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ABSTRACT

We explore the problem of mapping soundscapes, that is,
predicting the types of sounds that are likely to be heard at
a given geographic location. Using a novel dataset, which
includes geo-tagged audio and overhead imagery, we develop
an approach for constructing an aural atlas, which captures the
geospatial distribution of soundscapes. We build on previous
work relating sound to ground-level imagery but incorporate
overhead imagery to overcome the limitations of sparsely dis-
tributed geo-tagged audio. In the end, all that we require to
construct an aural atlas is overhead imagery of the region of
interest. We show examples of aural atlases at multiple spatial
scales, from block-level to country.

Index Terms— multimodal, mapping, audio, satellite

1. INTRODUCTION

The visual appearance of a place and its soundscape, the total-
ity of sounds one hears in a location, are inextricably linked.
For example, in an urban environment, such as on a busy
street corner, you can expect to hear honking, people talking,
and, potentially, a siren. In contrast, in a rural environment,
such as a forest, you could expect to hear animals chattering,
leaves rustling, and perhaps the sound of rushing water. Given
a photograph, humans have the ability to imagine the sounds
they might hear in that moment.

Studies have shown that environmental noise affects so-
cial behavior [1], among other things. Basner et al. [2] sum-
marize research related to noise exposure, including auditory
and non-auditory health effects such as reduced cognitive per-
formance and sleep disturbance. Models capturing the rela-
tionship between sound and specific locations could be used,
for example, to help people decide where to live, or where to
place sound barriers.

The objective of our work is to develop methods for un-
derstanding the types of sounds that could be heard at a spe-
cific geographic location. Several recent works have taken ad-
vantage of the synergy between sound and visual appearance
to learn better representations. Aytar et al. [3] leverage two
million unlabeled videos to learn a state-of-the-art sound rep-
resentation for acoustic classification. Owens et al. [4] incor-
porate ambient sounds as a supervisory signal in order to learn

Fig. 1. We propose a multimodal approach for relating over-
head image appearance with sounds in order to map sound-
scapes. (left) Overhead image; (right) Similar ground-level
images and sounds output by our method.

visual representations. Most similar to our work, Aiello et
al. [5] proposed a method for constructing sound maps by us-
ing sound-related image tags on a large set of geo-referenced
ground-level imagery. This method requires high-quality im-
age tags, which aren’t always available, and performs poorly
when ground-level imagery is sparsely distributed, such as
away from major tourist landmarks.

We take a different approach and explore the problem of
generating a location-dependent sound model. Our approach
builds upon recent advances in both ground-level and over-
head image understanding. A key element of our approach is
that we learn a joint feature representation between sound,
ground-level, and overhead image appearance (Fig. 1). A
unique advantage of our approach is that it enables us to gen-
erate a location-dependent sound map (or an aural atlas) using
only overhead imagery, which is available at most locations.

2. CROSS-VIEW AURAL MAPPING

The objective of our work is to construct a map of the aural
environment, which we represent as a conditional probability
distribution, P (s|l), where l is the geographic location and s
represents the sound. In this work, we explore a novel ap-



Fig. 2. An overview of our network architecture.

proach, conditioning our aural map on the overhead imagery
of a location, P (s|I(l)), where I(l) is an overhead image of
location l. This is a promising approach because many visual
features that relate sound to location are visible from above.
Furthermore, high-resolution overhead imagery is available
across the globe and is updated frequently. We further factor-
ize the distribution as:

P (s|I(l)) =
∑
c

P (s|c)P (c|I(l)),

where c represents a cluster of related sounds.
Our approach consists of three phases: learning a suitable

feature space, clustering sounds, and learning to predict a dis-
tribution over sound clusters from the overhead imagery using
a convolutional neural network.

2.1. Cross-View Sound Dataset

To support our work, we constructed a dataset of geo-tagged
sounds and co-located overhead images, which we refer to as
the Cross-View Sound (CVS) dataset. We collected 23,308
geo-tagged audio files from FreeSound1, a popular crowd-
sourced repository. For each audio file, we downloaded the
corresponding overhead image from Bing Maps (scale 0.60
m/pixel). Analysis of the geolocation associated with the
sound files reveals that the sounds are recorded from around
the world, with more sounds recorded in Europe and U.S than
other parts of the world. Further, examining the tags associ-
ated with the sound files shows that the sounds cover a wide
range of human and natural aspects. For our experiments,
we filtered out sounds that were shorter than 2 seconds and
sounds for which there was no overhead imagery available
at the selected scale. This results in 15,773 sounds and their
corresponding overhead images.

1https://freesound.org

2.2. Learning a Shared Feature Space

In this phase, our goal is to learn a shared feature representa-
tion that is suitable for our task. Specifically, we want a fea-
ture representation that can jointly describe audio and over-
head imagery. To do this, we propose a convolutional neu-
ral network (CNN) architecture that relates sounds with co-
located overhead images. Our approach builds on recent work
that targets these two subproblems individually. An overview
of our architecture is shown in Fig. 2.

To extract audio features, we use SoundNet [3], a deep
convolutional architecture for sound recognition, trained by
transferring knowledge from existing visual recognition net-
works. To train SoundNet, images from unlabeled videos are
passed through the Places network [6] (while different Places
models are available, we always refer to the one used to train
SoundNet), and the output distributions are used as the target
label for a network that takes as input the corresponding audio
file. Given an audio file, the output of SoundNet is a distribu-
tion over 401 visual scene categories. The resulting network
performs remarkably well, despite being trained without any
manually annotated audio files.

To learn the overhead image feature representation, we
use a multimodal training approach similar to SoundNet
and Workman et al. [7]. Specifically, we learn to predict a
distribution over ground-level scene categories from over-
head imagery. Each ground-level image is labeled using
the Places network [6], generating a distribution over 401
scene categories. We then train a VGG-16 [8] network to
predict these distributions using only the overhead image,
minimizing the KL-divergence. We trained the network on
the CVUSA dataset [7], which contains approximately 1.5
million geo-tagged pairs of overhead and ground-level im-
ages. The network is initialized to the weights of the Places
network, and optimized using Adam with learning rate of
0.001 for 5 epochs.

This process results in a shared feature representation
that allows the direct comparison of three different modal-
ities: audio, ground-level imagery, and overhead imagery.
We could, for example, use an image retrieval approach to
identify sounds related to an overhead image. The problem
with this approach is that the sounds close to the overhead
image in the feature space will all be similar, and therefore
potentially not representative of the diversity of sounds one
could hear in a particular area. To overcome this, we intro-
duce a clustering approach to group sounds, which we then
use to map soundscapes.

2.3. Clustering Sounds

We group the sounds into a discrete set of clusters using hi-
erarchical clustering [9]. For a given image-sound pair, we
extract the predicted distributions over the 401 scene cate-
gories for each modality and concatenate them to form an
802-dimensional vector. Then, this concatenated representa-

https://freesound.org


Fig. 3. The model architecture for predicting a distribution
over sound clusters from an overhead image.

tions is used as input for clustering. The result of this process
is a set of clusters C = c1, . . . , ck. Finally, we filter out small
clusters (less than 500 sounds), leaving 10 clusters. In the
following section, we describe our process for estimating the
conditional distribution over sound clusters for a given loca-
tion.

2.4. Predicting Sound Clusters from Overhead Imagery

We assign each sound to a unique cluster and treat the cluster
assignment, ci, as the label of a given location, li. For each
location, we obtain the co-located overhead image, I(li), and
train a CNN to predict the sound cluster, ci, from the image.
We fine-tune the network described in Section 2.2, adding a
fully connected layer at the end with ten outputs (Fig. 3). We
minimize the cross-entropy loss using Adam with a learning
rate of 0.001 for 20 epochs. We now have all of the compo-
nents of our model and can use P (c|I(l)) to visualize sound-
scapes.

3. EXPERIMENTS

We evaluated our approach both quantitatively and qualita-
tively using a TensorFlow [10] implementation. We begin
with an analysis of the shared feature space.

3.1. How good is our feature space?

For a given overhead image, we extract the output distribu-
tion over scene categories and identify the closest sounds
in CVS and the closest ground-level images in CVUSA,
using KL-divergence. Several qualitative examples are
shown in Fig. 1. The leftmost column shows the overhead
image and the right columns show the top three ground-
level images above the top three sounds. For example, in
the bottom row, the overhead image is of a lake, and the
three closest ground-level images appear to be captured
on or near a lake. The results are similar when listen-
ing to the closest sounds; in Fig. 1 (top) the most simi-
lar sound contains people cheering. The predicted sounds,
dataset, and more results will be made available online at
http://cs.uky.edu/˜salem/audio-mapping/.

3.2. What is the best way to cluster?

We compare our approach for clustering the sounds against a
baseline approach using only sound features. As described in
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Fig. 4. Given an overhead image (top), our model outputs a
distribution over sound clusters (bottom).

Table 1. Quantitative performance of different networks.
Network Precision Recall F1-score

sound 0.24 0.19 0.19
joint 0.51 0.34 0.36

Section 2.4, we train two models on the two different cluster-
ing approaches. For evaluation, we split the CVS dataset into
90% training and 10% testing. The resulting test set contains
1,578 sounds and corresponding overhead images.

For a given overhead image, each model outputs a proba-
bility distribution over the sound clusters. The precision, re-
call and F1-score for these two models are shown in Table
1. The model that was trained on clusters generated from
joint features achieved better performance compared to the
model trained on sound features. The superior performance
can be attributed to the fact that the clustering approach based
on joint features takes into account the semantic relation be-
tween overhead images and the corresponding sounds. Fig. 4
shows the output distributions over the 10 clusters for two test
images.

3.3. Visualizing An Aural Atlas

Using the trained CNN model to predict a distribution over
sound clusters from an overhead image enables us to construct
sound maps at various spatial scales: block level, city level,
and country level.

Block level: Consider the overhead image on the left
of Fig. 5 which contains beach, water, roads, and buildings.
Clearly the sounds at these places would be different. For
every pixel in the image, we downloaded the corresponding
overhead image and used our network (Section 2.4) to predict
the distribution over sound clusters. We show the results of
our approach in Fig. 5 (right), as a per-pixel labeling where
the color represents the most likely sound cluster (e.g., blue =

http://cs.uky.edu/~salem/audio-mapping/


Fig. 5. Block-level audio mapping: (left) An overhead image
of a small geographical region on Miami beach. (right) A
per-pixel labeling of sound clusters.

Fig. 6. City-level audio mapping: (left) An overhead image
covering New York City. (right) A per-pixel labeling of sound
clusters.

water-related sounds and orange = traffic sounds). The color
coding is the same for the next two spatial scales.

City level: Here we apply the same technique to a larger
geographic area. Fig. 6 shows the aural atlas for a portion of
New York City. Note how the majority of the urban areas are
colored orange and the water areas are dark blue.

Country level: Finally, we demonstrate the results of our
method at the country level. We used 500,000 overhead im-
ages randomly sampled from the CVUSA dataset and ex-
tracted the sound cluster prediction with our trained model.
Fig. 7 shows the results. Note the orange regions covering the
major metropolitan areas.

4. CONCLUSION

We created a location-dependent model of sound conditioned
on overhead imagery. We showed how our model could be
used for sampling a set of sounds that you would hear at a
given location and to generate maps of soundscapes at varying
spatial scales. To the best of our knowledge, our work is the
first to model the relationship between overhead imagery and
sound. In the future, we will extend our work to include time,
as the sounds you might hear at a location are highly time
dependent.
Acknowledgments We gratefully acknowledge the support
of an NSF CAREER award (IIS-1553116).

Fig. 7. Country-level audio mapping: visualizing the sound
clusters over USA. Gaps (white) are regions where the
CVUSA dataset does not have imagery.
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