from the
at tire domain), and30msec on the trains world problems described below.In our �rst set of tests, we relied on the search strategy used as default in ucpop. Thefunction used for A* plan selection was thus S+OC+UC+F (allowing for problems thatinvolve \facts"), and the goals were selected from the agenda according to a pure LIFOdiscipline.1514. In the current implementation new threats are �ltered only when the protected condition is establishedby a step already in the plan.15. In all experiments the *d-sep* switch was on. The default delay-separation strategy for selecting unsafeconditions was slightly modi�ed in the version of ucpop using parameter domains. In particular, the123

Gerevini & SchubertWe began by experimenting with a variety of problems from ucpop's test suite, com-paring performance with and without the use of parameter domains. While relatively easyproblems such as Sussman-anomaly, Fixa, Test-ferry, and Tower-invert4 showed no im-provement through the use of parameter domains, most problems { particularly the harderones { were solved more easily with parameter domains. For example, the Rat-insulinproblem from the Molgen domain was solved nearly twice as fast, and some strips-worldproblems (Move-boxes and variants)16 and Towers of Hanoi (T-of-H1) were solved about10 times as fast. Note that the strips-world problems involve both facts and universallyquanti�ed conditional e�ects. Two problems from the o�ce world, O�ce5 and O�ce6,which we knew to be readily solvable with our improved search strategy, remained di�-cult (in the case of O�ce6, unsolvable) with the default ucpop strategy, despite the useof parameter domains.17 Further experiments revealed that the source of this ine�ciencywas the default plan-selection strategy of ucpop. In fact, using our S+OC+F strategyinstead of S+OC+UC+F, without parameter domains O�ce5 and O�ce6 were solved gen-erating/exploring 3058/2175 and 8770/6940 plans respectively; while using the parameterdomains the plans numbered 1531/1055 and 2954/2204 respectively.These initial experiments suggested to us that the most promising application of com-puted parameter domains would be for nontrivial problems that involved a variety of types ofentities and relationships, and signi�cant amounts of goal chaining (i.e., with each successiveaction establishing preconditions for the next). From this perspective, the trains worldstruck us as a natural choice for further experimentation, with the additional advantagethat its design was independently motivated by research at Rochester into mixed-initiativeproblem solving through natural-language interaction. (Refer again to the formalization inOnline Appendix 2.) Recall from Table X that the Trains1 problem was extremely hard forunmodi�ed ucpop, requiring about 50 minutes and generating over a million plans.Running the same problem with parameter domains produced a solution in 3.3 seconds(with 1207 plans generated), i.e., 927 times faster.Intuitively, the use of parameter domains to constrain planning is analogous to usingtype constraints on the parameters (although parameter domains also take account of initialconditions). So it is of interest to see whether adding type constraints can provide similare�ciency gains as the use of parameter domains. Our �rst set of experiments thereforeincluded T-Trains1, a \typed" version of Trains1; the operators have been slightly changedby adding new preconditions stating the types of the parameters involved. For example,the operator uncouple has been augmented with the preconditions (engine ?eng) and(car ?car). This problem was also extremely hard for the unmodi�ed ucpop, exceedingthe search limit of 1,000,000 plans generated and requiring more than 2600 seconds. Withparameter domains, the solution was obtained in one second.threats that can be resolved by separation and which are recognized to be redundant through the use ofparameter domains were selected to be eliminated.16. Move-boxes-2 di�ers slightly from the Move-boxes problem in the ucpop suite, in that its goal is (in-roombox2 rclk); Move-boxes-a di�ers slightly from the Move-boxes-2, in that its initial state contains twoboxes.17. O�ce5 is directly from ucpop's test suite and O�ce6 is minor variant of O�ce5. In O�ce5, all personsare to be furnished with checks made out to them, using a check printer at the o�ce and a briefcase forpicking up the checks and bringing them home. \Sam" and \Sue" are the given persons, and in O�ce6we have added (person Alan) and (person Smith) in the initial conditions.124

Accelerating Partial-Order PlannersProblems without domains with domains DomainPlans CPU sec Plans CPU sec ratioTrains1 1,071,479/432,881 3050.15 1207/824 3.29 0.425T-Trains1 > 1,000,000 > 2335 404/296 0.98 0.425Move-boxes 608,231/167,418 1024.04 5746/3253 18.8 0.705Move-boxes-1 > 1,000,000 > 6165 1264/645 3.59 0.705Move-boxes-2 13,816/3927 45.05 1175/587 2.66 0.705Move-boxes-a 13,805/3918 46.11 1175/587 2.54 0.702T-of-H1 160,911/107,649 204.51� 17,603/12,250 37.5 0.722Rat-insulin 364/262 0.36 196/129 0.19 0.714Monkey-test1 96/62 0.12 75/46 0.11 0.733Monkey-test2 415/262 0.61 247/149 0.50 0.529Fix3 3395/2070 5.77 3103/1983 6.02 0.532O�ce5 809,345/500,578 1927.4 575,224/358,523 1556.8 0.625O�ce6 > 1,000,000 > 2730 > 1,000,000 > 2640 0.667Tower-invert4 806/538 1.55 806/538 1.59 0.733Sussman-anomaly 44/26 0.05 44/26 0.06 0.917Fixa 2131/1903 2.2 2131/1903 2.34 1Test-ferry 718/457 0.65 718/457 0.71 1Table XII: Plans generated/visited and CPU time (secs) for standard ucpop with andwithout parameter domains. (� This result was obtained on a sun 10 withLucid Common Lisp; the others on a sun 20 with Allegro Common Lisp.)These results indicate that adding type constraints to operator speci�cations is notnearly as e�ective as the use of parameter domains in boosting planning e�ciency. Wediscuss this point further in the context of the second set of tests (below).Table XII summarizes the experimental results for all of the experiments that used thedefault ucpop search strategy. The table gives the number of plans generated/visited bythe planner and the CPU time (seconds) required to solve the problems.18 Note that theuse of the parameter domains gave very dramatic improvements not only in the trains do-main, but also in the strips-world domain. The rightmost column supplies \domain ratio"data, as a metric that we hoped would predict the likely e�ectiveness of using parameterdomains. The idea is that parameter domains should be e�ective to the extent that they�lter out many parameter bindings that can be reached by chaining back from individualpreconditions of an operator to the initial state. These bindings can be found by using avariant of the algorithm for propagating intersected domains that instead propagates unionsof individual domains, and comparing these union domains to the intersected domains.1918. The systems were compiled under Allegro CL 4.2, with settings (space 0) (speed 3) (safety 1) (debug0), and run on a sun 20. The CPU time includes the Lisp garbage collection (it is the time given in theoutput by ucpop).19. Actually, we do not need to explicitly propagate union domains, but can propagate (partial) bindings forone predication at a time, starting with the initial conditions. We match the predication to all possiblepreconditions, adding the constant arguments it contains to the union domains of the matched operator125

Gerevini & Schuberttrains without domains with domains Domainproblems Plans CPU sec Plans CPU sec ratioTrains1 4097/2019 13.7 297/238 1.4 0.425Trains2 17,482/10,907 80.6 1312/1065 7.16 0.425Trains3 31,957/19,282 189.8 3885/3175 25.1 0.411Table XIII: Plans generated/visited and CPU time (secs) for ucpop with and withoutparameter domains in the trains domain using the ZLIFO strategy.trains without domains with domains Domainproblems Plans CPU sec Plans CPU sec ratioTrains1 1093/597 8.1 265/194 2.3 0.425Trains2 >50,000 >607 >50,000 >534 0.425Trains3 >50,000 >655 >50,000 >564 0.411Table XIV: Plans generated/visited and CPU time (secs) for ucpop with and withoutparameter domains in the trains domain using the LCFR strategy.The \domain ratio" provides this comparison, dividing the average union domain size by theaverage intersected domain size, with averages taken over all parameters of all when-clausesof all operators.The largest speedups (e.g., for the trains problems) do tend to correlate with thesmallest domain ratios, and the smallest speedups with the largest domain ratio (unity {see the last few rows). However, it can be seen from the table that the problem di�culty (asmeasured by plans or CPU time) is much more useful than the domain ratio as a predictorof speedups to be expected when using parameter domains. Problems that generate on theorder of a million plans or more with standard ucpop tend to produce speedups by 3 ordersof magnitude, whereas the domain ratio for some of these problems (e.g., Move-boxes-1) isno better (or even worse) than for problems with much smaller speedups (e.g., Move-boxes-a, Rat-insulin, Monkey-test1, Monkey-test2). The much lower di�culty of these problemspredicts their reduced speedup. But to complicate matters, not all di�cult problems givehigh speedups (see T-of-H1 and especially O�ce5); we do not know what subtleties ofproblem structure account for these unusual cases.In our second round of experiments, we tested the e�ectiveness of the parameter domaintechnique in combination with our improved search strategy, i.e., S+OC/ZLIFO. In addi-tion, we combined S+OC with LCFR (least cost
aw selection) (Joslin & Pollack, 1994), so(or when-clause). We then �nd corresponding (partially bound) e�ects, and add any new e�ects to thelist of predications still to be propagated. A partially bound e�ect such as (P A ?x ?y) is new if thereis no identical or similar predication such as (P A ?u ?v) among the previously propagated predicationsor among those still to be propagated. 126

Accelerating Partial-Order Plannerst-trains without domains with domains Domainproblems Plans CPU sec Plans CPU sec ratioT-Trains1 3134/2183 17.2 505/416 3.4 0.425T-Trains2 5739/4325 37.3 3482/2749 27.3 0.425T-Trains3 17,931/13,134 130.4 11,962/9401 105.1 0.425Table XV: Plans generated/visited and CPU time (secs) for ucpop with and without pa-rameter domains in the \typed" trains domain using the ZLIFO strategy.t-trains without domains with domains Domainproblems Plans CPU sec Plans CPU sec ratioT-Trains1 3138/2412 31.5 1429/1157 14.5 0.425T-Trains2 >50,000 >1035 >50,000 >1136 0.425T-Trains3 >50,000 >976 >50,000 >962 0.425Table XVI: Plans generated/visited and CPU time (secs) for ucpop with and withoutparameter domains in the \typed" trains domain using the LCFR strategy.as to test for possible sensitivity of the parameter-domains technique to the precise strategyused. For the present set of tests we used a search limit of 50,000 plans generated.Once again we began by sampling some problems from the ucpop test suite, and theseinitial trials yielded results quite analogous to those for the default ucpop strategy. Weobtained no improvements for several easier problems and signi�cant improvements forharder ones (e.g., again close to a factor of 2 for Rat-insulin). Noteworthy members of thelatter category were O�ce5 and O�ce6 { recall that O�ce5 had shown little speedup withstandard ucpop and O�ce6 had been unsolvable. However, in view of the computationalexpense of testing both ZLIFO and LCFR, we then decided to narrow our focus to thetrains world. As mentioned, the advantages of this world are its inherent interest andrelative complexity.Tables XIII-XVI provide experimental results for the trains domain with the S+OC/ZLIFO strategy and the S+OC/LCFR strategy, in each case with and without parameterdomains.The results in Tables XIII and XIV show that using parameter domains can still give verysigni�cant improvements in performance, over and above those obtained through the useof better search strategies. For example, the use of parameter domains provided an 11-foldspeedup for Trains2, for the S+OC/ZLIFO strategy. In this particular problem the speedup(on all metrics) was the result of pruning 1482 plans (more than half of those generated)during the search., and recognizing 305 unsafe conditions as redundant. Evidently, thee�ect of this pruning is ampli�ed by an order of magnitude in the overall performance,because of the futile searches that are cut short. Note that the speedups for Trains1-3 are127

Gerevini & Schubertroughly comparable (within a factor of 2) to those obtained for problems in the previous setwith comparable initial di�culty (e.g., see Move-boxes-2 and Move-boxes-a in Table XII).This again points to a rather consistent correlation between problem di�culty and speedupsobtainable using parameter domains. The constant domain ratios are also compatible withthe more or less invariant speedups here, though this is of little import, given the earlierresults. For S+OC/LCFR the gains appear to be less, though the single result showinga 3.5-fold speedup provides only anecdotal evidence for such a conclusion. Trains2 andTrains3 remained too di�cult for solution by LCFR. Similar gains were observed for theS+OC/LC strategies where the best observed gain in the Trains domain was a 1.7-foldspeedup for Trains2. In any case, all results con�rm the e�ectiveness of the parameter-domains technique.Tables XV and XVI are again for the \typed" version of trains. In this case parametertyping gave modest improvements in the absence of parameter-domains, and (in contrastwith the results for Trains1 under the default search strategy) signi�cant deterioration intheir presence. While we do not know how to account for these results in detail, it seemsclear that contrary e�ects are involved. On the one hand, typing does tend to help in thatit tends to limit choices of parameter values to \sensible" ones. For example, a precondition(engine ?eng) will be satis�able only through use of *start*, and the initial state will thusconstrain ?eng to assume sensible values. On the other hand, adding type-preconditionswill tend to broaden the search space, by adding further open conditions to the
aw list.The lesson from the \typed" experiments appears to be that it is best not to supplyexplicit type constraints on operator parameters, instead using our automated method ofcalculating and updating domains to constrain parameter bindings.6. Conclusions and Further WorkWe began by exploring some simple, domain-independent improvements to search strategiesin partial order planning, and then described a method of using precomputed parameter do-mains to prune the search space. We now summarize our conclusions about these techniquesand then point to promising directions for further work.6.1 Improving SearchOur proposed improvements to search strategies were based on the one hand on a carefullyconsidered choice of terms in the A* heuristic for plan selection, and on the other on apreference for choosing open conditions that cannot be achieved at all or can be achievedin only one way (with a default LIFO prioritization of other open conditions). Since theplan re�nements corresponding to uniquely achievable goals are logically necessary, we havetermed the latter strategy a zero-commitment strategy. One advantage of this techniqueover other similar strategies is that it incurs a lower computational overhead.Our experiments based on modi�cations of ucpop indicate that our strategies can givelarge improvements in planning performance, especially for problems that are hard forucpop (and its \relatives") to begin with. The best performance was achieved when ourstrategies for plan selection and goal selection were used in combination. In practical terms,we were able to solve nearly every problem we tried from the ucpop test suite in a fractionof a second (except for Fixit, which required 38.2 seconds), where some of these problems128

Accelerating Partial-Order Plannerspreviously required minutes or were unsolvable on the same machine. This included asu�cient variety of problems to indicate that our techniques are of broad potential utility.Further, our results suggest that zero-commitment is best supplemented with a LIFOstrategy for open conditions achievable in multiple ways, rather than a generalization ofzero-commitment favoring goals with the fewest children. This somewhat surprising resultmight be thought to be due to the way in which the designer of a domain orders thepreconditions of operators; i.e., the \natural" ordering of preconditions may correlate withthe best planning order, giving a fortuitous advantage to a LIFO strategy relative to astrategy like LC.20However, some preliminary experiments we performed with randomized preconditionsfor T-of-H1 and Trains1 indicate otherwise. In 5 randomizations of the preconditions ofT-of-H1, both LC and ZLIFO were slowed down somewhat, by average factors of 2.2 (2)and 3.3 (4.2) in terms of plans expanded (CPU time used) respectively. (In both cases,S+OC was used for plan search.) This still left ZLIFO with a performance advantage ofa factor of 22 in terms of plans created and 39 in terms of CPU time. For Trains1 theperformance of LC greatly deteriorated in 2 out of 5 cases (by a factor close to 70 in termsof both plans and time), while that of ZLIFO actually improved marginally. This now leftZLIFO with an average performance advantage over LC (whereas it had been slightly slowerin the unrandomized case) { a factor of 3.3 in terms of plans and 6.7 in terms of CPU time(though these values are very unreliable, in view of the fact that the standard deviationsare of the same order as the means).Despite these results we believe that a satisfactory understanding of the dependence of
aw-selection strategies on the order of operator preconditions will require a more extensiveexperimental investigation. We are currently undertaking this work.6.2 Using Parameter DomainsWe described an implemented, tractable algorithm for precomputing parameter domains ofplanning operators, relative to given initial conditions. We showed how to use the precom-puted domains during the planning process to prune non-viable actions and bogus threats,and how to update them dynamically for maximum e�ect.The idea of using precomputed parameter domains to constrain planning was apparently�rst proposed in a technical report by Goldszmidt et al. (1994). This contains the essentialidea of accumulating domains by forward propagation from the initial conditions. Thoughthe report only sketches a single-sweep propagation process from the initial conditionsto the goals, the implemented Rockwell Planner (RNLP) handles cyclic operator graphs,repeatedly propagating bindings until quiescence, much as in our algorithm. Our algorithmdeals with the additional complexities of conditional e�ects and equalities (and in semi-automated fashion with quanti�cation) and appears to be more e�cient (Smith, 1996).Other distinctive features of our work are the method of incrementally re�ning domains20. This was suggested to us by David Smith as well as Mike Williamson. Williamson tried ZLIFO with 5randomized versions of T-of-H1, and reported a large performance degradation (Williamson & Hanks,1996). We recently ran these versions using our implementation, obtaining far more favorable results(three of the �ve versions were easier to solve than the original version of T-of-H1, while the other twoversions slowed down ZLIFO by a factor of 1.84 and 4.86 in terms of plans explored.)129

Gerevini & Schubertduring planning, the theoretical analysis of our algorithm, and the systematic experimentaltests.Another closely related study is that of Yang and Chan (1994), who used hand-suppliedparameter domains in planning much as we use precomputed domains. An interestingaspect of their work is the direct use of sets of constants as variable bindings. For instance,in establishing a precondition (P ?x) using an initial state containing (P a), (P b) and(P c), they would bind ?x to fa, b, cg rather than to a speci�c constant. They re�nethese \noncommittal" bindings during planning much as we re�ne variable domains, andperiodically use constraint satisfaction methods to check their consistency with currentEQ/NEQ constraints. They conclude that delaying variable bindings works best for problemswith low solution densities (while degrading performance for some problems with highsolution densities), and that the optimal frequency of making consistency checks depends onwhether dead ends tend to occur high or low in the search tree. Our work is distinguishedfrom theirs by our method of precomputing parameter domains, our use of speci�c bindingswhen matching initial conditions to OCs, our use of parameter domains in threat detectionand resolution, and our handling of the enriched syntax of ucpop operators as comparedsnlp operators.Judging from the examples we have experimented with, our techniques are well-suitedto nontrivial problems that involve diverse types of objects, relations and actions, and sig-ni�cant logical interdependencies among the steps needed to solve a problem. When used inconjunction with the default search strategy of ucpop, our method gave signi�cant speedupsfor nontrivial problems, reaching a speedup factor of 927 in the trains transportation plan-ning domain, and more than 1717 for the hardest strips-world problem we tried . Whencombined with our S+OC and ZLIFO search strategies, the parameter domain techniquestill gave speedups by a factor of around 10 for some trains problems. Though our im-plementation is aimed at a ucpop-style planner, essentially the same techniques would beapplicable to many other planners.We also found the parameter domain precomputations to be a very useful debuggingaid. In fact, the domain precomputation for our initial formulation of the trains worldimmediately revealed several errors. For instance, the domain of the ?eng parameter ofmv-engine turned out to contain oranges, bananas, and an OJ factory, indicating the needfor a type constraint on ?eng. (Without this, transportation problems would have beensolvable without the bene�t of engines and trains!) Another immediately apparent problemwas revealed by the parameter domains for ?city1 and ?city2 in mv-engine: the domainfor ?city1 excluded Elmira, and that for ?city2 excluded Avon. The obvious diagnosiswas that we had neglected to assert both (connected c1 c2) and (connected c2 c1) foreach track connecting two cities. Furthermore, the parameter domains can quickly identifyunreachable operators and goals in some cases. For instance, without the make-oj operator,the computed domains show that the ld-oj operator is unreachable, and that a goal like(and(oj ?oj) (at ?oj Bath)) (getting some orange juice to Bath) is unattainable (theparameter domain for ?oj will be empty).Of course, running the planner itself can also be used for debugging a formalization, butplanning is in general far more time-consuming than our form of preprocessing (especiallyif the goal we pose happens to be unachievable in the formalization!), and the trace of130

Accelerating Partial-Order Plannersan anomalous planning attempt can be quite hard to interpret, compared to a listing ofparameter domains, obtained in a fraction of a second.6.3 Further workFirst of all, some additional experimentation would be of interest, to further assess andperhaps re�ne our search strategies. Some of this experimentation might focus on threat-handling strategies, including the best general form of an attenuated UC-term in planselection, and the best way to combine threat selection with open condition selection. Thepreference for de�nite threats over open conditions used by ZLIFO does appear to be agood default according to our experience, but the TileWorld experiments indicated that are-ordering of priorities between threats and open conditions is sometimes desirable. Con-cerning the choice of a UC-related term for inclusion in the heuristic for plan selection, weshould mention that we have brie
y tried using S+OC+UCd, where UCd is the number ofde�nite threats, but did not obtain signi�cant uniform improvements.One promising direction for further development of our search strategy is to make thezero-commitment strategy apply more often by �nding ways of identifying false options asearly as possible. That is, if a possible action instance (obtained by matching an opencondition against available operators as well as against existing actions) is easily recogniz-able as inconsistent with the current plan, then its elimination may leave us with a singleremaining match and hence an opportunity to apply the zero-commitment strategy.One way of implementing this strategy would be to check at once, before acceptinga matched action as a possible way to attain an open condition, whether the temporalconstraints on that action force it to violate a causal link, or alternatively, force its causallink to be violated. In that case the action could immediately be eliminated, perhapsleaving only one (or even no) alternative. This could perhaps be made even more e�ectiveby broadening the de�nition of threats so that preconditions as well as e�ects of actionscan threaten causal links, and hence bring to light inconsistencies sooner. Note that if aprecondition of an action is inconsistent with a causal link, it will have to be establishedwith another action whose e�ects violate the causal link; so the precondition really poses athreat from the outset.Two possible extensions to our parameter domain techniques are (i) fully automatedhandling of universally quanti�ed preconditions and e�ects, disjunctions and facts in thepreprocessing algorithm; and (ii) more \intelligent" calculation of domains, by applying aconstraint propagation process to the sets of ground predications that have been matched tothe preconditions of an operator; this can be shown to yield tighter domains, though at somecomputational expense. Blum and Furst (1995) recently explored a similar idea, but ratherthan computing parameter domains, they directly stored sets of ground atoms that could begenerated by one operator application (starting in the initial state), two successive operatorapplications, and so on, and then used these sets of atoms (and exclusivity relations amongthe atoms and the actions connecting them) to guide the regressive search for a plan. Thealgorithm they describe does not allow for conditional e�ects, though this generalizationappears entirely possible. For the examples used in their tests, they obtained dramaticspeedups. 131

Gerevini & SchubertFinally, we are also working on another preprocessing technique, namely the inferenceof state constraints from operator speci�cations. One useful form of constraint is impli-cational (e.g., (implies (on ?x ?y) (not (clear ?y)))), and another is single-valuednessconditions (e.g., (on ?x ?y) may be single-valued in both ?x and ?y). We conjecture thatsuch constraints can be tractably inferred and used for further large speedups in domain-independent, well-founded planning.In view of the results we have presented and the possibilities for further speedups wehave mentioned, we think it plausible that well-founded, domain-independent planners mayyet become competitive with more pragmatically designed planners.AcknowledgementsThis work amalgamates and extends two conference papers on improving search (Schubert& Gerevini, 1995) and using computed parameter domains (Gerevini & Schubert, 1996) toaccelerate partial-order planners. The research was supported in part by Rome Lab con-tract F30602-91-C-0010 and NATO Collaborative Research Grant CRG951285. Some of thework by AG was carried out at IRST, 38050 Povo (TN), Italy, and at the CS Departmentof the University of Rochester, Rochester NY USA. The helpful comments and perceptivequestions of Marc Friedman, David Joslin, Rao Kambhampati, Colm O'Riain, Martha Pol-lack, David Smith, Dan Weld, Mike Williamson, and of Associate Editor Michael Wellmanand the anonymous reviewers are gratefully acknowledged.Appendix A (Proofs of the Theorems)Theorem 1 The find-parameter-domains algorithm is correct for computing parameterdomains of ucpop-style sets of operators (without quanti�cation, disjunction, or facts),initial conditions, and (possibly) goal conditions.Proof. As a preliminary observation, the intersected parameter domains computed it-eratively by the algorithm eventually stabilize, since they grow monotonically and thereare only �nitely many constants that occur in the initial conditions and in operator e�ects.Thus the algorithm terminates.In order to prove correctness we need to show that if there exists a valid sequenceA0A1:::An of actions (operator instances) starting with A0 = *start*, and if An is aninstance of the operator Op, then the bindings that the parameters of Op received in instanceAn are eventually added to the relevant intersected domains of Op (where \relevant" refersto the when-clauses of Op whose preconditions are satis�ed at the beginning of An). Weprove this by induction on n.If n = 0, then An = A0 = *start*, so there are no parameters and the claim is triviallytrue.Now assume that the claim holds for n = 1; 2; :::; k. Then consider any operator instanceAk+1 that can validly follow A0A1:::Ak, i.e., such that Ak+1 is an instance of an operatorOp whose primary preconditions, possibly along with some secondary ones, are satis�ed atthe end of A0A1:::Ak. Let p be such a precondition, and write its instance in Ak+1 as(P c1c2 ..). Then (P c1 c2..) must be an e�ect of some Ai, where 0 � i � k. If i = 0132

Accelerating Partial-Order Plannersthen (P c1c2 ..) holds in the initial state, and hence this predication is propagated andsuccessfully matched to p in the initial propagation phase of find-parameter-domains. Ifi > 0, then Ai is an instance of some operator Op' and (P c1c2 ..) is the correspondinginstance of some e�ect (P t1 t2 ..) of Op', where each tj is either a parameter of Op' or isequal to cj. Diagrammatically,A0 . . . Ai . . . Ak Ak+1j jOp' Ope�ect (P t1 t2 ..) ����! precond p(P c1c2 ..) (P c1c2 ..)By the induction assumption, the bindings of the parameters in Ai are eventually addedto the relevant intersected domains of Op'. This also implies that the intersected domainsof Op' become nonempty, and so the e�ect (P t1 t2 ..) is eventually propagated, whereany variables among the tj have the corresponding constant cj in the relevant intersecteddomain. Consequently, much as in the case i = 0, e�ect (P t1 t2 ..) is successfully matchedto precondition p of Op at some stage of the propagation. Given these observations, it isclear that for both i = 0 and i > 0, p will be marked \matched" in Op eventually, andfurthermore any parameters of Op that occur in p will have the bindings resulting fromthe uni�cation with (Pc1 c2 ..) added to the appropriate individual domains associatedwith p.This argument applies to all preconditions of Op satis�ed in its instance Ak+1, in partic-ular to all the primary preconditions. Since these are all marked \matched", the algorithmwill compute intersected domains for all Op-parameters that occur in them. In view of theindividual domain updates just con�rmed, and since individual domains grow monotoni-cally, these intersected domains will eventually contain the parameter bindings of Ak+1.For instance, if a parameter ?x of Op occurs in a primary precondition and is bound toc in Ak+1, we have shown that c will eventually be added to the intersected domain of?x associated with the primary when-clause of Op. If a parameter does not occur in theprimary preconditions of Op, then its intersected domain is set to T at the outset, and thisimplicitly contains whatever binding the parameter has in Ak+1.A very similar argument can be made for any secondary when-clause of Op whose pre-conditions are also satis�ed for Ak+1. Again, all preconditions of the secondary clause,as well as the primary preconditions, will be marked \matched", and so for any parameteroccurring in these combined preconditions, its intersected domain (relative to the secondaryclause) will be updated to include its binding in Ak+1. For parameters of Op not occurringin any of these preconditions, the intersected domains will again be set to T initially, andthis implicitly contains any possible binding. Finally, we note that since the intersecteddomains relative to both primary and secondary when-clauses grow monotonically, the aug-mentations of intersected domains we have just con�rmed is permanent. (In the case ofT-domains, these remain T.)We leave some additional details concerned with the ultimate use of EQ-preconditions infind-parameter-domains to the reader. 2133

Gerevini & SchubertTheorem 2Algorithm find-parameter-domains can be implemented to run in O(mnpne(np+ne)) time and O(mnp) space in the worst case, where m is the number of constants in theproblem speci�cation, np is the combined number of preconditions for all operators (andgoals, if included), and ne is the combined number of operator e�ects (including those of*start*).Proof. The time complexity of find-parameter-domains can be determined as the sumof (1) the cost of all the uni�cations performed, (2) the costs of all the individual domainupdates attempted, and (3) the cost of all the intersected domain updates attempted. Weestimate an upper bound for each of these terms under the following assumptions:(a) the uni�cation of any operator e�ect with any operator precondition requires constanttime;(b) there is a �xed upper bound on the number of arguments that a predicate (in aprecondition or e�ect) can have. It follows that O(ne) is an upper bound on the totalnumber of intersected domains;21(c) individual domains and intersected domains are stored in hash tables (indexed by theconstants in the domain). So, we can check whether an element belongs to a particular(individual or intersected) domain, and possibly add it to that domain essentially inconstant time. Furthermore for each individual and intersected domain, appropriatedata structures are used to keep track of the (possibly empty) set of new elementsthat have been added to the domain in the last update attempt.(1) For any particular intersected domain of any particular operator, there can be atmost m updates of this domain. Each such update causes all of the e�ects of the when-clause to which the intersected domain belongs to be propagated. An upper bound on thisnumber is ne. Each propagated e�ect may then be uni�ed with O(np) preconditions. Thusthe O(m) updates of an intersected domain may cause O(mnenp) uni�cations. Hence from(b), the overall number of uni�cations caused by the propagation of intersected domainsto individual domains is O(mn2enp). To these uni�cations we have to add those which areinitially performed between the e�ects of *start* and the preconditions of the operators.There are O(mnp) such uni�cations, and so they do not increase the previous upper boundon the number of uni�cations. Thus, from (a), the cost of all of the uni�cations performedby the algorithm is O(mn2enp).(2) Each uni�cation is potentially followed by an attempt to update the individualdomain(s) of the relevant parameter(s). However, with assumption (c) the number of suchattempts is limited to those where the set of new elements in the intersected domain(s)of the unifying e�ect is (are) not empty. Furthermore, when we attempt to update anindividual domain DI by performing the union of a relevant intersected domain Di and DI ,only the subset of the new elements of Di need to be added to DI (if they are not alreadythere). Thus, since any intersected domain grows monotonically, from (b) and (c) we havethat the overall cost of all the update attempts for one particular individual domain caused21. Note that if a parameter appears in a precondition of a when-clause, but in none of its e�ects, then theintersected domain of the parameter will not be propagated by the algorithm. Hence in implementingthe algorithm we can ignore such parameters. 134

Accelerating Partial-Order Plannersby one particular e�ect is O(m). But in the worst case one e�ect can unify with all theO(np) preconditions of all the operators, yielding an overall bound on all of the attemptsto update the individual domains of O(mnenp).(3) There can be an attempt to update a particular intersected domain for each relevantindividual domain update, and each relevant individual domain can be updated O(m) times(because the domains grow monotonically). Therefore from (b) there are at most O(mnp)attempts to update one intersected domain. By (c) the total cost of these attempts isO(mn2p), because checking whether a new element of an individual domain belongs to allthe other O(np) relevant individual domains takes O(np) time. So, since from (b) thereare no more than O(ne) intersected domains, the total cost incurred by the algorithm forupdating all of the intersected domains is O(mnen2p).It follows that the time complexity of find-parameter-domains is:O(mn2enp) + O(mnenp) + O(mnen2p) = O(mnpne(np + ne)).The space complexity bound is easily derived from (b), and from the fact that for eachwhen-clause at most O(m) constants are stored. 2ReferencesAllen, J., & Schubert, L. (1991). The TRAINS project. Tech. rep. 382, Dept. of ComputerScience, Univ. of Rochester, Rochester, NY. Also slightly revised as Language anddiscourse in the TRAINS project, in A. Ortony, J. Slack, and O. Stock (eds.), Com-munication from an Arti�cial Intelligence Perspective: Theoretical Springer-Verlag,Heidelberg, pp. 91-120.Allen, J., Schubert, L., Ferguson, G., Heeman, P., Hwang, C., Kato, T., Light, M., Martin,N., Miller, B., Poesio, M., & Traum, B. (1995). The TRAINS project: A case studyin building a conversational planning agent. Experimental and Theoretical Arti�cialIntelligence, 7, 7{48.Barrett, A., Golden, K., Penberthy, S., & Weld, D. (1994). UCPOP user's manual. Tech.rep. 93-09-06, Dept. of Computer Science and Engineering, University of Washington,Seattle, WA 98105.Blum, A., & Furst, M. (1995). Fast planning through planning graph analysis. In Proceedingsof the Fourteenth International Joint Conference on Arti�cial Intelligence (IJCAI-95),pp. 1636{1642 Montreal, CA. Morgan Kaufmann.Chapman, D. (1987). Planning for conjunctive goals. Arti�cial Intelligence, 32 (3), 333{377.Currie, K., & Tate, A. (1991). O-Plan: The open planning architecture. Arti�cial Intelli-gence, 51 (1).Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of theoremproving to problem solving. Arti�cial Intelligence, 2, 189{208.George�, M., & Lansky, A. (1987). Reactive reasoning and planning. In Proceedings of theSixth National Conference of the American Association for Arti�cial Intelligence, pp.677{682 Seattle, WA. Morgan Kaufmann.135

Gerevini & SchubertGerevini, A., & Schubert, L.K. (1995). Computing parameter domains as an aid to planning.In Proc. of the 3rd Int. Conf. on Arti�cial Intelligence Planning Systems (AIPS-96),pp. 94{101 Menlo Park, CA. The AAAI Press.Goldszmidt, M., Darwiche, A., Chavez, T., Smith, D., & White, J. (1994). Decision-theoryfor crisis management. Tech. rep. RL-TR-94-235, Rome Laboratory.Green, C. (1969). Application of theorem proving to problem solving. In Proceedings ofthe First International Joint Conference on Arti�cial Intelligence (IJCAI-69), pp.219{239.Joslin, D. (1995). Personal communication.Joslin, D., & Pollack, M. (1994). Least-cost
aw repair: a plan re�nement strategy forpartial-order planning. In Proceedings of the Twelfth National Conference of theAmerican Association for Arti�cial Intelligence (AAAI-94), pp. 1004{1009 Seattle,WA. Morgan Kaufmann.Kambhampati, S., Knoblock, C. A., & Yang, Q. (1995). Planning as re�nement search: Auni�ed framework for evaluating design tradeo� in partial-order planning. Arti�cialIntelligence. Special Issue on Planning and Scheduling, 76 (1-2).Korf, R. (1992). Linear-space best-�rst search: Summary of results. In Proceedings ofthe Tenth National Conference of the American Association for Arti�cial Intelligence(AAAI-92), pp. 533{538.McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. In Proceedingsof the Ninth National Conference on Arti�cial Intelligence (AAAI-91), pp. 634{639Anheim, Los Angeles, CA. Morgan Kaufmann.Nilsson, N. (1980). Principles of Arti�cial Intelligence. Tioga Pub. Co., Palo Alto, CA.Penberthy, J., & Weld, D. (1992). UCPOP: A sound, complete, partial order plannerfor ADL. In Nebel, B., Rich, C., & Swartout, W. (Eds.), Proceedings of the ThirdInternational Conference on Principles of Knowledge Representation and Reasoning(KR92), pp. 103{114 Boston, MA. Morgan Kaufmann.Peot, M. A., & Smith, D. E. (1993). Threat-removal strategies for partial-order planning.In Proceedings of the Eleventh National Conference of the American Association forArti�cial Intelligence (AAAI-93), pp. 492{499 Washington, D.C. Morgan Kaufmann.Schubert, L., & Gerevini, A. (1995). Accelerating partial order planners by improvingplan and goal choices. In Proc. of the 7th IEEE Int. Conf. on Tools with Arti�cialIntelligence, pp. 442{450 Herndon, Virginia. IEEE Computer Society Press.Smith, D. E., & Peot, M. A. (1993). Postponing threats in partial-order planning. InProceedings of the Eleventh National Conference of the American Association for Ar-ti�cial Intelligence (AAAI-93), pp. 500-506 Washington, D.C. Morgan Kaufmann.Smith, D. E. (1996). Personal communication.136

Accelerating Partial-Order PlannersSrinivasan, R., & Howe, A. (1995). Comparison of methods for improving search e�ciencyin a partial-order planner. In Proceedings of the Fourteenth International Joint Con-ference on Arti�cial Intelligence (IJCAI-95), pp. 1620{1626.Weld, D. (1994). An introduction to least commitment planning. AI Magazine, 15 (4),27{62.Wilkins, D. (1988). Practical Planning: Extending the Classical AI Planning Paradigm.Morgan Kaufmann, San Mateo, CA.Williamson, M., & Hanks, S. (1995). Flaw selection strategies for value-directed planning. InProceedings of the Third International Conference on Arti�cial Intelligence PlanningSystems, pp. 237{244.Yang, Q., & Chan, A.Y.M. (1994). Delaying variable binding commitments in planning. InProceedings of the Second International Conference on Arti�cial Intelligence PlanningSystems, pp. 182{187.

137

