Finding Consistent Global Checkpoints in a Distributed Computation

D. Manivannan, Student Member, IEEE, Robert H. B. Netzer, Member, IEEE, and Mukesh Singhal, Member, IEEE

Abstract—Consistent global checkpoints have many uses in distributed computations. A central question in applications that use consistent global checkpoints is to determine whether a consistent global checkpoint that includes a given set of local checkpoints can exist. Netzer and Xu [16] presented the necessary and sufficient conditions under which such a consistent global checkpoint can exist, but they did not explore what checkpoints could be constructed. In this paper, we prove exactly which local checkpoints can be used for constructing such consistent global checkpoints. We illustrate the use of our results with a simple and elegant algorithm to enumerate all such consistent global checkpoints.

Index Terms—Causality, distributed checkpointing, consistent global states, failure recovery, fault tolerance.

1 INTRODUCTION

Consistency of global states is a recurring theme in distributed systems. A global state is a set of individual process states, one per process, that represents a “snapshot” at some instant of each process’s execution. When global states are periodically recorded or analyzed during execution, they are called global checkpoints. Global checkpoints have applications in many problems [11], such as transparent failure recovery [10], distributed debugging [7], [8], monitoring distributed events [17], setting distributed breakpoints [15], protocol specification and verification [9], deadlock recovery [12], and others [18], [19]. In this paper, we explore a type of global checkpoint that is said to be consistent. A consistent checkpoint is a snapshot of process states that actually occurred simultaneously during the execution or had the potential of doing so [6].

Netzer and Xu [16] proved under what conditions a given set of local checkpoints can be combined with those from other processes to form a global checkpoint that is consistent. These conditions are useful in many algorithms and protocols that record on-the-fly only consistent checkpoints or determine postmortem which global checkpoints are consistent.

To illustrate the problem, consider how to build a consistent checkpoint from an arbitrary set S of local checkpoints drawn from some (but not all) processes. To make the checkpoint global, we must also select one checkpoint from each process not represented in S. Fig. 1 illustrates that a careful choice must be made (a three-process execution is shown; the ∗ are local checkpoints). Given two checkpoints such as A and C, if they are to belong to the same consistent checkpoint, consistency [6] requires that neither causally affect the other; this condition is necessary for A and C to be consistent. In Fig. 1, a casual path exists from A to C, so any global checkpoint constructed from them will never be consistent. In contrast, checkpoints B and C have no causal path between them (they are mutually unordered) and indeed they can be combined with the second checkpoint of P2 to form a consistent checkpoint, shown by the dashed line. One might be tempted to conclude that any set of mutually unordered local checkpoints can always be used to build a consistent checkpoint, but this is not true. Being unordered is not always sufficient to ensure consistency. In Fig. 1, B and D are also unordered, but they cannot be combined in a consistent way. There is no checkpoint in P2 that can be combined with them both while maintaining consistency.

In this paper, we prove precisely which local checkpoints from each process can be combined with those from a given set S to build a global checkpoint that is consistent. Although Netzer and Xu [16] proved the conditions necessary and sufficient for some such consistent checkpoint to exist, they did not explore how to construct it. Building on Netzer and Xu’s results, Wang [18], [19] presents algorithms...
We model distributed computation as having N processes, \(P_1, P_2, \ldots, P_N \), between which messages are delivered reliably but with arbitrary delay. Execution of a process is modeled by three types of events: the send of a message, the receive of a message, and a (local) checkpoint. We use Lamport’s happened before relation [13], \(\text{HB} \), defined over this set of events. If \(a \xrightarrow{\text{HB}} b \), we say that a causal path exists from \(a \) to \(b \). If neither happened before the other, we call them unordered.

A local checkpoint of a process is a distinguished state that happens to be of interest in the problem under consideration. States of interest could be points at which a local predicate becomes true, where a deadlock is detected, or where the process state is checkpointed to disk. Local checkpoints are given as part of the problem; we have no control over where a predicate becomes true. A set of local checkpoints, one from each process, is called a consistent global checkpoint (or just a consistent checkpoint) if none happened before any other in the set. The \(i \)-th \((i \geq 0)\) checkpoint of process \(P_p \) is denoted \(C_{p,i} \). We assume that each process takes a checkpoint before execution begins and after execution ends. We sometimes denote checkpoints by the letters \(A, B, \) or \(C \) for clarity. The \(i \)-th checkpoint interval of process \(P_p \) is all the computation performed between its \((i - 1)\)-th and \(i \)-th checkpoints (and includes \(C_{p,i-1} \) but not \(C_{p,i} \)).

3 Background and Related Work

The definition of consistency states that for a set \(S \) of local checkpoints to be a consistent checkpoint, \(S \) must contain one local checkpoint from each of the \(N \) processes, and no causal path should exist between any two checkpoints in \(S \). However, when \(|S| < N\), having no causal paths between the checkpoints in \(S \) is insufficient by itself to ensure that local checkpoints from processes not represented in \(S \) can be combined with \(S \) to form a global checkpoint that is consistent. Netzer and Xu [16] define a generalization of causal paths called zigzag paths (which we call Z-paths for brevity) and prove that the absence of Z-paths between checkpoints in \(S \) is exactly the condition that guarantees \(S \) can be extended to a consistent checkpoint. Because Z-paths express the exact conditions for consistency, they are a powerful notion for reasoning about consistent states and have been applied recently in several problems [2], [3], [4], [5].

Definition 1. A Z-path exists from \(C_{p,i} \) to \(C_{q,j} \) iff

1. \(p = q \) and \(i < j \) (i.e., one checkpoint precedes the other in the same process), or
2. there exist messages \(m_1, m_2, \ldots, m_n \) \((n \geq 1)\) such that
 a) \(m_1 \) is sent by process \(P_p \) after \(C_{p,i} \)
 b) if \(m_k \) \((1 \leq k < n)\) is received by \(P_p \) then \(m_{k+1} \) is sent by \(P_p \) in the same or a later checkpoint interval \((m_{k+1}\) may be sent before or after \(m_k \) is received), and
 c) \(m_n \) is received by \(P_p \) before \(C_{q,j} \).

A checkpoint \(C \) is said to be in a Z-cycle iff there exists a Z-path from \(C \) to itself.

A Z-path between two checkpoints \(A \) and \(B \) is like a causal path—both are sequences of messages that start after \(A \) and end before \(B \), and both define a transitive relation—but their differences are important.

A causal path exists from \(A \) to \(B \) if there is a chain of messages starting after \(A \) and ending before \(B \) with each message sent after the previous one in the chain is received. Such a chain is also a Z-path, but a Z-path is also allowed to have any message in the chain be sent before the previous one is received, as long as the send and receive are in the same checkpoint interval. Thus, a causal path is always a Z-path, but a Z-path may not be a causal path. Fig. 2a illustrates this difference. There is a Z-path from \(A \) to \(B \) because message \(m_1 \) is sent after \(A \), \(m_2 \) is sent in the same checkpoint interval as \(m_1 \) is received, and \(m_2 \) is received before \(B \) (the path forms a zigzag shape, hence the name). This Z-path is not a causal path.

Another difference stems from Z-paths not always defining a partial order. A Z-path can exist from a checkpoint back to itself (a Z-cycle). In contrast, causal paths never form cycles. In Fig. 2a, a Z-cycle exists involving checkpoint \(C \). Message \(m_3 \) is sent after \(C \), \(m_4 \) is sent in the same interval in which \(m_3 \) is received, and \(m_4 \) is received before \(C \), completing the Z-path from \(C \) to itself (the Z-cycle).

1. Netzer and Xu’s definition only contains the second clause, but it is convenient to also define a Z-path to exist from \(A \) to \(B \) if \(A \) and \(B \) belong to the same process and \(A \) precedes \(B \).
To reason about Z-paths, we use the following notation, motivated by Wang [18], [19].

Definition 2. Let A, B be individual checkpoints and R, S be sets of checkpoints. Let \rightarrow be a relation defined over checkpoints and sets of checkpoints such that

1. $A \rightarrow B$ iff a Z-path exists from A to B,
2. $A \rightarrow S$ iff a Z-path exists from A to some member of S,
3. $S \rightarrow A$ iff a Z-path exists from some member of S to A, and
4. $R \rightarrow S$ iff a Z-path exists from some member of R to some member of S.

Using this notation, the results of Netzer and Xu are easily stated. Note that $S \rightarrow S$ implies the checkpoints in S are all from different processes. (**\rightarrow** denotes not \rightarrow.)

Theorem 1. A set of checkpoints S can be extended to a consistent checkpoint if and only if $S \rightarrow S$.

Corollary 1. A checkpoint C can be part of a consistent checkpoint if and only if it is not involved in a Z-cycle.

4 Finding Consistent Checkpoints

Although Netzer and Xu prove the exact conditions under which a set of checkpoints S can be used to build a consistent checkpoint, they do not discuss how to actually construct the consistent checkpoints containing S. Our results concern this issue. Given a set S of checkpoints such that $S \rightarrow S$, we analyze what other local checkpoints can be combined with S to build a consistent checkpoint.

There are three important observations. First, none of the checkpoints that have a Z-path to or from any of the checkpoints in S can be used because, by Theorem 1, no checkpoints between which a Z-path exists can ever be part of a consistent checkpoint. Thus, only those checkpoints that have no Z-paths to or from any member of S are candidates. We call the set of all such candidates the Z-cone of S. Similarly, we call the set of all checkpoints that have no causal path to or from any checkpoint in S the C-cone of S.

Definition 3. Let S be a set of checkpoints. The Z-cone of S is defined as

$$Z\text{-Cone}(S) = \{A \mid S \rightarrow A \land A \rightarrow S\}. $$

The Z-cone helps us reason about orderings and consistency. To build a consistent checkpoint from S, we must draw local checkpoints only from Z-Cone(S).

Lemma 1. Let S be a set of checkpoints. If $S \rightarrow S$, then Z-Cone(S) contains at least one checkpoint from each process (and $S \subseteq Z\text{-Cone}(S)$).

Proof. From Theorem 1, S can be extended to a consistent checkpoint, so every process has at least one checkpoint that can be used for constructing a consistent checkpoint containing S. All such checkpoints have no Z-path from or to any of the checkpoints in S. By Definition 3, all such checkpoints belong to Z-Cone(S). In particular, $S \subseteq Z\text{-Cone}(S)$.

Since causal paths are always Z-paths, the Z-cone of S is a subset of the C-cone of S, illustrated in Fig. 3 for an arbitrary S. Note that if a Z-path exists from checkpoint C_{p_j} in process P_q to a checkpoint in S, then a Z-path also exists from every checkpoint in P_q preceding C_{p_j} to the same checkpoint in S because Z-paths are transitive (causal paths are transitive as well).

Our second observation is that, although candidates for building a consistent checkpoint from S must lie in the Z-cone of S, not all checkpoints in the Z-cone are usable. If a checkpoint in Z-Cone(S) is involved in a Z-cycle, then, by Corollary 1, it cannot be part of a consistent checkpoint that includes S. We prove below that if we remove from consideration all such checkpoints, then the remaining ones are exactly those that are “useful” in the sense that each can be individually used to build some consistent checkpoint that includes S.

Lemma 2. Let S be a set of checkpoints such that $S \rightarrow S$. Let A be any checkpoint not already in S. Then, $S \cup \{A\}$ can be extended to a consistent checkpoint if and only if $(A \in Z\text{-Cone}(S)) \land (A \rightarrow A)$.

Proof. $S \cup \{A\}$ can be extended to a consistent checkpoint $\equiv (S \cup \{A\}) \rightarrow (S \cup \{A\})$ by Theorem 1 $\equiv ((S \rightarrow A) \land (A \rightarrow S) \land (A \rightarrow A)) \equiv ((A \in Z\text{-Cone}(S)) \land (A \rightarrow A))$. \square

2. These terms are inspired by the so-called light cone of an event e which is the set of all events with causal paths from e (i.e., events in e’s future) [14]. Although the light cone of e contains events ordered after e, we define the Z-cone and C-cone of S to be those events with no zigzag or causal ordering, respectively, to or from any member of S.
Lemma 2 states that, if we are given a set S that $S \rightarrow S$, we are guaranteed that any single checkpoint from the Z-Cone that is not on a Z-cycle can belong to some consistent checkpoint that also contains S. However, our final observation is that, if we attempt to build a consistent checkpoint from S by choosing any subset T of checkpoints from $Z\text{-Cone}(S)$ to combine with S, we have no guarantee that the checkpoints in T have no Z-paths among them. In other words, Z-paths may still exist between members of $Z\text{-Cone}(S)$. Intuitively, we cannot “thread” just any line through the Z-cone and expect it to be consistent with S, even if it avoids Z-cycles. We have one final constraint we must place on the set T: The checkpoints in T must have no Z-paths among them. Furthermore, since $S \rightarrow S$ by Theorem 1, at least one such T must exist.

THEOREM 2. Let S be a set of checkpoints such that $S \rightarrow S$ and let T be any set of checkpoints such that $S \cap T = \emptyset$. Then, $S \cup T$ is a consistent checkpoint if and only if

1. $T \subseteq Z\text{-Cone}(S)$,
2. $T \rightarrow T$, and
3. $|S \cup T| = N$.

PROOF. $S \cup T$ is a consistent checkpoint $\Leftrightarrow ((S \cup T) \rightarrow (S \cup T)) \land (|S \cup T| = N)$ by Theorem 1 and the definition of consistency $\Leftrightarrow ((T \rightarrow S) \land (S \rightarrow T) \land (T \rightarrow T) \land (S \rightarrow S) \land (|S \cup T| = N)) \Leftrightarrow ((T \subseteq Z\text{-Cone}(S)) \land (T \rightarrow T) \land (S \rightarrow S) \land (|S \cup T| = N))$. \hfill \Box

To briefly illustrate an application of our results, we next consider two cases of finding consistent checkpoints. The first is an algorithm to enumerate the set of all consistent checkpoints within the Z-cone of S. Let S be any set of checkpoints such that $S \rightarrow S$, and let T be a consistent checkpoint where T is finally a global checkpoint and it is part-way toward a consistent checkpoint. This means that $T \cup \{C\}$ can itself be further extended, eventually arriving at a consistent checkpoint. Since this further extension is simply another instance of constructing all consistent checkpoints that contain checkpoints from a given set, we make a recursive call (line 14), passing $T \cup \{C\}$ and a $ProcSet$ from which P_q is removed. The recursion terminates when the passed set contains checkpoints from all processes (i.e., $ProcSet$ is empty). In this case, T is finally a global checkpoint and it is added to G (line 10). When the algorithm terminates, all candidates in $Z\text{-Cone}(S)$ that are not on Z-cycles have been used in extending S, so G contains every possible consistent checkpoint that contains S.

Many variants of this algorithm are possible, such as those that compute certain consistent checkpoints without enumerating them all. Such algorithms must effectively compute the Z-cone, which reduces to determining which Z-paths exist in the execution. Tracking Z-paths on-the-fly is difficult and currently remains an open problem, although subsets of Z-paths sufficient to detect parts of the Z-cone can be easily detected [3], [20]. Finding Z-paths postmortem is straightforward by computing a linear-time transformation of the directed graph representing the execution; Wang [18], [19] defines a graph called the rollback-dependency graph (or R-graph) which shows Z-paths in a distributed computation that has terminated or stopped execution. It is easy to find Z-paths and Z-cones from such a graph.

An interesting variant of the algorithm computes the consistent minimal and maximal checkpoints that contain S. Intuitively, these are the “earliest” and “latest” consistent checkpoints containing S that can be constructed. The following is based on Wang [18], [19].

DEFINITION 5. Let S be any set of checkpoints such that $S \rightarrow S$. Let $M = S \cup T$ be a consistent checkpoint, where $T = \{C_{p_1}, C_{p_2}, \ldots, C_{p_k}\}$ and $T \cap S = \emptyset$. Then,
1) M is the maximal consistent checkpoint containing S iff for any consistent checkpoint $M' = S \cup T'$, where $T' = \{C_{p_i,j}, C_{p_j,i}, \ldots, C_{p_k,l}\}$, we have $\forall n: 1 \leq n \leq k, i_n \geq j_n$.

2) M is the minimal consistent checkpoint containing S iff for any consistent checkpoint $M' = S \cup T'$, where $T' = \{C_{p_i,j}, C_{p_j,i}, \ldots, C_{p_k,l}\}$, we have $\forall n: 1 \leq n \leq k, i_n \leq j_n$.

Wang [18], [19] showed that the minimal (maximal) consistent checkpoints containing S are those formed by choosing, from each process not represented in S, the earliest (latest) checkpoint that has no Z-path to or from any member of S. Netzer and Xu [16] construct the minimal checkpoint in one of their proofs but never discuss its properties per se.

In terms of the Z-cone of S, the minimal and maximal checkpoints are exactly those drawn through the "leading" and "trailing" edges of the Z-cone. When $S \not\rightarrow S$, this implies that the Z-cone possesses some interesting properties. The leading and trailing edges always exist and never have Z-paths among them (including any Z-cycles) meaning that they are always consistent.

5 CONCLUSION

The two problems above illustrate that our theoretical foundation is helpful for reasoning about consistency. Our characterization of which local checkpoints are useful can find application in algorithms that must piece together consistent global checkpoints from individual local checkpoints. The notion of the Z-cone, and of which checkpoints within the Z-cone are useful, provides a new understanding of the structure of consistent global checkpoints.

REFERENCES

Robert Netzer received the BSE degree in computer science from the University of Florida, and the MS and PhD degrees, both in computer science, from the University of Wisconsin-Madison, where he also pursued graduate studies in civil engineering.

Dr. Netzer is currently an assistant professor in computer science at Brown University. His research addresses the instrumentation of systems for a wide variety of problems, with a focus on programming and debugging tools. Professor Netzer is a member of the ACM and the IEEE Computer Society.