Logic Programming with Infinite Sets

Douglas Cenzer (cenzer@ufl.edu)
University of Florida

Jeffrey B. Remmel (jremmel@ucsd.edu)
University of California at San Diego

Victor W. Marek (marek@cs.uky.edu)
University of Kentucky

December 10, 2004

Abstract. Using the ideas from current investigations in Knowledge Representation
we study the use of a class of logic programs for reasoning about infinite sets. Our
programs reason about the codes for various infinite sets. Depending on the form of
atoms allowed in the bodies of clauses we obtain a variety of completeness results
for various classes of arithmetic sets of integers.

Keywords: nonmonotonic logic, logic programming

68T27: 03B70

1. Introduction

The motivation for this paper comes out of recent progress in logical
foundations of Artificial Intelligence. In particular, it is concerned with
recent advances in the area of Knowledge Representation. In the past
few years, there has been significant progress in the theory and practice
of Logic Programming. In particular, a whole new area called Answer
Set Programming (ASP) [4] has arisen which can be viewed as a fu-
sion of Logic Programming with Stable Model Semantics (SLP) and
satisfiability (SAT). Answer Set Programming has emerged as both
a theoretical and practical basis for the development of new genera-
tion of systems that are solidly grounded in the theory of Computer
Science and capable of handling practical search problems arising in
applications. The current generation of ASP systems such as smodels,
dlv, cmodels and ASSAT [34, 39, 20, 3, 28], which uses both the native
techniques of Logic Programming and the technology developed in SAT
[32, 23], carry a lot of promise. Moreover, new types of constraints are
introduced that allow for a more compact representation of problems
[36, 22]. In such systems, the task of the programmer becomes easier
because of the effort spent by the back-end processing engines.

The main purpose of this paper is to develop some extensions of
the current ASP formalism that allows one to reason about infinite

© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

amaiO5.tex; 17/03/2005; 13:52; p.1

2 Cenzer et al.

sets. Since one cannot directly represent infinite sets, the key idea is
to use recursion-theoretic techniques to reason about various types of
indices (i.e. codes) of finite, recursive and recursively enumerable (r.e.)
sets. In particular, we develop a new extension of Logic Programming,
called Extended Set Based (ESB) Logic Programming, which allows
constraints expressed in terms of such indices.

These new types of constraints are introduced below. However, we
first recall the basic definitions of answer set programming and some
of its recent extensions such as logic programming with weight and
cardinality constraints [34] and set constraint logic programming [30].

A logic programming clause is a construct of the form

C=p—aqi,...,qm,not ri,...,not r,
where p,q1,...,qm,71,- - -,y are atoms. A logic program is a set of logic
programming clauses. The atoms q1, . .., gm, not 1, ..., not r, form the

body of C and the atom p is its head. We say that a set of atoms M
satisfies an atom a if a € M and that M satisfies not a if a ¢ M. We
say that a set of atoms M is a model of a clause C' if either M does
not satisfy the body of C' or M satisfies the head of C'. Finally we say
that M is a model of a program P if M is model of all the clauses in
P.

The clauses C' where n = 0 are called Horn clauses. A program
entirely composed of Horn clauses is called a Horn program and a Horn
program always has a least model. It is the intended semantics of such
a program. For programs with bodies containing the negation operator
not, we will use the stable model semantics. Following [21], we define
a stable model of the program as follows. Assume M is a collection
of atoms. The Gelfond-Lifschitz reduct of P by M is a Horn program
arising from P by first eliminating those clauses in P which contain
not r with r € M. In the remaining clauses, we drop all negative literals
from the body. The resulting program G L, (P) is a Horn program. We
call M a stable model of P if M is the least model of GLj/(P). Thus
there are four steps are involved in computation of a stable model.

Step 1. Guess a candidate set of atoms M.

Step 2. Compute the reduced program GLy;(P).
Step 3. Compute the least model N of GLy/(P).
Step 4. Test if M coincides with V.

We note that for a Horn program P, there is a unique stable model,
namely, the least model of P.

amaiO5.tex; 17/03/2005; 13:52; p.2

Programming with Infinite Sets 3

It is the general consensus of the Knowledge Representation com-
munity that stable models are the intended models of logic programs.
Once such a consensus emerged, it was natural for both theoreticians
and logicians to study various complexity issues associated with stable
models of logic programs. There has been extensive effort of the com-
munity to investigate both the theoretical issues associated with stable
models and the practical algorithms for processing.

The stable models of logic programs that contain function symbols
can be quite complex. Recall that the least model of a Horn program P
is recursively enumerable in P. Thus the least model of a recursive Horn
program is recursively enumerable. Starting with [2] and continuing
with [5] and [29], a number of results showed that the stable models of
logic programs that allow function symbols can be exceedingly complex,
even in the case where the program has a unique stable model. For
example, Marek, Nerode and Remmel [29] showed that there exist finite
predicate logic programs which have stable models but which have no
hyperarithmetic stable model. While these results may at first glance
appear negative, they had a positive effect in the long run since they
forced researchers and designers to limit themselves to cases where
programs can be actually processed. The effect was that processing
programs (called solvers) tended to focus on finite programs that do
not admit function symbols.

The designers of the solvers have also focused on the issues of both
improving processing of the logic programs (i.e. searching for a stable
model) and improving the use of logic programs as a programming
language. The latter task consists of extending the constructs available
to the programmer to make programming easier and more readable.
For example, various researchers discovered that it was possible to
introduce meaningful extensions to the logic programming syntax and
yet have such extensions be processed in a manner which is entirely
analogous to the processing currently employed in case of logic pro-
grams proper. We shall briefly describe two such extensions which
are particularly relevant to this paper, namely logic programming with
weight and cardinality constraints(CC-logic programs) [36, 35] and set
constraint programming (SC-logic programs) [30].

Let w denote the set {0,1,2,...} of natural numbers. Then a car-
dinality constraint atom (CC-atom) is a constraint of the form kX]
where X is a finite set of atoms and &k and [are elements of w U {o0}
such that & < |X| and k < [. The meaning of such an atom is that
a putative model M satisfies kX[, written M = kXI, if and only if
kE < |M N X| <. CC-atoms are special cases of more general weight
constraint atoms. That is, suppose that we have some weight function
wt on the set of literals over X, then we say that a model M satisfies

amaiO5.tex; 17/03/2005; 13:52; p.3

4 Cenzer et al.

a weight constraint | < X < wu if and only if

1< Z wt(p) + Z wt(not p)| < u.

peMNX peX—-M

Both CC-atoms and weight constraint atoms are special case of set
constraint atoms introduced in [30]. A set constraint atom (SC-atom)
has the form (X, F) where F C 2. Here we say that a set of atoms M
satisfies (X, F) if and only if M N X € F. Some specific set constraints
were investigated in [22]. Many types of constraints can be expressed
in the form (X, F).

Example 1.1. (Cardinality and Weight Constraint Atoms) A
CC-atom kX! can be expressed as the SC-atom (X, Fy ;) where Fj; =
{Y C X : k< |Y| <I}. Similarly if we have a weight function wt on
literals, the more general weight constraint kX considered [35] where
a model M satisfies kX1 if and only if

E<[Y wt(a)+ > wt(not b)] <1

acXNM beX-M

can be expressed as the SC-atom (X, F) where

F={Y CX:k<[> wt(a)+ Y wt(notb)]<I}.

acY beX-Y

d

Example 1.2. (SQL Aggregate Atoms) Let X be a finite set of
atoms and let u : X — R be a function. Each such function p allows
us to construct a variety of set constraint atoms. For example, to each
Y C X, we can assign the following functions that are used in SQL
queries: |V, sum(Y) = >° ¢y p(y), min(Y) = minyey p(y), max(Y) =
maxyey ((y), avg(Y), where avg assigns to Y the real number 0 if

Y = () and assigns the real number Su@(‘y), otherwise. For every two

real numbers a,b such that a < b, we define the following families of
sets:

1L O ={y:a<|Y|<b}

2. %" ={V :a < sum(Y) < b}

3. Maacgéb ={Y :a <max(Y) < b}
4. Mmg(’b ={Y :a <min(Y) < b}

5. cwgg(’b ={Y:a<avg(Y) <b}

amaiO5.tex; 17/03/2005; 13:52; p.4

Programming with Infinite Sets 9

For each family F described in (1)-(5), we obtain a set constraint
(X, F). O

Example 1.3. (Programs with External Modules) In [19], Eiter,
Gottlob and Veith studied logic programs whose clauses contain mod-
ules in their bodies. Modules are programs 7 (written in some fixed
programming language) that return subsets of some finite set of atoms
X. Let us define R, as the set of those subsets of X that can be
returned by m. Eiter, Gottlob and Veith show how a stable semantics
can be assigned to programs that contain atoms of the form (X, R;)
in the body of clauses. The construction of SC-stable models due to
Marek and Remmel [30] described below extends the work of [19] in
that SC-logic programming allows modules to occur both in the heads
and in the bodies of clauses. a

There are other families of subsets of a set that could be of interest.

Example 1.4. Given a finite set of atoms, let Fepen, = {Y C X
Y| is even} and Fogq = {Y C X : |Y] is odd}. Then (X, Fepen) and
(X, Foqq) are set constraint atoms. a

Other examples of constraints of interest can be found in [22].
Formally a set-constraint clause (or SC-clause) is an expression of
the form
(X, F) — (X1, F1), - (Xm, Fn)

A set-constraint (SC) program is a collection of SC-clauses. It is easy to
see that ordinary logic programming can be reduced to set-constraint
programming. That is, the meaning of atom a is the same as that of
set constraint ({a},{{a}}) and the meaning of not a is the same as
({a},{0}). Our definition of stable model is an extension of the version
of the Gelfond-Lifschitz transform introduced by Niemeld, Simons and
Soininen [34] for cardinality constraint programs and we call it the NSS
transform. Again the process of constructing a stable model is based on
some form of “Horn” programs, reduction, and least fixed points of the
one-step provability operators for Horn programs. First, we say that a
family F of subsets of X is upper closedif Y C Z C X and Y € F
implies Z € F. We will call a SC-clause Horn if

1. the head of that clause is a single atom (recall that atoms are
represented as set constraints) and

2. whenever (X;, F;) appears in the body, then F; is an upper closed
family of subsets of Xj.

A set-constraint Horn program P is a SC-program which consist en-
tirely of Horn clauses. There is a natural one-step provability operator

amaiO5.tex; 17/03/2005; 13:52; p.5

6 Cenzer et al.

associated to a SC-Horn program P, Tp : 2% — 2% where X is the
underlying set of atoms of the program, defined by Tp(S) equals the
set of all p such that there is clause

C=p<— <X1,f1>,...,<Xm,fm> epP

such that S satisfies the body of C. Our definitions ensure that Tp
is a monotone operator and hence each SC-Horn program P has a
least model MP. M¥ can be computed in a manner analogous to the
computation of the least model of a definite Horn program as Tp %
(). The NSS transform NSS;/(P) of the set-constraint program P
for a given set of atoms M is defined as follows. First eliminate all
clauses with bodies not satisfied by M. Next, for each remaining clause
(X, F) — (X1, F1),...,(Xm, Fm) and each p € M N X, put the clause

D — <X17?1>7 ey <Xm7?m>

into NSSj;(P). Here F; is the least family G containing F; and closed
upwards. Clearly the resulting program NSSj,(P) is a SC-Horn pro-
gram and hence has a least model M NSSu(P). M is a stable model of
P if M is a model of P and M = MNSSu(P) 1t can be shown [34] that
this construction corresponds to the same notion of Gelfond-Lifschitz
stable models when we restrict ourselves to ordinary logic programs.
In this paper we would like to use the mechanism of set-constraints to
reason about infinite sets. The motivation for reasoning about infinite
sets comes from several areas. For example, one may want to reason
about regions in 2-dimensional space, i.e. polygons, circles, or in 3-
dimensional space, i.e. cubes, spheres, etc. In such a situations, one
can specify the region by certain sets of equations. However one might
be interested in the spread of certain diseases or the spread of pests
such as Africanized bees. In that case, one might want to talk about
regions whose boundaries are specified in a more dynamic manner, i.e.
regions whose boundaries are specified as the solutions to ordinary or
partial differential equations or which evolve according some dynamical
system. In the most general case, one can specify some sort of algorithm
which determines which points are in the region or which enumerates
the points in the region. Another example is where one would like a logic
program to reason about the stable models of other logic programs. In
this case, even if the other logic programs were Horn predicate logic
programs, the resulting least models might be infinite r.e. sets. In each
of the cases above, one has no intention of writing out the entire infinite
set. Instead, one use equations, differential equations, programs and/or
algorithms to encode the infinite sets by finite means. That is, one uses
various types of indices or codes to specify the finite sets. As we shall see

amaiO5.tex; 17/03/2005; 13:52; p.6

Programming with Infinite Sets 7

later, if one requires that such codes or indices have a certain number of
effective properties one will still be able to process programs in effective
manner, see Theorem 2.5. Examples of such effective properties include
algorithms which, given the indices e and f of two infinite sets A and
B, would allow one to find the index of AU B or to decide if A C B or
ANB=0.

Our basic idea is as follows. Assume that we have a particular coding
scheme for some family of subsets of a set X. Let F be a finite family
of such codes. We will write C, for the set with the code e. Then we
can write two types of constraints. One constraint (X,F)S has the
meaning that the putative set of integers M satisfies (X, F)< if and
only if M N X D C, for some e € F. Similarly, we shall also consider
constraints of the form (X,)= where we say that M satisfies (X, F)~
if and only if M N X = C, for some e € F. Observe that constraints
of the form (X, F)S behave like atoms p in that they are preserved
when the set grows while constraints of the form (X, F)~ behave like
constraints not p in that they are not always preserved as the set grows.

Now, it is clear that once we introduce these type of constraint
schemes, we can consider various coding schemes for the set of indices.
For example, in this paper, we will consider three such schemes: explicit
indices of finite sets, recursive indices of recursive sets and r.e. indices
of r.e. sets. We shall then define an extended set-based clause C to be
a clause of the form

<X, A>* — <Y1, B1>g, ey <Yk,Bk>g, <Z1,C1>:, ceey (ZZ,CZ>:,

where x is either = or C and define an extended set based program
(ESB) P to be a set of extended set based clauses.

We should note that our work here is closely related to a number of
other approaches to extend logic programming. Constraint Logic Pro-
gramming [25] allows one to use other modules to reason about various
specialized types of sets and relations. The work of Dovier, Omodeo,
Pontelli and Rossi [9, 16, 17, 18] describe various mechanisms which
extend logic programming and allow one to reason about finite sets.
The work of Eiter, Gottlob and Veith [19] who studied logic programs
whose clauses contain modules in their bodies is another example of
such an extension. In all of these extensions, the goal is to reason
about finite sets so that the various types of additional construction
involve only finite sets and relations. Since the use of function symbols
is convenient in actual programming, various attempts have been made
to re-introduce function symbols, at least partly, into ASP. Let us point
out two such attempts. First, Bonatti [6, 8] introduced a class of normal
programs called finitary programs. These programs do admit function
symbols but put two restrictions on the properties of the dependency

amaiO5.tex; 17/03/2005; 13:52; p.7

8 Cenzer et al.

graph of the program. First, Bonatti requires that every ground atom
transitively depends on only finitely many ground atoms. Second, the
number of negative literals that are on cycles of odd length is finite.
With these restrictions, given a finitary program P and a ground atom
p, one can find a finite set of atoms U(P,p) and a finite ‘relevant’
subprogram R(P, p) so that atoms occurring in R(P, p) are all in U(P, p)
and the basic reasoning questions about P and p can be answered by
asking the same questions about R(P,p) and p. Thus, membership of
p in all stable models of P is equivalent to the membership of p in all
stable models of R(P,p). A similar result holds for the ‘membership in
some’ question. Since R(P, p) is finite, these questions can be answered,
in fact they are in class NP, once the program R(P,p) is an input. The
key property exhibited by finitary programs is that the set U(P,p) is
a splitting set (see [15, 27]). The class of finitary programs has several
other desirable properties. For example, it satisfies a natural type of
compactness condition in that if all finite ground subprograms of a
finitary program P have a stable model, then P has a stable model.
The compactness property does not hold, in general, for normal logic
programs [11]. Tt is also not the case that one can effectively test
whether a program is finitary. That is, Bonatti noticed that the set
of finitary programs is not recursive.

A radically different proposal has been, actually implemented in the
ASP solver smodels [34, 36]. In this implementation the functions are
stored. This implies that the Herbrand base is, in effect, finite, for
each time we deal with a term f(@), it is evaluated against the stored
definition of f. Thus the Herbrand base is finite and all stable models
are finite, too.

The outline of the paper is as follows. In Section 2, we shall formally
define extended set based constraints, clauses and programs. We shall
also define the analogue of Horn programs and stable models for ex-
tended set based programs. There are some major differences between
extended set based Horn programs and standard logic programs. For
example, the least model of a Horn program is always computed by
iterating the one step provability operator for at most w steps while
this is not the case for ESB Horn programs. Also the least model of
a recursive Horn program is always recursively enumerable (r.e.) while
this is not necessarily the case for ESB Horn programs. In Section 3,
we shall study the complexity of the least model M of a recursive ESB
Horn program P with recursive constraints, i.e. all the constraints P
involve either explicit or recursive indices. In general, M can be very
complex. For example, for any arithmetic set A, we shall construct a
recursive ESB Horn program P4 with recursive constraints such that
the degree of the least model of P4 is A. We also show that the least

amaiO5.tex; 17/03/2005; 13:52; p.8

Programming with Infinite Sets 9

model of a recursive ESB Horn program P with recursive constraints
is always I1§ and that there is a recursive ESB Horn program P with
recursive constraints whose least model is II}-complete. Moreover we
show the question of whether w is the least model of a recursive ESB
Horn program P with recursive constraints is II}-complete, as is the
question of whether a recursive ESB Horn program P with recursive
constraints has a recursive least model.

There is a natural class of ESB programs which we call weakly finite,
whose stable models are much better behaved. Roughly, an ESB pro-
gram P is weakly finite if there are only finitely many heads of clauses
of P that involve recursive or r.e. indices. In Section 2, we show that
a recursive weakly finite ESB Horn program always has an r.e. least
model. Moreover, we shall describe a class of recursive weakly finite ESB
programs called effectively decidable where one can effectively compute
an r.e. index of the least model from a recursive index of the program. In
Section 4, we study the complexity of the question of when a recursive
weakly finite ESB program has a recursive stable model. For example,
we show that the predicate that a recursive weakly finite ESB with
recursive constraints has a recursive stable model is ¥9-complete. In
Section 5, we state our conclusions and directions for further research.

2. ESB Constraints, Clauses and Programs

In this section, we shall give the formal definitions of ESB constraints,
clauses, programs and define the analogue of Horn programs and stable
models for ESB programs. To describe our constraints, we first need
to describe three types of indices (i.e. codes) for subsets of the natural
numbers.

(1) Explicit indices of finite sets. For each finite set F' C w, we shall
define the explicit index of F' as follows. The explicit index of the empty
set is 0 and the explicit index of {x; < ... < x,}is 270 4. 427 We
shall let F}, denote the finite set whose index is n.
(2) Recursive indices of recursive sets. Let ¢g, ¢1,..., be an ef-
fective list of all partial recursive functions. By a recursive index of a
recursive set R, we mean an e such that ¢, is the characteristic function
of R. If ¢, is a total {0, 1}-valued function, then R, will denote the set
{r ew: ¢e(x) =1}.
(3) R.e. indices of r.e. sets. By ar.e. index of a r.e. set W, we mean
an e such that W equals the domain of ¢., that is, W, = {z € w :
¢e(x) converges}.

No matter what type of indices we use, we shall always consider two
types of constraints based on X and a finite set of indices F, namely,

amaiO5.tex; 17/03/2005; 13:52; p.9

10 Cenzer et al.

(X, F)= and (X, F)S. For any subset M C w, we shall say that M is
a model of (X, F)=, written M = (X, F)=, if there exists an e € F
such that M N X equals that set with index e. Similarly, we shall say
that M is a model of (X,F)S, written M |= (X, F)S, if there exists
an e € F such that M N X contains the set with index e. One could
consider more general constraints where we allow F to be an infinite
set as well. We restrict ourselves to consider only constraints where F
is a finite set of indices since these are the only types of constraints
which have the possibility of being effectively processed.

Let us fix a recursive pairing function, say [z,y] = %((m +y)? +
3z + y) from w X w to w. For any sequence az,...,a,, with n > 2,
we define the code c(ay,...,a,) by the usual inductive procedure of
defining c(a1, a2) = [a1,a2] and c(aq,. .., a,) = [a1,c(az, ..., a,)] if n >
3. The explicit index ind(ai,...,an) of the sequence § = (a,...,an)
is defined by induction. If n = 2, then ind(a1,a2) = [2,[a1,as]] and if
n > 3, then ind(ay,...,a,) = [n,c(al, ..., a,)].

In this paper, we shall consider three different types of constraints.

(A) Finite constraints. Here we assume that we are given an explicit
index x of a finite set X and a finite family F of explicit indices of
finite subsets of X. Throughout this paper we shall identify the finite
constraints (X, F)~ and (X, F)S with their codes, ind(0,0,z,n) and
ind(0,1,2,n) respectively where F = F,, that is the n'* finite set (see
above). Here the first coordinate 0 tells us that the constraint is finite,
the second coordinate is 0 or 1 depending on whether the constraint
is (X, F)~ or (X,F)S, and the third and fourth coordinates are the
codes of X and F respectively.

(B) Recursive constraints. Here we assume that we are given a
recursive index x of a recursive set X and a finite family R of recursive
indices of recursive subsets of X. Again we shall identify the recursive
constraints (X,R)~ and (X, R)S with their codes, ind(1,0,z,n) and
ind(1,1,z,n) respectively, where R = F,,. Here the first coordinate 1
tells us that the constraint is recursive, the second coordinate is 0 or
1 depending on whether the constraint is (X, R)~ or (X, R)S, and the
third and fourth coordinates are the codes of X and R respectively.

(C) R.e. constraints. Here we are given a r.e. index x of a r.e. set
X and a finite family W of r.e. indices of r.e. subsets of X. Again we
identify the finite constraints (X, W)= and (X, W)S with their codes,
ind(2,0,z,n) and ind(2, 1, x,n) respectively, where YW = F,,. The first
coordinate 2 tells us that the constraint is r.e., the second coordinate
is 0 or 1 depending on whether the constraint is (X, W)~ or (X, W)E,
and the third and fourth coordinates are the codes of X and W.

amaiO5.tex; 17/03/2005; 13:52; p.10

Programming with Infinite Sets 11

An extended set-based clause is defined to be a clause of the form
<X7 A>* — <Y1781>g7 B <Yka Bk>g7 <Zlycl>:7) (Zlacl>:> (1)

where * is either = or C. We shall refer to (X,.A)* as the head of C,
written head(C), and (Y1,B1)S, ..., (Yi, Be)S, (Z1,C1)=, ..., (Z,C)~
as the body of C, written body(C'). Here either k or [may be 0. M is
said to be a model of C' if either M does not model every constraint in
body(C') or M = head(C).

Again we shall talk about three different types of clauses.

(a) Finite clauses. These are clauses in which all of the constraints
are finite constraints.

(b) Recursive clauses. These are clauses where all the constraints
appearing in the clause are finite or recursive constraints and at least
one constraint is a recursive constraint.

(c) R.e. clauses: These are clauses where all the constraints appearing
in the clause are finite, recursive or r.e. constraints and there is at least
one r.e. constraint.

An extended set-based (ESB) program P is a set of clauses of the
form of (1). We say that an ESB program P is recursive, if the set of
codes of the clauses of P is a recursive set. Here the code of a clause
C' of the form of (1) is ind(c,e1, ..., ek, f1,-.., fi) where ¢ is the code
of (X, A)*, e; are the codes of (Y;, B;)< for i =1,...,k and f; are the
codes of (Z;,C;)~ for j=1,...,1.

Given a program P, we let Fin(P) (Rec(P), RE(P)) denote the
set of all finite (recursive, r.e.) clauses in P. It is easy to see from our
coding of clauses that if P is a recursive ESB program, then Fin(P),
Rec(P) and RE(P) are also recursive ESB programs.

Definition 2.1. Let P be a recursive ESB program.

1. We say that P is recursive with finite constraints if P = Fin(P).
(Note if P = Fin(P), then all the constraints only involve finite
sets.)

2. We say that P is recursive with recursive constraints if P = Fin(P)U
Rec(P) and Rec(P) # 0.

3. We say that P is recursive with r.e. constraints if RE(P) # ().
4. We say that P is weakly finite with recursive constraints if P is

recursive with recursive constraints and the set of heads of clauses
in Rec(P) is finite.

amaiO5.tex; 17/03/2005; 13:52; p.11

12 Cenzer et al.

5. We say that P is weakly finite with r.e. constraints if P is recursive
with r.e. constraints and the set of heads of clauses in Rec(P) U
RE(P) is finite.

Next we define the analogue of Horn programs for ESB programs.
A (ESB) Horn program P is a set of clauses of the form

(X, A)S — (Y1,B)S, ..., (Y3, B)S. (2)

where A is a singleton, that is A consists of a single index. We define
the one-step provability operator, Tp : 2 — 2%, so that for any S C w,
Tp(S) is the union of the set of all D, such that there exists a clause
C € P such that S |= body(C), head(C) = (X, A)S and A = {e} where
D, = F¢ if head(C) is a finite constraint, D, = R, if head(C) is a
recursive constraint, and D, is We if head(C) is an r.e. constraint. It is
easy to see that Tp is a monotone operator and hence there is a least
fixed point of Tp which we denote by N¥'. Moreover it is easy to check
that N* is a model of P.

If P is an ESB Horn program in which the body of every clause
consists of finite constraints, then one can easily prove that the least
fixed point of Tp is reached in w-steps, that is, N¥ = Tp 1% ().
However, if we allow clauses whose bodies contain either recursive or
r.e. constraints, then we can no longer guarantee that we reach the least
fixed point of Tp in w steps. Here is an example.

Example 2.2. Let e, be the explicit index of the set {n} for all n > 0,
let w be a recursive index of w and f be a recursive index of the set of
even numbers E. Consider the following program.

({0}, {eo}) —
({22 + 2}, {eanro S — ({22}, {e2,})E (for every number x)
(w, {wh= — (B {fH*

Clearly w is the least model of P but it takes w + 1 steps to reach
the fixed point. That is, it is easy to check that Tp 7= E and that
Tp 1¥H=w.

Lemma 2.3. If P is a recursive ESB Horn Program with finite con-
straints, then the least fixed point of the one step provability operator
Tp is r.e..

Proof. Suppose that W is an r.e. set and W is the domain of the total
recursive function ¢. For all s > 0, we let W equal the set of all n < s
such that ¢(n) converges in s or fewer steps. It is then easy to see that
since P is recursive and all the constraints involved in clauses of P are

amaiO5.tex; 17/03/2005; 13:52; p.12

Programming with Infinite Sets 13

finite, that we can uniformly compute the r.e. index of the set Ay of all
x such that there exists a clause

C = (X, A)S — (Y1, B1)S, ..., (Yi, B)S,

such that Wy satisfies the body of C' and = € F, where A = {e}. Thus
Tp(Ws) = As and Ay, A1, ... is an effective sequence of increasing r.e.
sets. It follows that we can effectively compute A = ;g As = Tp(W)
from any r.e. index of W. It then easily follows by induction that we

can uniformly compute an r.e. index U,, = T(() for each n > 0. Thus
the least model of P, U = U,5oUn = Tp 1w (0), is r.c.. O

As evidenced by the work in [9, 16, 17, 18], one can extend the syntax
of logic programming to reason about finite sets directly. ESB programs
with finite constraints is clearly another way to extend the syntax of
logic programming to reason about finite sets directly. However, there is
a difference between our approach to reasoning about finite sets and the
approach in [9, 16, 17, 18], namely, we reason about finite sets by dealing
with their codes (indices) and not their explicit representations. This
does not allow us to use the set constructors to develop data structures
as is possible in the language log [17], but because we reason about
indices of sets, it is easy to extend our formalism to allow other types
of indices such as recursive and r.e. indices. Theorem 2.5 below provides
at least one set of conditions on the set of indices of sets that we employ
which ensures that we can effectively compute with weakly finite ESB
Horn programs as opposed to just computing with ESB Horn programs
with finite constraints. However, before stating such conditions, we first
prove a basic result on the complexity of the least models of recursive
weakly finite ESB Horn programs with recursive or r.e. constraints.

Theorem 2.4. (a) If P is a weakly finite ESB Horn program with
recursive constraints such that Fin(P) is recursive, then the least
fized point of the one step provability operator Tp is r.e.

(b) If P is a weakly finite ESB Horn program with r.e. constraints such
that Fin(P) is recursive, then the least fized point of the one step
provability operator Tp is r.e.

Proof. To prove part (a), we will present an informal program which
constructs the least fixed point in a finite number of steps.

Step (1). First take Fin(P) and construct the least fixed point which
we will call Uy. Since Fiin(P) is recursive, Uy is r.e., by Lemma 2.3. Next
consider the set T7 = Uy U Sy where Sy is the union of the set of all C,
such that there exists a clause C' € Rec(P) such that Uy = body(C)
and head(C) = (X, F)S where F = {e} and C. = F., if head(C) is a

amaiO5.tex; 17/03/2005; 13:52; p.13

14 Cenzer et al.

finite constraint and C, = R, if head(C) is a recursive constraint. Even
though we cannot find Sy recursively, our hypothesis ensures that Sy
is a finite union of finite or recursive sets and hence is a recursive set.
Thus T3 is an r.e. set. Now if Sy = (0, then we halt and return T}; T} is
the least fixed point of P. Otherwise go onto step (2).

We now present the description of Step n 4+ 1, for n > 1. Assume that
T, is the result of step n.

Step (n + 1). Consider the set U, = Tpinpy 1 (T). It is easy to see
that that since T;, is r.e., Uy, is r.e. Next consider the set T;,.1 = U,US,
where S, is the union of the set of all ¢, such that there exists a clause
C € Rec(P) such that U, = body(C) and head(C) = (X, F)S where
F ={e} and C. = F, if head(C) is a finite constraint and C. = R, if
head(C') is a recursive constraint. Again, even though we cannot find
Sy, recursively, our hypothesis ensures that .S, is a finite union of finite
or recursive sets and hence is a recursive set. Thus 7}, 41 is an r.e. set.
Now if S, = (), then we halt and return T, 1; Tj,11 is the least fixed
point of P. Otherwise go onto step (n + 2).

Since the set of all head(C') such C' € Rec(P) is finite, it easily follows
that this process must stop after a finite number of steps and hence the
least model of P is r.e..

The proof of part (b) is similar to the proof of part (a). O

We note that there is an alternative way to obtain the least model of
weakly finite ESB program with recursive or r.e. constraints. Namely,
if P is a recursive weakly finite program with either recursive or r.e.
constraints, let H(P) denote the set of all head(C') where C' € Rec(P)U
RE(P). By definition, H(P) is a finite set consisting of constraints of
the form Cx,. = (X, A)S where A = {e}. In such a situation, we let
Scy. = Fe if e is an explicit index of a finite set, Scy, = Re if e is a
recursive index and Scy . = W if e is an r.e. index. If S C H(P), then
let Us = Ucy .es S~ Then it is clear from our proof of Theorem 2.4
that the least model M of P is of the form

M = Trippy 1% (Us)

for some S C H(P). This point of view allows us to specify some simple
conditions which ensure that we can effectively compute the least fixed
point of the operator Tp of a weakly finite program P with recursive
constraints or r.e. constraints. That is, suppose that P is a weakly
finite recursive program P with recursive or r.e constraints. Then for
each subset S of H(P), we let Mg = Tpi,p) 1% (Us). It is easy to see
that Mg is r.e. for all S C H(P). Then we say that P is effectively
decidable if there is an algorithm which given any constraint (X, F)<

amaiO5.tex; 17/03/2005; 13:52; p.14

Programming with Infinite Sets 15

that appears in the body of some clause in Rec(P) or RE(P) and any
subset S C H(P), we can effectively decide if Mg = (X, F)<. Note that
if we consider the informal algorithm to compute the least fixed point
in parts (a) and (b) of Theorem 2.4, then it is easy to see that if P is
effectively decidable, then we have an effective procedure to compute
the index of the sets Sy, S1, ... that appear in the computation which,
in turn, means that we have an effective procedure to compute the
indices of Ty, T1, Effective decidability does not allows us to decide
whether a given S; = (), but this does not matter since even if S; = (),
we can still effectively compute an r.e. index for T;. Now, if |H(P)| = n,
then it must be the case that T;, is the least model of P. Thus we have
the following.

Theorem 2.5. (a) If P is a recursive ESB Horn Program with finite
constraints, then we can effectively compute an r.e. index of the
least fized point of the one step provability operator Tp from a
recursive index of P.

(b) If P is a weakly finite recursive ESB Horn program with recur-
sive constraints and P is effectively decidable, then we can effec-
tively compute an r.e. index of the least fized point of the one step
provability operator Tp from recursive index of P.

(c) If P is a weakly finite recursive ESB Horn program with r.e. con-
straints and P is effectively decidable, then we can effectively com-
pute an r.e. index of the least fixed point of the one step provability
operator Tp from a recursive index of P.

The hypothesis that the P is a weakly finite Horn program with recur-
sive or r.e. constraints is absolutely necessary for the proof of Theorem
2.4 as our next example will show.

Example 2.6. Suppose that we are given a sequence of pairwise dis-
joint infinite recursive sets Y, Xg, Ag, X1, A1, Let

Y = {y(] <y < },
Xe = {xoe <71, < ...} for each e € w and
A. = {ape <aye <...}foreach e cw.

For all k > 0, we shall let X, >p = {2pe < Tpy1e < -}

Given an atom a, the finite set constraint ({a}, {n})S where F,, =
{a} is satisfied by a model M iff a € M so that the set constraint
{{a},{n})< acts like a atom in a normal logic program. Thus we shall
abbreviate that finite set constraint ({a}, {n})< by the atom a.

amaiO5.tex; 17/03/2005; 13:52; p.15

16 Cenzer et al.

Let W¢ denote the finite set of elements z such that ¢.(z) converges
in s or fewer steps. Now consider the following program.

(1) &ne < ap g for all n such that n € Wg — Wg 1.
(2) apy g, < for all n such that n € W — WSt

(Note the set of clauses in (1) and (2) are recursive since the condition
that n € W2 — W2~1 is a recursive condition. Moreover the effect of
these clauses is to ensure that {z, . : n € W,} is contained in the least
model of P for every e. We will ensure that these are the only clauses
in P with an x, . contained in the head of the clause so that the least
model of P restricted to X, will be precisely {zy . :n € W}.)

(3) Ye «— (Xe,{ng})S for all k > 0 where ny is a recursive index of
Xe >k (Note that the net effect of these clauses is to ensure that y.
is in the least model of P if and only if X, >, € M N X, for some £,
which happens if and only if W, is cofinite.)

It is now easy to see that P is a recursive ESB Horn program such that
the least model of P equals {y. : W, is cofinite} U {x, . : n € W,}.
However it is known [37] that the set {e : W, is cofinite} is a complete
39 set so that M is a complete X set and hence is certainly not r.e. O

We are in a position to define the analogue of a stable model for
ESB programs.

Definition 2.7. Suppose that M is a model of an ESB program P.

1. We define the analogue of the NSS-transform by defining the clauses
in NSSy/(P) corresponding to each clause C' € P of the form (1),
as follows. NSSp;(C) is nil if M does not satisfy the body of C.
If M does satisfy the body of C, then since M is a model of P, it
must also be a model of the head of C, (X, A)* where x is either =
or C. If *x =C, there must be an explicit (recursive, r.e.) index e in
A such that M N X contains the set with index e and for each such
e, NSS,/(C,e) is the clause

(X, {e))s — (Y1,B)S, ..., (Y3, B)E, (Z1,C1)E, ... (Z1,C)E. (3)

Similarly, if x is =, there must be an index e such that M N X is
the set coded by e and again for each such e, NSS(C,e) is the
clause

(X Aeh)S — (1, B1)S, ... (Y, Bi) S (Z1,C)S, ... (Z,C)E. (4)

Then NSSy(P) = {NSSy(C,e) : C € P} will be an ESB Horn
program.

amaiO5.tex; 17/03/2005; 13:52; p.16

Programming with Infinite Sets 17

2. We then say that M is a stable model of P if M is a model of P
and M equals the least model of NSSys(P).

We will now give an example that illustrates the use of our ESB
programs. In this example, we show how an ESB program can be used
to reason about certain subspaces of an n-dimensional vector space V,,
over rational numbers.

Example 2.8. Suppose that V, is an infinite dimensional vector space
over the rational numbers (). We can think of V,, as the set of all
finite sequences (ai,...,a,) where a; € @ and a, # 0 and, under
a suitable coding, we can consider Vo, to be a recursive subset of
the natural numbers N. Now suppose that we are given a finite or
recursive independent set I C Vo, with at least 6 elements and we
wish to write a ESB Horn program whose stable models are precisely
the set of all three dimensional subspaces of V, that are generated by
three elements subsets of I. Given any finite set of elements a1, ..., a;
of Vo, let {ai,...,ar}* denote the subspace generated by ai,...,a,.
Note that we can find a recursive index Rq, . q, for {a1,...,a;}* from
ai,-..,an. Moreover for each finite set S C V, we let eg denote the
explicit index of the set S. If S is a singleton, say S = {v}, we shall
simply write v for the set constraint (S, {es})<. We shall let a denote
the explicit index of the empty set and § denote the recursive index
of Vo. Then we consider the ESB program P which consists of the
following sets of clauses.

Abl,bz,bs : <V<>07 {Rbth,bg})g « b1,09,03
for all three element subsets {b1, ba, b3} of I.

Bh, bo b bs (Voo {/8}>g « by,b2,b3,b4
for all four element subsets {b1,ba, b3, bs} of I.

Chybobs = ({b1,b2, 63}, {e(p, b sy NS — (I/{b1, b2, b3}, {a})=
for all three element subsets {b1, ba, b3} of I.

Note that if [is finite, then P will be a finite ESB program.

Now consider a set M C V,, which is a model of P. If M NI =
{b1, ba, b3} for some three element subset of I, then M satisfies the body
of Ap, by bs- It follows that M must also satisfy the head of Ay, p, 3, so
that M must contain {by, by, b3}*. Then in this case NSS,(P) consists
of the following two clauses,

(Voos { Rby by by })E < b1, ba, b3

<{b17 b27 b3}7 {e{bl,bz,bg}}>g — <I/{b17 b2a b3}7 {0‘}>g

amaiO5.tex; 17/03/2005; 13:52; p.17

18 Cenzer et al.

and it is easy to see that the least model of these two clauses is
{b1,b2,b3}* so that M is a stable model of P if and only if M =
{bh b27 b3}*

If [IMNI| > 4, then M satisfies the body of one of clauses By, p, b b,
for some 4 element subset {b1, ba, b3, bs} of I. But then since M is a
model of P, M must satisfy the body of the By, 4, 5,5, Which implies
that M = V. Thus in this case, M does not satisfy any of the clauses
of the form Cy, p, », and hence NSS,;(P) consists of all clauses of the
form Ay, p,p, and By, . p,. It is then easy to see that the least model
of NSS(P) is empty so that M is not stable.

If IMNI| <2, then M satisfies the body of one of clauses Cy, p, 1, for
some 3 element subset {by, be, b3} of I. But then since M is a model of P,
M must satisfy the body of the C, 4,5, Which implies that {b1,b2,b3} C
M which is a contradiction.

Thus the only stable models of P are of the form {b;,bs,b3}* for
some three element subset of I. a

3. The complexity of the least model of a recursive ESB
Horn program

There are many complexity issues that need to be explored with respect
of ESB programs. In this section, we shall study the complexity of the
least model of a recursive ESB Horn program. The arithmetic hierarchy
is defined as usual so that the recursive sets are both $f and I}, a X0
set is obtained by existential number quantification over a IT set, and
a 119 set is the complement of a ¥Y,, set. In particular, a set of
natural numbers is ¥V if and only if it is an r.e. set. We say that a
subset A of w is A% is A is both X0 and I19.

Our next two results will show that if we remove the assumption of
weakly finite in the premises of Theorem 2.4, then the least model of an
ESB Horn program is no longer restricted to appear in a certain level
of the arithmetic hierarchy.

Theorem 3.1. For any arithmetic set A, there is a recursive ESB Horn
program P4 with recursive constraints such that the Turing degree of
the least model M of P4 is equal to the degree of A.

Proof. Let A be an arithmetic set. Then there is a recursive predicate
R(i,xy,...,x,) such that

1€ A <— (Qlwl)(QQ.ﬂfg) - (ann)(R(’L, T1,... ,l‘n)) (5)

amaiO5.tex; 17/03/2005; 13:52; p.18

Programming with Infinite Sets 19

where each @); is either V or 3. For any 1 < k < n, let X, o, =
{[k+2,i,21,...,2,2] : * € w}. Clearly, X, . 5. is a recursive set.
We then let e; z, .. ., be arecursive index for X; ;, . ., .In addition for
any n € w, we let f, be an explicit index for the set {n} and we shall
abbreviate the set constraint ({n},{f,})S by the atom n.

Now consider the ESB Horn program P = Pj4, consisting of the
following n+2 groups of clauses, created in reverse order. Let M = MF
denote the least model of Py4.

Cp+1: For all i, xq, ..., 2, such that R(i,x1,...,2,), put in the clause
[n4 14,21, ..., 2] — .

(This will be the only group of clauses whose head will involve elements
of the form [n + 1, 2], so that M will contain [n + 1, 2] if and only if
z=1i,x1,...,2y) and R(i,x1,...,zy) holds.)

Now assume by induction that we have defined the set of clauses
Cn+1,Ch, ..., Cgyq so that [k + 1,4, x1,..., 2] € M if and only if

(Qk—i—lxk—‘rl) o (ann)(R(Za Llyeo oy Thy L1 - - - 7':Un))

holds. (Note that for k = n, the sequence of quantifiers will be empty.)
Then we define the clauses in C;, as follows.

C..: There are two cases.

Case 1. Qi = V. In this case, we add for all 7, z1, ...,z the clause

[kv ’i, T, wrkfl] — <Xi,x1,...,1’k_17 {ei,ml,...,xk_1}>g

(Again we shall ensure that these are the only clauses that involve
elements of the form [k, z] in the head, so that M will satisfy

C
<)(ﬂ$h~ka—l’{eﬁxlwka71}>_

only if for all z € w, [k + 1,4,21,...,2-1,2] € M. By our induction
hypothesis, this happens if and only if

(Vap) (Qr+1%ks1) - - - (Qnen) (R(i, 21, . . oy X1, Tn)).

Thus in this case, M will contain [k, z] if and only if z = [i, 21, ..., Zp_1]
and (Vop)(Qrr12k+1) - - - (Qnzn) (R(4, 21, . . ., Tp—1,Ty)) holds.)

Case 2. Q; = 3. In this case, we add, for all x € w, the clause

[kyiyxy, ... xp—1] «— [k+ 14,21, .., Tk, 7]

amaiO5.tex; 17/03/2005; 13:52; p.19

20 Cenzer et al.

(Again we shall ensure that these are the only clauses that involve ele-
ments of the form [k, z] in the head. Now by our induction hypothesis,

M contains [k + 1,4, x1, ..., Tk, x] if and only if

(Qk-ﬁ-lxk—‘rl) CIEIR (ann)(R(Zu LlyeooyL—1, Ly Th41y--- 75671))
Thus in this case, M will contain [k, z] if and only if z = [i, 1, ..., Tk_1]
and

(Fxk) (Qr+12k41) - - - (Qnen) (R(i, 21, .y Tp—1, They« o+, Tp))-

Clearly P4 is an ESB Horn program with recursive constraints. It
follows by induction that the least model M of P4 will equal

{[#,1] : (Qix1) ... (Qnxn)(R(i,21,...,2p)) }U
Ur—i{lk+1L,z1,...,2k) 1 (Qr+1Tk41) - - - (Quan)(R(3, 21, ..., 20))}

Clearly {[i,1] : (Q1z1)...(Qnxn)(R(i,21,...,2,))} is Turing equiva-
lent to A. Moreover, one can show that for any degree ¢ that contains
an arithmetic set, there is a set A of degree § and a recursive predicate
R such that
(i)i€e A <<= (Qir1)(Q2x2) ... (Qnzyn)(R(i,x1,...,2,)) and
(11) {(xlv cee 7$k—1) : (Qkxk’) s (ann)(R(Z7 L1y-- ey xn))} is Turing re-
ducible to A for all 2 < k < n. Thus for such A, the least model M P
of P4 will be Turing equivalent to A.

The only remaining thing to check is that P4 is a recursive program.

We note that for all 4,x1,...,xr, we can use the S-m-n Theorem to
uniformly compute recursive indices €; 4, . 5, for the set X; ., . .
Thus it is easy to see that P4 is a recursive program.]

More generally, our next result will show that various questions
about the least model of an arbitrary recursive ESB Horn program
are I} hard. Note that Theorem 2.4 allowed us to prove that the least
model of a ESB Horn Program is r.e. if we impose significant limitations
on ESB Horn program P, i.e. that FIN (P) is recursive and P is weakly
finite. Our next result we show that in general, the least model of an
ESB recursive Horn program can be very complex.

Theorem 3.2. Let R be a recursive set and let P be a recursive ESB
Horn program.

(a) The least model M of P is a 11} set and there is a recursive ESB
Horn program P* whose least model M* is I1}-complete.

(b) The predicate “R is the least fized point of P” is I1}-complete.

(c) The predicate “P has a recursive stable model” is I13-complete.

amaiO5.tex; 17/03/2005; 13:52; p.20

Programming with Infinite Sets 21

Proof. Before we can give our proof, we must first establish some no-
tation for trees. Let w<* denote the set of finite strings of natural
numbers, let () denote the empty string and let ¢ < 7 denote that o
is an initial segment of 7. A subset T' of w<¥ is a tree if) € T and
whenever 7 € T and ¢ < 7, then ¢ € T'. An infinite sequence X € w® is
said to be a path through the tree T if (X(0), X(1),...,X(n—1)) €T
for all n. Let T, denote the e-th primitive recursive tree as defined in
[13]. It is well-known that {e : there is no infinite path through 7.} is a
complete I} set, see [24]. For any finite string o = (01, ..., 0,), we will
write [o] for the code [n,o1,...,0,]. We let 0 = [(}] be the code of the
empty sequence (). For any finite string o = (01,...,0,), we let 074
denote the string (o1,...,0,,%). In what follows, we shall abbreviate
the finite constraint ({n}, {f,})S where f, is the explicit index of {n}
by simply writing the atom n.
Proof of part (a). Given a recursive ESB Horn program P, there is a I1{
monotone operator I' such that the least model M of P is the closure of
I' started on the empty set, which is automatically IT} by the classical
result of Spector [38].

For the completeness, we will define a recursive ESB Horn program
P with recursive restraints and least fixed point M such that

[e,[0]] € M <= T, has no infinite path.

Let Ry (.) denote the recursive set {[e,[07i]] : i € w}. The program
P has the following two sets of clauses.

(1) [e, [o]] < for all o ¢ T, and
(2) [e, [0]] < (w,{f(e,0)})< for all e € w and o € W<¥.

Now consider the one-step provability operator Tp for P. We define
T& for all ordinal @ > 0 by defining ThH(S) = Tp(S), To(S) =
Tp(TE(S)) when o+ 1 is a successor ordinal and TA(S) = U,y T8(S)
for A a limit ordinal. Then the least model M of P equal Tg((b) for
some ordinal 8 > 1. One can easily prove by ordinal induction that
if 0 is a node on an infinite path through 7., then [e, [0]] is not in
Tg(0) for all w < 5. Hence if T, has an infinite path, then [e, [0]] ¢ M.
On the other hand, suppose that [e, [0]] ¢ M. It can not be the case
that for all i, [e,[(i)]] € M since otherwise there exists some ordinal
a; such that [e, [(¢)]] € Tp*(0) and hence if v = sup{a; : ¢ € w}, then
it would be the case that [e, [#]] € T3 Thus it follows that there
exists an ig such that [e, [(i9)] ¢ M and hence (i) € T.. Then one can
use the same argument to show that there must be some ¢; such that
le, [(70,71)]] ¢ M and hence (ig,i1) € T.. Continuing by recursion in

amaiO5.tex; 17/03/2005; 13:52; p.21

22 Cenzer et al.

this way, we can construct an infinite path (ig,1,...) through 7.

Proofs of parts (b) and (c). We will define a recursive function h and
recursive ESB Horn programs Py, () with recursive constraints such that
w is the least model M of Py if T has no infinite path and such
that M, is not recursive if T, has an infinite path. Let W be a non-
recursive r.e. set and let g be a one-to-one recursive function such that
W ={g(0),9(1),...} is the range of g. Let Ry, (. ») denote the recursive

set {51777 i < w}. There are five sets of clauses in Ph(e)-

1. 2690) — for all i € w.

2. 3% — 2w for all ,y € w.

3. 510 forall o ¢ T,.

4. 5 — (w, {fa(e,0)})E for all o € W<,
5. m — 5 for all m € w.

Note the set of clauses of type of (1) are in P, are recursive since g
is a total recursive function. The set of clauses of type (3) are recursive
since T¢ is a primitive recursive tree. Finally the set of clauses of type
(2), (4) and (5) are recursive. Thus P is a recursive ESB Horn
program with recursive restraints for all e.

If T, has an infinite path X, then we can argue as in part (a), that
5001 ¢ M, and hence 3* € M, <= a € W. Thus in such a case,
M, is not recursive. If 7. has no infinite path, then 5% e M, and
then the clauses of type (5) ensure that M, = w. Thus w is the least
model of P if and only if 7, has no infinite path which proves (b).
Furthermore, M, is recursive iff T, has no infinite path, which proves
(c). O

4. The complexity of recursive weakly finite ESB programs

As we saw in Section 2, a recursive weakly finite ESB Horn program P
with recursive or r.e. constraints always has least model which is r.e..
Hence the least models of recursive weakly finite ESB Horn programs
are much better behaved than the least models of arbitrary recursive
ESB Horn programs. In this section, we shall study the complexity
of the following question: “When does a recursive weakly finite ESB
program have a recursive stable model”. For example, we shall show
that the predicate that a recursive weakly finite ESB Horn program

amaiO5.tex; 17/03/2005; 13:52; p.22

Programming with Infinite Sets 23

with recursive constraints has a recursive least model is X3-complete.
That is, the set S of all e such that e is a recursive index of a recursive
weakly finite ESB Horn program P with recursive constraints where
the least model N¥ of P is recursive is a complete X9 set. Similarly,
we shall show the set T" of all e such e is a recursive index of a weakly
finite ESB program P with recursive constraints which has a recursive
stable model is X3-complete.

The first step in analyzing the complexity of the question of when a
recursive weakly finite ESB program P has a recursive stable model is
to analyze the complexity of predicates of the form M = D where D is
a constraint, a clause or a program. Our next three lemmas are proved
by carefully writing out the definitions of the predicates involved. We
will just give the proofs in a few cases. Note that a predicate involving
finite, recursive, or r.e. sets is really a predicate on the indices for those
sets. In particular, suppose a recursive set M has some recursive index
m where ¢, is a total recursive function. For a clause C, when we
say that the predicate “M = C” is recursive, X, etc., we mean that
there is a recursive (XY, etc.) relation R such that if m is a recursive
index of a recursive set M and c is the index of a clause C, then
M = C <= R(m,c). Similarly for a recursive ESB program P, when
we say that “M = P” is ¥9, we mean that there is a X0 relation R such
that, if m is a recursive index of the recursive set M and 7 is a recursive
index of the program P, then M | P <= R(m,i). In particular, if
either m or i is not the index of a total recursive function, then R(m, 1)
may be either true or false. It is important to note that we assume that
for all clauses (X, R)*, that for each e € R, R, C X (and similarly
for finite or r.e. constraints); otherwise, P is not a program and the
question of whether M |= P does not apply.

We will say that e is a recursive index of a recursive ESB program
if R, is an ESB program. Note that predicate “e is a recursive in-
dex of an ESB program” is IIJ since we need only check that ¢, is
a total {0,1}-valued function which is II and that for all z € R.,
x is the code of clause of the proper form. It follows that the {e :
e is a recursive index of an ESB program} is a I13 set. We will say that
e is a recursive index of a weakly finite program if e = [s,t] where s is
an explicit index of a finite set of constraints and ¢ is a recursive index
of a recursive ESB program such that for all clauses C' € P; such that
C involves either recursive or r.e. constraints, head(C) € F;. Again
it is easy to see that the set of indices of recursive weakly finite ESB
programs is I1. By the same type of reasoning, it is easy to see that
for each of the following types of programs, the set of e such that e is a
recursive index of an ESB program of this type is also I19: (1) programs
with finite constraints, (2) Horn programs with finite constraints, (3)

amaiO5.tex; 17/03/2005; 13:52; p.23

24 Cenzer et al.

weakly finite programs with recursive constraints, (4) weakly finite
Horn programs with recursive constraints, (5) weakly finite programs
with r.e. constraints, and (6) weakly finite Horn programs with r.e.
constraints.

Lemma 4.1. Suppose that M is a recursive set, V is an r.e. set,
(X, F)= and (X, F)S are finite constraints, (Y,R)~ and (Y,R)S are
recursive constraints, and (Z, W)= and (Z,W)S are r.e. constraints.

(a) The predicate M = (X, F)S and the predicate M = (X, F)~ are
both recursive. The predicate V = (X, F)S is XY. The predicate
V = (X, F)= is AY, in fact, it is the difference of two Y predicates.

(b) The predicates M = (Y,R)~ and M |= (Y,R)S are both 1IY. The
predicates V = (Y, R)™ and V = (Y, R)S are both T19.

(¢c) The predicate M |= (Z,W)< is Y. The predicates M = (Z,W)~,
V E(ZW)T, and V |= (Z,W)< are all T1S.

Proof. Let M be a recursive set with index m, i.e. the characteristic
function of M is ¢y,. Let V be an r.e. set such that V' = W, = dom(¢,).

(a) Let X be a finite set with explicit index x and let F = {eg,...,en—1}
be a finite family of explicit indices of finite subsets of X. Then

M= (X, F)E < (Fi<n)(Vu)u€ F,, > u€ Ry, & u € F
and
ME(X,F)T <= (Fi<n)(Vu)lue F,, <= ue R, & ueF.

From the index e;, we can extract a list of the elements of F¢,, so that
the universal quantifier (Vu) is bounded, which makes both predicates
recursive.

For V', note that
VE(XFS «— Gi<n)(Vu|ucF., »ucW, & uc Fy
and
VEXF)T <= Gi<n)Mu)ueF, < uveW, &ueF].

Here the quantifier (Vu) is still bounded, but the predicate “u € W,
is XY so the predicate [u € F,, — u € W, & u € F,] is ¥ and the
predicate [u € F,, < u € W, & u € F,] is the conjunction of X{
and II{ predicate.

amaiO5.tex; 17/03/2005; 13:52; p.24

Programming with Infinite Sets 25

For (b), let Y be a recursive set with recursive index y and let
F = {eo,...,en—1} be a finite family of recursive indices of subsets
of Y. The analysis in this case is similar to part (a) except that the
quantifier (Vu) is now unbounded.

For example, in the predicate
M E (Y,R)S <= (3i<n)(Vu)[u € Re, = u € Ry, & u € R].
the (Vu) quantifier is unbounded so this is I1{. Similarly, the predicate
VE(Y,R)S < (Ji<n)(Vu)u€ R, »u€ W, & u € R
is T19.

(c) Let Z be an r.e. set with r.e. index z and let W = {eg,...,en—_1}
be a finite family of r.e. indices of subsets of Z. Note that by assump-
tion, W,, C W, for all i < n, so that the predicate

M E(ZW)E = (Fi<n)(Vu)|u € We, = u € Ry, & u € W]

is equivalent to M = (Z,W)S <= (3i < n)(Vu)[u € W, — u € Ry,
which is T19. However the predicate

ME(Z,F)” < Gi<n)(Vu)lueW,, <= ue R, & uecW,].

will be II9. It is also easy to see that the predicates V |= (Z, W)< and
V E(Z,W)E are I13. O

The following lemmas are now immediate.

Lemma 4.2. Let M be a recursive set, let V' be an r.e. set, and let C
be a clause of the form (1).

(a) If C is a finite clause, then the predicate M |= C' is recursive and
the predicate V |= C is AY.

(b) If C is a recursive clause, then the predicate M = C is AY and the
predicate V = C is AY.

(c) If C is an r.e. clause, then the predicate M = C is A and V = C
is AY.

(d) Let C be an r.e. clause. Then

(i) If C has r.e. equality constraints in the head but not the body,
then the predicate M |= C' is 119,

(i) If C has r.e. equality constraints in the body but not the head,
then the predicate M |= C is ©9, and

amaiO5.tex; 17/03/2005; 13:52; p.25

26 Cenzer et al.

(#ii) If C' does not have any r.e. equality constraints, then the pred-
icate M |= C is a AY. In particular, if C is a Horn clause, then
M k= C is a AY predicate. O

Recall that m is a recursive index of a recursive ESB program P
is ¢, is a total recursive function and the set of codes of clauses in
P equals R,,. Similarly, we say that e is an r.e. index of a r.e. ESB
program P if the set of codes of clauses in P equals We.

Lemma 4.3. Let M be a recursive set and let V be a r.e. set.

(a) If P is a recursive or r.e. ESB program with finite constraints, then
M = P is a 1Y predicate and V |= P is a 11 predicate.

is a recursive program with recursive constraints, then
b) If P i we ESB ith ' traints, th
M = P is a I3 predicate and V = P is a 11 predicate.

(¢c) If P is a recursive ESB program with r.e. constraints, then the
predicate M |= P is T3 and the predicate V = P is T13.

(d) If P is a recursive ESB program with r.e. constraints and there is
no clause C' in P which has an r.e. equality constraint in the body,
then the predicate M = P is 11S. In particular, if P is a recursive
Horn ESB program with r.e. constraints, then M = P is a II3
predicate.]

Proof. The proof relies on the results of Lemma 4.2. We shall shall
only give the proof of the first part of (a) as the proof of the rest of the
parts is similar. Suppose that m is the recursive index of a recursive
ESB program with finite constraints. For any = € P, let C(z) equal
the clause coded by z. Then

MEP < (Va)(énla) =1 — M £ C(a)).

Since M = C(x) is a recursive predicate, it follows that M = P is
I19. Similarly, if e is an r.e. index for a r.e. ESB program with finite
constraints, then

MEP < (Vz)(x ¢ We VM = C(2)).
Since x ¢ W, is I, it is still the case that M = P is I19. O

To give a more refined analysis for recursive weakly finite programs,
let us say that a Horn program P with recursive or r.e. constraints is
n-weakly finite if there are n different heads of clauses in P— Fin(P).

amaiO5.tex; 17/03/2005; 13:52; p.26

Programming with Infinite Sets 27

Lemma 4.4. Let P be an n-weakly finite Horn program with recursive
or r.e. constraints and with least model M. Let a1, ...,a, be the finite
list of indices a such that there is a clause C' in P with recursive or
r.e. constraints and head(C) = (X,{a})S. Let Trin(p) be the one-step
provability operator for Fin(P). For any subset F' of {ai1,...,an}, let
Wr =U{X,:a € F}, where X, = F, if (X,{a}) is a finite constraint,
Xo = Ry if (X, {a}) is a recursive constraint and X, = W, if (X, {a})
is an r.e. constraint. Let Mp = Tpi,py 1 (Wr). Then

(i) M = Tpinpy 1 (WE), where F' = {a; : Xo; C M} and,

(i) if F' has minimal cardinality among those subsets of {ai,...,an}
such that M = Mp, then for any G C F, =(M¢g = P).

Proof. (i) Since Wr C M and M is closed under Tp;,p), it follows
that Mp = Tpi,py 1“ (Wr) € M. On the other hand, we claim that
Mp = Tpinpy 1¢ (WF) = P. To see this, let C = H < B be any clause
of P such that Mp = B. If C' € Fin(P), then Mg = H since Mp is
closed under Tpin(p). If C' ¢ Fin(P), then M = B since Mp C M
and My = B. But then H must equal (X, {a})< for some a € F and
hence Mp = H. Thus M C Mp since M is the least model of P. Hence
M = Mp as claimed.

(ii) This is immediate from our definitions. O

One can then use Lemmas 4.2 and 4.3 to prove the following.
Theorem 4.5. Let M be a recursive set and let V be a r.e. set.

(a) If P is a recursive or r.e. ESB Horn program with finite constraints,
then the predicates “M is the least model of P” and “V is the least
model of P” are both T13.

(b) If P is a recursive or r.e. weakly finite ESB Horn program with
recursive constraints or with r.e. constraints, then the predicate “M
18 the least model of P” is Zg and the predicate “V is the least model
of P” is a difference of ¥.9 sets.

Proof. Let M denote the unique least model of P.

(a) It follows from our remarks above that M = Tp 7% (}) and hence
we can find an r.e. index for MPT uniformly from a recursive or r.e.
index for P. That is, there is a recursive function v such that, given a
primitive recursive index e for P, produces an r.e. index v (e) for M*.
Thus to check that the recursive set M is the least model of P, we need
only check whether M = W) which is a 119 predicate.

(b) Let {a1,...,a,} be the finite list from Lemma 4.4. Then, by Lemma
4.4, M is the least model of P if and only if there exists a finite

amaiO5.tex; 17/03/2005; 13:52; p.27

28 Cenzer et al.

F C{ai,...,a,} such that M = Mp, Mp = P and, for all G C F,
—(M¢g = P). Since Fin(P) is a recursive or r.e. ESB Horn program,
we can uniformly find an r.e. index ep of Mg from F for all F C
{ai,...,a,}. Now the predicates M = My and V = My are I13. Since
M is a recursive set, V is an r.e. set and each Mg is a r.e. set, it follows
from Lemma 4.3 that M = P is 19, V |= P is 113, and ~(Mg = P) is
¥9. Thus the predicate M is the least model of P is X3 and the the V' is
the least model of P is the conjunction of a X3 and a I3 predicate. [

Theorem 4.6. (a) If P is a recursive or r.e. ESB Horn program with
finite constraints, then the predicate “the least model of P is recur-
sive” is X3.

(b) If P is a recursive or r.e. weakly finite ESB Horn program with
recursive constraints or with r.e. constraints, then the predicate “the
least model of P is recursive” is 3.

Proof. (a) Let us suppose that P is a recursive or r.e. ESB Horn pro-
gram with finite constraints. Note that P has a recursive stable model if
and only there exists an m such that ¢,, is a total {0, 1}-valued function
and R, is the least model of P. The result immediately follows since the
predicates “¢, is a total {0,1}-valued function” is ITJ and the predicate
“Rp, is the least model of P” is IIJ by part (a) of Theorem 4.5.

(b) The proof of part (b) is similar except that we use the results of
part (b) of Theorem 4.5. O

Theorem 4.7. (a) The set Ty of all e such that e is a recursive index
of a recursive ESB Horn program P with finite constraints such
that the least model of P is recursive is a complete X3 set.

(b) The set Ty of all e such that e is a recursive index of a recursive
weakly finite ESB Horn program with recursive (r.e) constraints
such that the least model of P is recursive is a complete X set.

(c) The set Ty of all e such that e is a r.e. index of a recursive ESB
Horn program P with finite constraints such that the least model of
P is recursive is a complete ¥3 set.

(d) The set T of all e such that e is a r.e. index of a recursive weakly
finite ESB Horn program with recursive (r.e) constraints such that
the least model of P is recursive is a complete ¥ set.

Proof. By Theorem 4.6, T; is Eg for i = 0,1,2,3. For the completeness,
will give a reduction of the well-known X%3-complete set Rec = {e :
We is recursive} to each T;. That is, for Ty and T3, we will define a

amaiO5.tex; 17/03/2005; 13:52; p.28

Programming with Infinite Sets 29

recursive function f such that for all e, f(e) is the recursive index of a
recursive weakly finite ESB Horn program Pj() with finite constraints
such that the least model of Py) is Turing equivalent to {2a:a € W, }.
Then clearly W, is recursive if and only if Py) has a recursive least
model so that Rec is one-to-one reducible to both T and T} and hence
both Ty and Ty are ¥3-complete.

Let W, s be the uniformly computable finite set of elements which
are enumerated into W, by stage s. The program Py () has two classes
of clauses.

(1) 2[2,a,s] + 1 « for all a and s such that a € W,.
(2) 2a — 2[2,a,s]+ 1 for all @ and s.

It is easy to see that Py is a recursive ESB Horn program and that the
least model M, of Py equals {2a : a € We}U{2[2,a,s]+1:a € Wes}.
Hence M, is recursive if and only if W, is recursive. Thus f shows
that Ty is Zg complete. Since for all e, Py is also a recursive weakly
finite ESB Horn program with finite (and hence recursive and r.e.)
constraints, it also follows that T is ¥3-complete.

It is also clear that there is a recursive function g such that g(e) is an
r.e. index of Py(). Thus g shows that 75 and 75 are ¥9-complete. [

For general ESB programs, we have the following.
Theorem 4.8. Let M be a recursive set.

(a) If P is a recursive ESB program with finite constraints, then the
predicate “M is a stable model of P” is 119.

(b) If P is a recursive weakly finite ESB program with recursive con-
straints or P is a recursive weakly finite ESB program with r.e.
constraints which has no clause C' with an r.e. equality constraint
in the body, then the predicate “M is a stable model of P” is X3.

(¢) If P is a recursive weakly finite ESB program with r.e. constraints,
then the predicate “M is a stable model of P” is a difference of X3
predicates.

Proof. By definition, M is a stable model of P if and only if M = P and
M is the least model of NSS;/(P). First observe by Lemma 4.3 that
the predicate M |= P is IIY if P is a recursive ESB program with finite
constraints, is ITY if P is a recursive weakly finite program with recursive
constraints or P is a recursive weakly finite ESB program with r.e.
constraints which has no clause C' € P with an r.e. equality constraint
in the body, and is IIJ if P is a recursive weakly finite program with
r.e. constraints. Thus to complete our analysis of the complexity of

amaiO5.tex; 17/03/2005; 13:52; p.29

30 Cenzer et al.

M being a stable model, we need only analyze the complexity of the
program NSS;/(P).

Recall that for each clause C' in P, we eliminate C' if M does not
satisfy the body of C. If M |= body(C) and head(C) = (X, F)<, then
for each e € F' such that set coded by index e is contained in M N X,
we add a clause

(X, {eV)s — (Y1,B)S, ..., (Y3, Br)S, (Z1,C1)E, ... (Z,0)E. (6)

Similarly, if M |= body(C') and head(C) = (X, F)~, then for each e € F'
such that set coded by index e equals M N X, we add a clause

(X, {eV)s — (Y1,B)S, ..., (Y3, B)E, (Z1,C1)E, ... (Z,0)E. (7)

It easily follows that if M is recursive and P has only finite con-
straints, then NSS;/(P) is r.e.. Similarly, if P is a recursive weakly
finite program with recursive or r.e. constraints, then NSS;(Fin(P)
is r.e.

If C is clause with recursive constraints, then the questions of whether
R.=MnNnXor R. C MNX are H?. If C is a clause with r.e. con-
straints, then the questions of whether W, =M NX or W, C M NX
is I19. Thus if P is a recursive weakly finite recursive program, let
(X1, F1)*, ... (X, Fn)™ be the finite set of heads of clauses (X, F)
such that there is a clause C' in P which contain recursive or r.e.
constraints and head(C) = (X, F)* where x is either = or C. By our
conventions, we can effectively find (X1, F1)*, ..., (X, Fy,)* from the
recursive index of P. Now if (Xj;, F1)* is a finite constraint, then we
can effectively find all constraints (X;, {e})< that could be generated by
the head (X, F1)* in the construction of NSSy/(P). Now if (X;, F1)*
is a recursive or r.e. constraint, then set of all constraints (X;, {e})&
that could be generated by the head (X;,F1)* in the construction
of NSSy/(P) is defined by a IS predicate. Now if P is a recursive
weakly finite program with recursive constraints or P is a recursive
weakly finite ESB program with r.e. constraints which has no clause
C € P with an r.e. equality constraint in the body, then the predicate
M = body(C) is TIY by Lemma 4.1. It then follows that the set D
consisting of all constraints of the form (X, {e})S that are generated
by the head of some clause CinP — Fin(P) such that M |= body(C) is
a Y set. Finally, if P is a weakly finite program with r.e. constraints,
then the predicate M |= body(C) is 113 by Lemma 4.1. so that it still
follows that the set D consisting of all constraints of the form (X;, {e})S
that are generated by the head of some clause C' € P — Fiin(P) such
that M = body(C), is a 39 set.

(a) Since NSS)/(P) is ar.e. ESB Horn program, the question of whether
M is the least model of NSS;(P) is II3 by Theorem 4.5.

amaiO5.tex; 17/03/2005; 13:52; p.30

Programming with Infinite Sets 31

(b) Suppose that P is a recursive weakly finite program with recursive
constraints or that P is a recursive weakly finite ESB program with r.e.
constraints which has no clause C' € P with an r.e. equality constraint
in the body. Let (X1, F1)*,..., (X, Fn)™ be the finite set of heads of
clauses (X, F) such that there is a clause C'in P which contain recursive
or r.e. constraints and head(C) = (X, F)* where * is either = or C. By
our conventions, we can effectively find (X, F1)*1, ..., (Xp, Fp)* from
the recursive index of P. By our comments above, NSS,/(Fin(P))
is r.e.. Let TNSSM(Fm(P)) be the one-step provability operator cor-
responding to the program NSSy/(Fin(P)). Let D consisting of all
constraints of the form (X;, {e})< that are generated by the head of
some clause C' with recursive or r.e. constraints. Let F' = {ay,...,a,}
denote the set of all e such that there there exists an ¢ such that
(X;,{e})S € D and let D, denote the set whose index is e. D and F
are finite sets but they are only X3 definable. Moreover, for any given
1, it may be the case that there are infinitely many clauses C' in P with
head(C) = (X;, F;)*i, so that NSSj/(P) is not necessarily a recursive
program. Nevertheless, it still follows as in the proof of Theorem 4.5
that the least fixed point of NSS,/(P) is of the form

MF - TNNSM an U Daz
azeF

for some F' C {aq,...,a,} where Mp = NSS;/(P) and, for all G C F,
—(Mg = NSSy/(P)). Note than since NSSy/(Fin(P)) is r.e., we can
find an r.e. index ep for Mg uniformly in F'. Now the predicate Mp =
M is TI9. Tt follows that M is stable model of P if and only if

1. M =P,

2. there is an x such that the finite set F, with explicit index =
satisfies

a) F, C D,

b) Mp, =

c) MlzNSSM(), and
)

d) For all G C F,, ~(M¢ = NSS(P)).

In this case M = P is a I3 predicate. Now F,, C D is a 33 predicate
and Mp, = M is a II9 predicates. Thus we only have consider the
complexity of the predicates M = NSS,/(P) and Mg = NSSy/(P)
for G C {ai,...,a,}. For any clause C' such that M |= body(C), it is
automatic that M is a model of every clause of NSS,/(P) generated
by C. Thus M automatically models NSS;/(P). Finally, neg(M¢ E

amaiO5.tex; 17/03/2005; 13:52; p.31

32 Cenzer et al.

NNSp(P)) holds if and only if there exists a clause C' € P such that
M = body(C), Mg | body(C'), and either

(i) head(C) = (X, F)S, there is an e € F such that (D, C M N X),
and D, Z Mg N X) or

(ii) head(C) = (X,F)~, there is an ¢ € F such that (D, = M N X)
and D, Z Mg N X).

The predicates M = body(C) and Mg | body(C) are at worst I19.
Similarly the predicates (D, € M N X) and (D, = M N X) are I19.
Finally the predicate D, ¢ Mg N X) are all X9. Thus the predi-
cate neg(Mg | NNSy(P)) is X3 and, hence, the predicate “M is
a recursive stable model of P” is 9.

(c) In this case we can use the same analysis as in part (b). The only
difference is that M |= P is a II3 predicate so that “M is a stable model
of P” is the conjunction of a I1$ predicate and %9 predicate. O

The following result immediately follows from Theorem 4.7 and
Theorem 4.8.

Theorem 4.9. 1. The set of all e such that e is a recursive index of
a recursive weakly finite ESB program P with recursive constraints
and P has a recursive stable model is ¥3-complete.

2. The set of all e such that e is a recursive index of a recursive
weakly finite ESB program P with r.e. constraints such that there
is no clause C' in P such that C' has an r.e. equality constraint in
the body and P has a recursive stable model is X3-complete.

5. Conclusions and Further Research

In this paper we defined a natural extension, which we called Extended
Set Based (ESB) Logic Programming, of the Set Constraints Logic
Programming paradigm introduced by Marek and Remmel [30] in which
we could reason about infinite sets. In particular, we considered two
basic types of constraints, (X, F)S and (X, F)~ where F is a finite set
of indices of subsets of X. We then considered three types of constraints
depending on what type of indices were used, (i) finite constraints where
X is a finite set and F is a finite set of explicit indices of finite subsets
of X, (ii) recursive constraints where X is recursive set and F is a
finite set of recursive indices of recursive subsets of X, and (iii) r.e.
constraints where X is an r.e. set and F is finite set of r.e. indices of
r.e. subsets of X. An ESB program is a set of clauses of the form

<X, .A>* — <Y1, Bl>g, ey <Yk,[)’k>g, <Z1,C1>:, ceey (ZZ,CZ>:,

amaiO5.tex; 17/03/2005; 13:52; p.32

Programming with Infinite Sets 33

where * is either = or C.

We then defined natural analogues of Horn programs and stable
models for ESB programs. We analyzed the question of when the least
model of a recursive ESB Horn program with either finite, recursive or
r.e. constraints is recursive. We showed that the question of whether a
recursive ESB Horn program has a recursive least model is X3-complete.
We also introduced the notion of weakly finite ESB programs which are
ESB programs in which the set of heads of clauses that involve either
recursive or r.e. constraints is finite and studied the question of when
such programs have recursive stable models. We showed, for example,
that the question of whether a recursive weakly finite ESB program
with recursive constraints has a stable model is also ¥9-complete.

Our paper represents one way that one can use Logic Programming
to reason about infinite sets. The current developments in Compu-
tational Knowledge Representation and in particular the research of
[36, 30] raises our hopes that with an appropriately chosen extension
of Logic Programming, we will be able to effectively reason about
stable models of programs involving constraints of the form (X, A)S
and (X, A)~ for at least some classes of indices. It should be observed
that we are not the only ones interested in the issue of reasoning about
infinite sets. For instance, in database community, using entirely differ-
ent means (quantifier elimination), researchers have shown that one can
reduce some queries about infinite sets to queries about finite databases
[26]. We believe that more attempts to reason about infinite sets will
be made, and and that it will become an important area of Computer
Science investigations.

Our formalism allows for reasoning about infinite sets within the
broader ASP approach [31, 33]. To make this approach applicable
to specific problems requires the ability to find effective indexing of
infinite sets. For example, if one wants to analyze voice signals, one
would consider sets of points in Euclidean space and graphs of func-
tions in such a space. For various problems in graphics, one may need
to develop techniques to approximate the sets occurring in practical
applications by means of finite sets or finite sets of equations which
are easily manipulated. If one would like to cascade programs, i.e.
use the output of programs as inputs to other programs, one might
want to “approximate” the infinite stable models of a program. In such
situation, we might try to have the stable models of a given program P
be approximated by finite models of a (simpler) program P’. In general,
one needs a way of representing objects or sets by indices which are eas-
ily manipulated and for which there are efficient algorithms on indices
to make decisions about the various relations on the underlying objects
or sets. We have defined one class of programs which involve indices

amaiO5.tex; 17/03/2005; 13:52; p.33

34 Cenzer et al.

of infinite sets, effectively decidable weakly finite recursive ESB Horn
programs with recursive or r.e. constraints, where one can effectively
find an r.e. index of the least model from the index of the program. One
can define other abstract sets conditions which allow one to effectively
compute with programs involving infinite sets. However, more research
needs to be done on effective indexing problems in real application
areas if our formalism is to be applicable.

Acknowledgments

The authors acknowledge partial support of National Science Founda-
tion. The second author has been partly supported by NSF grants I1S
0097278 and 0325063. The third author has been partly supported by
NSF grant DMS 0400507. The authors acknowledge helpful remarks of
anonymous reviewers. This paper constitutes an extended version of a
paper presented at the International Symposium on Mathematics and
Artificial Intelligence, Ft. Lauderdale, January 2004, [10]

References

1. C. Anger, K. Konczak, and T. Linke. NoMoRe: A System for Non-Monotonic
Reasoning under Answer Set Semantics. Proceedings of 6" International
Conference on Logic Programming and Nonmonotonic Reasoning, Lecture
Notes in Computer Science 2173, pages 406—410. Springer-Verlag, 2001.

2. K. Apt and H.A. Blair. Arithmetical classification of perfect models of
stratified programs. Fundamenta Informaticae, 12:1 — 17, 1990.

3. Y. Babovich and V. Lifschitz. Cmodels, 2002. http://www.cs.utexas.
edu/users/tag/cmodels.html.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving, Cambridge University Press, 2003.

5. H.A. Blair, V.W. Marek, and J. Schlipf. The expressiveness of locally
stratified programs. Annals of Mathematics and Artificial Intelligence
15(2):209-229, 1995

6. P.A. Bonatti. Reasoning with infinite stable models. Proceedings of the
17" International Joint Conference on Artificial Intelligence, pages 603-
610, Morgan Kaufmann, 2001.

7. P.A. Bonatti. Prototypes for Reasoning with Infinite Stable Models
and Function Symbols. Proceedings of the 6" International Conference
on Logic Programming and Nonmonotonic Reasoning Lecture Notes in
Computer Science 2173, pages 416-419, Springer-Verlag, 2001.

8. P.A. Bonatti. Reasoning with infinite stable models. Artificial Intelligence
156(1); 75-111, 2004.

9. P. Bruscoli, A. Dovier, E. Pontelli, G. Rossi. Compiling intensional sets
in CLP. Proceedings of 11" Conference on Logic Programming, pages
647-661, MIT Press, 1994.

amaiO5.tex; 17/03/2005; 13:52; p.34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Programming with Infinite Sets 35

D. Cenzer, V.W. Marek and J.B. Remmel. Using logic programs to reason
about infinite sets. Proceedings of the Symposium on Mathematics and
Artificial Intelligence http:rutcor.rutgers.edu/\simamai/aimath04.
D. Cenzer, V.W. Marek and J.B. Remmel. Compactness property for logic
programs. Forthcoming.

D. Cenzer and J.B. Remmel. Index sets for II? classes. Annals of Pure
and Applied Logic 93:3-61, 1998.

D. Cenzer and J.B. Remmel. II$ Classes in Mathematics. Handbook of
Recursive Mathematics, 623-821. Elsevier, 1999.

D. Cenzer, J.B. Remmel and A. Vanderbilt. Locally determined logic pro-
grams and recursive stable models. Annals of Mathematics and Artificial
Intelligence 40:225-262, 2004.

P. Cholewinski. Stratified Default Theories. Proceedings of Computer Sci-
ence Logic Conference, CSL’94. Lecture Notes in Computer Science 933,
pages 456-470, Springer-Verlag, 1995.

A. Dovier, E.G. Omodeo, E. Pontelli, G. Rossi. A Logic Programming
Language with Finite Sets. Proceedings of 8™ International Conference
on Logic Programming pages 111-124, MIT Press, 1991.

A. Dovier, E.G. Omodeo, E. Pontelli, G. Rossi. flogg: a language for
programming in logic with finite sets. Journal of Logic Programming 28(1):
1-44, 1996.

A. Dovier, E. Pontelli, G. Rossi. Checked Intensional sets in CLP. Proceed-
ings of International Conference on Logic Programming, Lecture Notes on
Computer Science 2916, pages 284-299, Springer-Verlag, 2003.

T. Eiter, G. Gottlob and H. Veith. Modular Logic Programs and Gen-
eral Quantifiers. Proceedings of the 4" International Conference on Logic
Programming and Nonmonotonic Reasoning, Lecture Notes in Computer
Science 1265, pages 290-309, Springer-Verlag, 1997.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System
dlv: Progress Report, Comparisons, and Benchmarks. In Proceedings of
Sixth International Conference on Principles of Knowledge Representation
and Reasoning (KR-98), pages 406417, Morgan Kaufmann, 1998.

M. Gelfond and V. Lifschitz. The stable semantics for logic programs.
Proceedings of 5" International Conference on Logic Programming pages
1070-1080, MIT Press, 1988.

M. Gelfond and N. Leone. Logic Programming and Knowledge Repre-
sentation — A-Prolog perspective. Artificial Intelligence Journal 138:3-38,
2002.

E. Goldberg, Y. Novikov. BerkMin: a Fast and Robust SAT-Solver. Pro-
ceedings of Conference on Design, Automation and Test in Europe, pages
142-149, 2002.

P. G. Hinman. Recursion-Theoretic Hierarchies. Springer-Verlag, 1978.
J. JAFFAR AND M. MAHER. Constraint logic programming: A survey.
Journal of Logic Programming, 19-20:503-581, 1994.

G.M. Kuper, L. Libkin and J. Paradaens. Constraint Databases, Springer-
Verlag, 2000.

V. Lifschitz and H. Turner. Splitting a Logic Program. Proceedings of
International Conference on Logic Programming, ICLP’94, pages 23-37,
1994.

amaiO5.tex; 17/03/2005; 13:52; p.35

36

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Cenzer et al.

F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program
by SAT solvers. Proceedings of 18" National Conference on Artificial
Intelligence, pages 112-117, Morgan Kaufmann, 2002.

W. Marek, A. Nerode, and J. B. Remmel. The stable models of predicate
logic programs. Journal of Logic Programming, 21(3):129-154, 1994.
V.W. Marek and J.B. Remmel. Set Constraints in Logic Programming.
Proceedings of T International Conference on Logic Programming and
Nonmonotonic Reasoning, Lecture Notes in Computer Science 2923, pages
167-179. Springer-Verlag, 2004.

V.W. Marek and M. Truszczynski. Stable models and an alternative logic
programming paradigm. In: The Logic Programming paradigm, pages 375—
398, Springer-Verlag, 1999.

M.W. Moskewicz, C.F. Magidan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient SAT solver. Proceedings of Design Automation
Conference pages 530-535. 2001.

I. Niemela. Logic programs with stable model semantics as a Constraint
Programming paradigm. Annals of Mathematics and Artificial Intelligence
25:241-273, 1999.

I. Niemel&, P. Simons, and T. Soininen. Stable model semantics of weight
constraint rules. In Proceedings of 5 International Conference on Logic
Programming and Nonmonotonic Reasoning, Lecture Notes in Computer
Science 1730, pages 317-331. Springer-Verlag, 1999.

I. Niemeld and P. Simons. Extending the smodels system with cardinality
and weight constraints. In Logic-Based Artificial Intelligence, pages 491—
521. Kluwer Academic Publishers, 2000.

P. Simons, I. Niemeld, and T. Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138:181-234, 2002.

R.I. Soare. Recursively Enumerable Sets and Degrees. Springer Verlag,
1987.

C. Spector. Inductively defined sets of natural numbers. In Infinitistic
Methods, pages 97-102. Pergamon Press, 1961.

T. Syrjanen. Manual of Lparse version 1.0, http://saturn.tcs.hut.fi/
Software/smodels

T. Syrjinen. Omega-restricted logic programs. Proceedings of 6" Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning,
Lecture Notes in Computer Science 2173, pages 267-279, Springer-Verlag,
2001.

Address for Offprints: Department of Mathematics, University of Florida,
P.O. Box 118105, Gainesville, FL. 32611-8105

amaiO5.tex; 17/03/2005; 13:52; p.36

