
CS 485 Systems Programming

1

Compilation, Disassembly, and Profiling
(in Linux)

CS 485: Systems Programming
Spring 2016

Instructor:
Neil Moore

CS 485 Systems Programming

2

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c
 Compile with command: gcc –O1 p1.c p2.c -o p
 Use basic optimizations (-O1)
 Put resulting binary in file p

CS 485 Systems Programming

3

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c
 Compile with command: gcc –O1 p1.c p2.c -o p
 Use basic optimizations (-O1)
 Put resulting binary in file p

Can stop the
compilation
process at
any stage.

CS 485 Systems Programming

4

Invoking the compiler
 We will use the Gnu command line compilers

 gcc – compiles C programs
 g++ - compiles C++ programs (and C programs)

 Useful command line options
 -o filename

 Defines the output filename
 Example: gcc –o hello hello.c

– will create an executable file named “hello”
 -E

 Preprocess only – (the same as running the cpp program)
 Example: gcc –E hello.c > hello.i

– Will run the preprocessor and process header files to create “hello.i”
 -c

 Create an object file (.o) – i.e. Compile/Assemble, but do not link
 Example: gcc –c hello.c

– Will create an object file called hello.o
 -S

 Create an assembly language file (.s) – i.e., Compile, but do not assemble
 Example: gcc –S hello.c

– Will create an assembly language file called “hello.s”

CS 485 Systems Programming

5

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c
 Compile with command: gcc –O1 p1.c p2.c -o p
 Use basic optimizations (-O1)
 Put resulting binary in file p

Information is
lost at each
step of the
compilation
Process.

CS 485 Systems Programming

6

Compiling Into Assembly
C Code
 int triplesum(int x, int y)
{
 int t = x+y;
 return 3*t;
}

Generated IA32 Assembly
 triplesum:

addl %edi, %esi
 leal (%rsi,%rsi,2), %eax
 ret

Obtain with command

gcc –O1 -S tsum.c

Produces file tsum.s

Also some directives like
“.cfi_startproc”
(used for debugging), and
labels like “.LFB0:”

Upon entry:
 x stored in %edi register
 y stored in %esi register
Then:
 t replaces y in %esi
 (%rsi is 64-bit %esi)
 return value goes to %eax

For example:
Variable names are lost
Parameters are lost

CS 485 Systems Programming

7

Code for sum
 0000 <triplesum>:
 0x01
 0xfe
 0x8d
 0x04
 0x76
 0xc3

Object Code

 Assembler
 Translates .s into .o
 Binary encoding of each instruction
 Nearly-complete image of executable code
 Missing linkages between code in different

files

 Linker
 Resolves references between files
 Combines with static run-time libraries

 E.g., code for malloc, printf
 Some libraries are dynamically linked

 Linking occurs when program begins
execution

• Total of 6 bytes
• Each instruction here

is 1, 2, or 3 bytes (but
can be much longer)

• Placeholder address
0x0000; actual
address assigned by
linker.

Just binary bytes. Most
assembly language is lost

CS 485 Systems Programming

8

Invoking the compiler
 We will use the Gnu command line compilers

 gcc – compiles C programs
 g++ - compiles C++ programs (and C programs)

 Useful command line options
 -o filename

 Defines the output filename
 Example: gcc –o hello hello.c

– will create an executable file named “hello”
 -E

 Preprocess only – (the same as running the cpp program)
 Example: gcc –E hello.c > hello.i

– Will run the preprocessor and process header files to create “hello.i”
 -c

 Create an object file (.o) – i.e. Compile/Assemble, but do not link
 Example: gcc –c hello.c

– Will create an object file called hello.o
 -S

 Create an assembly language file (.s) – i.e., Compile, but do not assemble
 Example: gcc –S hello.c

– Will create an assembly language file called “hello.s”
 -g

 Add symbol information to the file
 Useful when debugging and disassembling programs

 -pg
 Add profiling information to the file
 Useful when profiling performance

 -Olevel
 Optimize the code using the specified level’s optimizations
 Level 0 is the fewest optimizations, Level 3 is the most optimizations
 Level g (-Og) optimizes as much as possible without hurting debugging.
 Example: gcc –O3 hello.c

CS 485 Systems Programming

9

Profiling Code
 Compile with the –pg option to gcc
 gprof – commonly installed and used profiling tool for

unix-based systems
 Valgrind – more advanced tool that also comes with

graphical user interfaces to visualize a program’s
performance and call graph

CS 485 Systems Programming

10

Gprof concepts
 Step 1: Add profiling information to the program
 gcc –pg –o myprog myprog.c

 Step 2: Run the program to create gmon.out (profile info)
 ./myprog

 Step 3: Analyze the performance information
 View time spent in each procedure

 gprof –p ./myprog
 View call graph

 gprof –q ./myprog

CS 485 Systems Programming

11

Disassembling Code
 There are a variety of tools that can be used to look at compiled

code.
 Some are useful for seeing the assembly language

code/instructions
 objdump -d
 gdb – using the disassemble command

 Some provide information about the data/variables
 nm

 Some are basics tools that can give hints about what is in the file
 strings
 od

 Some are graphical front ends
 dissy

CS 485 Systems Programming

12

Disassembled

Disassembling Object Code

 Disassembler
objdump –d filename

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

000000000040055d <triplesum>:
 40055d: 01 fe add %edi,%esi
 40055f: 8d 04 76 lea (%rsi,%rsi,2),%eax
 400562: c3 ret

CS 485 Systems Programming

13

Disassembled

Dump of assembler code for function triplesum:
0x..40055d <+0>: add %edi,%esi
0x..40055f <+2>: lea (%rsi,%rsi,2),%eax
0x..400562 <+5>: ret

Alternate Disassembly

 Within gdb Debugger
 First run “gdb filename”
 Then inside gdb type “disassemble sum”

 Disassemble procedure
 x/6xb sum

 Examine the 6 bytes starting at sum, as hexadecimal

Object
 0x40055d:
 0x01
 0xfe
 0x8d
 0x04
 0x76
 0xc3

	Compilation, Disassembly, and Profiling�(in Linux)��CS 485: Systems Programming�Spring 2016
	Turning C into Object Code
	Turning C into Object Code
	Invoking the compiler
	Turning C into Object Code
	Compiling Into Assembly
	Object Code
	Invoking the compiler
	Profiling Code
	Gprof concepts
	Disassembling Code
	Disassembling Object Code
	Alternate Disassembly

