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Chapter 1 Introduction

Pseudo-random sequences are ubiquitous in modern electronics and information technology. They
are used, for example, as spreading codes in communications systems (such as cellular telephones
and GPS signals), as components for generating keystreams for stream ciphers and other cryp-
tographic applications, as sampling data for simulations and Monte Carlo integration, for timing
measurements in radar and sonar signals and in GPS systems, as error correcting codes in satellite
and other communications, as randomizers of digital signals to eliminate spectral lines, as counters
in field programmable gate arrays, and in power on self tests.

In all cases speed in generating the sequences is important — any extra time spent generating
sequences impacts the speed of the whole system, and thus impacts throughput, or accuracy, or
some other important characteristic. In most cases it is also important that the sequence be able
to be replicated (for example, so a receiver can undo some encoding by a transmitter). But many
desirable characteristics of sequences are more specific to the application. In cryptography we want
sequences that are unpredictable from short prefixes. In CDMA we want families of sequences with
low pairwise correlations. Error correcting codes require families of sequence with large pairwise
Hamming distance and efficient decoding algorithms. Many applications require sequences with
uniform distributions of fixed size patterns. Some, such as Monte Carlo methods, require that
many other statistical tests be passed.

For all of these applications there are solutions that rely on sequences generated by linear
feedback shift registers (LFSRs). As the reader shall see, LFSRs are very high speed generators of
sequences. There is a rich algebraic theory of LFSR sequences that often allows those generators
that have the most desirable properties to be selected. For some applications there are also
solutions that rely on other types of sequence generators such as feedback with carry shift registers
(FCSRs). These are also very high speed generators of sequences. They have an algebraic theory
that parallels that of LFSRs.

The goal of this book is to provide algebraic tools for the design of pseudo-random sequences.
It is meant to be both a text book and a reference book. We present a unified approach based on
algebraic methods, which allows us to simultaneously treat linear feedback shift registers, feedback
with carry shift registers, and many other analogous classes of sequence generators. Part of the
purpose of this book is to provide engineers who have not had a formal education in abstract
algebra with the tools for understanding the modern study of shift register sequences. The requisite
algebraic tools are developed in Chapters 2 through 5, and the main body of the book begins with
Chapter 6.

Although they were preceded by many important papers and technical reports [11, 15, 52,

, , , , ], the publication of “Error correcting codes” [158] by W. W. Peterson

14



and “Shift Register Sequences” [53] by S. Golomb were milestones in the development of linear
feedback shift register (LFSR) techniques for the generation of pseudorandom sequences. These
books explained and exploited the deep connection between the architecture of the shift register
and the mathematics of Galois theory in a way that makes for exciting reading, even today, forty
years later. In Golomb’s book, each “cell” of the shift register is a vacuum tube that can be either
ON or OFF, and the output of the shift register is a pseudo-random sequence of zeroes and ones.
Reading this book, one is tempted to run out and buy the parts to build one of these machines
and watch it run.

One of the most fascinating aspects of this theory concerns the design of shift registers that
produce maximal length sequences, or m-sequences, and the remarkable statistical and correlation
properties of these sequences, which we describe in Chapter 13: besides having maximal length,
each m-sequence a of rank k is also a (punctured) de Bruijn sequence’ and its autocorrelation
function is optimal. It is an amazing fact that the design problem can be completely solved using
the Galois theory of finite fields. Although this fact was known already to L. E. Dickson [37]
(in a slightly different language, of course, since electronic shift registers did not exist in 1919),
it was rediscovered in the 1950’s by the engineering community, and it remains one of the most
compelling illustrations of how an abstract mathematical theory can unexpectedly become the key
to understanding a complex physical system. Similarly, the distribution and correlation properties
of m-sequences turn out to be related to a variety of mathematical abstractions including finite
fields, difference sets (a subject that developed independently, but around the same time [72]) and
even elliptic curves (see Section 13.5.d).

The explosive development of code division multiple access (CDMA) communications, espe-
cially with cellular telephones, has created considerable interest in finding families of pseudorandom
sequences with low cross-correlation between distinct sequences in a given family. In Chapter 14
we discuss some of the more common families, including Gold codes, Kasami sequences, GMW
sequences and Legendre sequences, as well as several more exotic variations on these themes. Our
analysis is more “geometric” than the standard approach. We have only scratched the surface of
this fascinating topic and the reader interested in a more complete study of correlation questions
may wish to consult Golomb and Gong’s recent book [55].

In the years since the publication of Golomb’s book [53], the basic design of shift registers
has been enhanced in several different directions. The “Galois” and “Fibonacci” modes were
developed [159], many ways of interconnecting shift registers were analyzed, and perhaps most

significantly, the binary state vacuum tubes were eventually replaced by cells with many possible
states. Engineers were led, for example, to consider N-ary shift registers, whose cell contents are
taken from the integers modulo NV, or from a finite Galois field, or more generally from an algebraic
ring. It turns out that much of the analysis of shift register sequences goes through in this more

'Each subsequence of length k, except the all-zero subsequence, occurs exactly once in each period of a.
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general setting. In Chapters 6, 13, and 14 we present this general analysis. Although the material
is not new, it is derived from many disparate sources.

It is possible to enhance the basic shift register architecture in yet another way, by the addition
of a small amount of memory. The memory is used as a “carry” in the calculations. For example,
when two sequences of ones and zeroes are added, they can be added as elements of Z/(2) (or
XOR addition) in which 14+1=0, or they can be added as “integers”, in which 1+1 =2 =0+ a
carry of 1. The difference is illustrated by the following example, where carries go to the right:

1100011010 1100011010
1010110110 1010110110
0110101100 000110O00O0T11
mod 2 with carry.
In fact, the summation combiner [167] does exactly the latter: it combines two binary sequences

into a third, using addition with carry. It was originally proposed as a method for creating a
difficult-to-predict bit stream from two relatively easy-to-predict bit streams, for cryptographic
applications.

In an effort to analyze the summation combiner, the authors decided to incorporate this
addition-with-carry into the architecture of a linear feedback shift register. The result was the
feedback with carry shift register (FCSR) [101, , |, described in Chapters 7, 16, and 19.

Around the same time a similar idea began circulating in the random number generation
community, perhaps initiated by G. Marsaglia [130] and A. Zaman [132], and more fully developed
by R. Couture and P. I’Ecuyer [28, 29] and others, where the method became known as “add with
carry” and “multiply with carry” (MWC) random number generators. These approaches appeared
to be different at first because the add-with-carry generators involved only two “cells”, each of
which stores a very large integer, while the FCSR used many cells, each of which stores only a
single bit. But in later papers, architectures were considered which involve (possibly) many cells,
each storing (possibly) large integers, and in this setting the two methods are seen to be identical.
The generation and analysis of FCSR and MWC sequences is covered in Chapters 7 and 16. Galois
and Fibonacci versions of FCSR generators also exist, see Chapter 10.

As in the case of LFSRs, the FCSR architecture can be enhanced by considering cell contents
taken from Z/(p), or a finite field, or even an arbitrary ring. But in these cases, the analysis
becomes considerably more difficult (and interesting). The natural setting for all these architec-
tures is the algebraic feedback shift register or AFSR, for which the general theory is developed in
Chapter 8. In this generality, the theory of AFSRs includes both that of FCSRs (with cell contents
in an arbitrary ring) and LFSRs. But the AFSR architecture also contains a number of new and
interesting special cases as well, some of which are studied in some detail in Chapters 8, 9, 15, 17,
and 20.
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For example, another way in which the FCSR architecture can be enhanced is to delay the
“carry” by a certain number of steps. Here is an example of addition in which the carry is delayed
by one step:

1 11
1 01
011

oo O

1101
1101
1011 01 (1.1)
carry delay +1

It is possible to build hardware FCSR generators that implement this sort of addition; we call
them d-FCSRs? and they are described in Chapter 9. The d-FCSR is a special case of an AFSR,
and although the analysis of the d-FCSR is more difficult than that of the FCSR, it is somewhat
simpler than the general AFSR and is still surprisingly complete.

For another example, the cells of an FCSR, or of a d-FCSR, could be polynomials. This gives
rise to the function field FCSR, as described in Section 8.3.b and Chapter 15. There appears to
be an almost unlimited number of variations on this theme.

As in the case of LFSR sequences, the maximal length FCSR sequences (which we refer to
as l-sequences) have several remarkable properties. Such a sequence is as equi-distributed as
possible, given its period. Although the autocorrelation function of such a sequence is not known
in general, it nevertheless has perfect arithmetic autocorrelation (a function that is the direct
arithmetic analog of the usual autocorrelation function). These properties are investigated in
Chapter 16. In Chapter 17 the analogous questions for maximal length d-FCSR sequences are
considered. The case of AFSR sequences based on a function field is especially surprising: the
ones of maximal length turn out to be punctured de Bruijn sequences with ideal auto-correlations,
but (in the non-binary case) they are not necessarily m-sequences. See Chapter 15.

In Part IV of the book we change gears and consider the “synthesis” problem: given a periodic
sequence a, how can we construct a device (such as an LFSR) that will generate the sequence? The
length of the smallest such LFSR is called the linear span or linear complexity of the sequence a.
The optimal result in this direction is the Berlekamp-Massey algorithm which predicts later terms
of the sequence using the minimum possible amount of data, and it does so very efficiently. It is
well known that this algorithm is “essentially” the same as the continued fraction expansion in
the field of formal power series. In Section 18.2.d the exact relation between these two procedures
is made explicit.

The Berlekamp-Massey algorithm therefore provides a possible technique for uncovering the
keystream in a stream cipher, based only on the knowledge of the plaintext. It is therefore desirable
that such a keystream should have an enormous linear span. Several standard techniques for

20ur original intention was that the d in d-FCSR was an integer indicating the amount of delay, but it has been
since claimed that d stands fro “delay”.
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constructing sequences with large linear span are described in Section 18.5, but the reader should
be aware that this is a rapidly changing field and none of these techniques is considered “secure”
by modern standards.

The continued fractions approach to FCSR synthesis (that is, the construction of an FCSR
that produces a given sequence) simply does not work. However, two successful approaches are
described in Section 19.3. The first is based on the mathematical theory of lattice approrimations,
and the second is based on the extended Euclidean algorithm. These techniques were used to
“break” the summation cipher described above. The problem of AFSR synthesis is even more
difficult, but in Chapter 20 we describe Xu’s algorithm which converges in many cases.

The mathematics behind all this material can be a daunting obstacle. Although we have
included the appropriate mathematical background in Part I of this book, most of the chapters
in the main part of the book have been written so as to be independent of this material, as much
as possible. The reader is invited to start in the middle, on a topic of interest, and to read as far
as possible until it becomes necessary to refer to Part I, using the index as a guide. It may even
be possible to delay the retreat to Part I indefinitely, by skipping the proofs of the theorems and
propositions.
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Algebraic Preliminaries
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Chapter 2 Abstract Algebra

Abstract algebra plays a fundamental role in many areas of science and engineering. In this chapter
we describe a variety of basic algebraic structures that play roles in the generation and analysis
of sequences, especially sequences intended for use in communications and cryptography. This
include groups (see Section 2.1), rings (see Section 2.2), and polynomials over rings (see Section
2.4). We also explore characters and Fourier transforms, basic tools for understanding structures
based on groups and rings (see Section 2.3).

2.1 Group theory

Groups are among the most basic building blocks of modern algebra. They arise in a vast range
of applications, including coding theory, cryptography, physics, chemistry, and biology. They are
commonly used to model symmetry in structures or sets of transformations. They are also building
blocks for more complex algebraic constructions such as rings, fields, vector spaces, and lattices.

2.1.a Basic properties

Definition 2.1.1. A group is a set G with a distinguished element e (called the identity) and a
binary operation x satisfying the following axioms:

1. (Associative law) For all a,b,c € G, (a*b)*xc=ax (b*c).

2. (Identity law) For alla € G, axe=e*xa = a.

3. (Inverse law) For all a € G, there exists b € G such that a b = e. The element b is called
an inverse of a.

A group G is commutative or Abelian if it also satisfies the following axiom.:
4. (Commutative law) For all a,b € G, a*xb=bx*a.
The order of a group G, denoted |G/, is its cardinality as a set.

Proposition 2.1.2. Let G be a group. Then the following statements hold.

1. Ifa,b€e G and axb=¢e then bxa = e.
2. Fvery a € G has a unique inverse.
3. The identity e € G s unique.
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Proof. To prove the first claim, suppose axb = e. Let ¢ be an inverse of b. By associativity we have
(bxa)xb = bx(axb) = bxe = b. Therefore e = bxc = ((b*xa)*b)xc = (bxa)*(bxc) = (bxa)xe = bxa.
To prove the second claim, suppose axb=e =ax*c. Thenb=exb= (b*xa)xb=>bx(axb) =
bx(axc)=(bxa)xc=ex*xc=c.
To prove the third claim, suppose e and f are both identities in G. Then e % f = e since e is
an identity, and e x f = f since f is an identity. Thus e = f. n

Sometimes we use multiplicative notation and write a~! to denote the inverse of a, ab for a b,
a’ = e, and a™ = aa""! for n a positive integer. Then a"a™ = a"™™ and (a™)™ = a"™. If G is
Abelian, it is common to use additive notation in which we write 4 instead of *, —a instead of a™!,
a— b for a+ (—b), and 0 instead of e. Also, Oa = 0 and na = a+ (n — 1)a for n a positive integer.
Then na + ma = (n + m)a and n(ma) = (nm)a. We sometimes write e = eg when considering

several different groups.

Examples:
1. The integers Z with identity 0 and addition as operation is an Abelian group.
2. The rational numbers Q with identity 0 and addition as operation is an Abelian group.

3. The nonzero rational numbers Q — {0} with identity 1 and multiplication as operation is an
Abelian group.

4. If S is any set, the set of permutations of S is a (non-Abelian if |S| > 3) group with composition
as operation and the identity function as identity. The order of the permutation group of S is |S|!.

5. For any n > 1, the set of invertible n x n matrices (that is, with nonzero determinant) with
rational entries is a (non-Abelian if n > 2) group with multiplication as operation and the n x n
identity matrix as identity.

6. If N > 2, a, and b are integers, then a is congruent to b modulo N, written a = b (mod N),
if N divides a — b. This is an equivalence relation on Z. Let Z/(N) denote the set of equivalence
classes for this relation. That is, Z/(N) is the set of sets of the form

a+ NZ={a+ Nb:beZ}.

Then Z/(N) is an Abelian group with the operation (a + NZ) + (b+ NZ) = (a + b) + NZ and
0 + Z as identity. To prove this it suffices to show that this definition of addition is independent
of the choice of representatives a and b (that is, if a + NZ = ¢+ NZ and b+ NZ = d + mZ, then
(a+b)+ NZ = (c+d) + NZ) and that the group axioms for Z/(N) follow immediately from the

21



group axioms for Z. We have |Z/(N)| = N. The elements of Z/(N) are sometimes referred to as
residues mod N.

The set of equivalence classes of elements that are relatively prime to m, denoted (Z/(N))*, is
also an Abelian group, with multiplication as operation and 1 as unit. We denote the order of this
group by ¢(N), Euler’s totient function (or “¢” function). That is, ¢(N) is the number of positive
integers less or equal to than m and relatively prime to m. We also define ¢(1) = 1. We say more
about Euler’s totient function in Section 2.2.d.

Following is a basic fact about groups that we use later.
Theorem 2.1.3. If G is a finite group and a € G, then al®l = e.

Proof. First suppose that G is Abelian. Let us define a function from G to itself by f(b) = ab.
This function is one-to-one (if ab = ac then multiplying by a™! on the left gives b = ¢), so it is also

a permutation of G. Therefore
[[o=][ab=d“]]e
beG beG beG

II®

beG

Multiplying by the inverse of

gives the result of the theorem.
Now suppose that G is arbitrary. Nonetheless,

H={d:i=0,1,--}

is an Abelian group, so af!l = e. Thus it suffices to show that |H| divides |G|. Consider the cosets
bH with b € G. Suppose two of these have a nonempty intersection, bH NcH # (). Then there are
integers 4, j so that ba’ = ca’. It follows from this that every ba* is in ¢cH and every ca® is in bH.
That is, bH = cH. This implies that the set of all cosets bH forms a partition of GG. Since each
bH has cardinality |H|, |G| is a multiple of |H| as desired. O

2.1.b Subgroups

In this section we examine subsets of group that inherit a group structure of their own.

Definition 2.1.4. If G is a group, then a subset H C G is a subgroup if it is a group with the
same operation as G and the same identity as G.
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This means that H is a subset of G such that (1) e € H; (2) if a,b € H, then a + b € H; and
(3) if a € H, then a=! € H. Then the group axioms hold in H. Also, if G is Abelian then H is
Abelian.

For example, the additive group of integers is a subgroup of the additive group of rational num-
bers. The set of cyclic permutations of {1,2,---,n} is a subgroup of the group of all permutations.

If G; and G, are groups with operations *; and *5 and identities e; and e, then their direct
product Gy x Gy = {(a,b) : a € G1,b € Gy} is a group with operation (a,b) * (¢,d) = (a * ¢,b* d)
and identity (eq, es). More generally, if {G; : i € I} is any collection of groups, indexed by a set I,
then the Cartesian product

icl
is a group, again called the direct product of {G; : i € I}. The group operation is defined

coordinate-wise. If all the groups are Abelian, then so is the product. If I = {1,2,---,n} for some
natural number n, then we write

n

[[nGi=][Gi=GixGax-- xG,.

i€l =1

If a € G then we let (a) denote {a’ : i € Z}. This set is an Abelian subgroup, called the subgroup
generated by a. If |(a)| < oo then we say the order of a is this cardinality, |(a)|. Otherwise we
say a has infinite order. Equivalently, the order of a is the least k¥ > 0 such that a* = e, if such
a k exists. A group is cyclic if G = (a) for some a and then a is called a generator of G. Every
cyclic group is Abelian. The group Z/(N) is cyclic with generator 1. It is sometime referred to as
the cyclic group of order N.

We need a basic lemma from number theory.

Lemma 2.1.5. Let a,b be integers. Then there exist integers s,t with ged(x,y) = sx + ty.

Proof. First we may assume that x and y are nonnegative since we can negate x or y without
changing either ged(z, y) or the set of integers of the form sz + ty. We can also assume y < x.
Now we proceed by induction on y. If y = 0, then ged(z,y) = = and we can take s = 1 and
t = 0. Otherwise, let x = ay + z with 0 < z < y. Then by induction there exist integers u, v with
ged(y, 2) = uy +vz. But ged(z,y) = ged(y, 2) = uy +v(z — ay) = v + (u — av)y as claimed. [

Theorem 2.1.6. Every subgroup of a cyclic group is cyclic. Suppose {(a) is a finite cyclic group
with order n.

1. If k is a positive integer, then (a*) is a subgroup of (a) of order n/ged(n, k).
2. If dln and d > 0, then (a) contains one subgroup of order d.
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3. Ifdn and d > 0, then {(a) contains ¢(d) elements of order d.
4. {(a) contains ¢p(n) generators.

Proof. Let H be a nontrivial subgroup of {a). H contains some a* with k& > 0. Let k be the
smallest positive integer with a* € H and let a™ € H. Suppose k does not divide m. Then
ged(k,m) < k and ged(k,m) = sk + tm for some integers s,t. Indeed, every common divisor
of Then

agcd(k,m) _ (ak)s(am)t c H,

which is a contradiction. Therefore H = (a¥). Thus every subgroup of (a) is cyclic.

(1) Let H = (a*) and b = ged(n, k). We have (a*)" = e if and only if n|kr. Thus the order of
H is the least positive r such that n|kr. This is equivalent to (n/b)|(k/b)r, and this is equivalent
to (n/b)|r. That is, the order of H is n/b.

(2) By (1), a subgroup H = (a*) has order d|n if and only if d = n/ ged(n, k), or, equivalently,
d-ged(n, k) = n. Let b= ged(n, k) = sn + tk for some s,t € Z. Then e = a" € H, so a® € H as
above. Since b|k, we also have H = (a®). But b = n/d so H is the unique subgroup of order d.
Conversely, (a™?) is a subgroup of order d, proving existence.

(3) Let n = df. By (1), an element a* has order d if and only if ged(n, k) = n/d = f. This
holds precisely when k = gf with g relatively prime ton/f = d and 0 < k <n. That is, 0 < g < d.
The number of such g is ¢(d).

(4) Follows immediately from (3) with d = n. O

For example, the group Z is cyclic (with generator 1) so every subgroup is of the form mZ =
{mk : k € Z} for some integer m.

2.1.c Homomorphisms

More generally, relationships between groups often arise as functions from one group to another
that preserve all the relevant algebraic structures and operations.

Definition 2.1.7. Let G and H be two groups. A function ¢ : G — H is a homomorphism if
it preserves the group operations. That is, if for every a,b € G we have p(ab) = p(a)p(b). The
image of ¢, denoted by Im(y), is the set of b € H such that there is a € G with p(a) = b. The
kernel of ¢, denoted by Ker(p), is the set of a € G such that p(a) = ey. The homomorphism ¢ is
an endomorphism if G = H. It is an epimorphism or is surjective if it is onto as a set function. It
1s ¢ monomorphism or is injective if it is one-to-one as a set function. It s an isomorphism if it is
both injective and surjective. It is an automorphism if it is an endomorphism and an isomorphism.

If G is a group and a € G, then we can define the function ¢(n) = a”. This function is a
homomorphism and is a monomorphism if and only if a has infinite order. If a has finite order
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m, then ¢ induces a monomorphism from Z/mZ to G. In particular, every infinite cyclic group
is isomorphic to the integers Z and every finite cyclic group is isomorphic to the (additive) group
Z/(m) where m is the order of any generator.

Proposition 2.1.8. Let ¢ : G — H be a homomorphism. Then ¢ preserves identity elements and
inverses. Morever Ker(p) is a subgroup of G and Im(yp) is a subgroup of H.

Proof. To see that ¢ preserves identities observe that ¢(eq) = p(egeq) = p(eq)p(eq). Multiplying
by ¢(eq) ™! then gives ey = p(eg). To see that ¢ preserves inverses, let a € G. Then ey = p(eg) =
o(aa™) = p(a)p(a™) so p(a)™ = p(a™') by uniqueness of inverses. The remaining statements
are left to the reader. O

Proposition 2.1.9. If p : FF — G and ¢ : G — H are homomorphisms, then the composition
Yo : ' — H s a homomorphism.

Proof. For all a,b € F, we have (1po)(a + b) = ¢(p(ab)) = ¢(o(a)p(b)) = ¢¥(p(a))g(e(b)). O

Definition 2.1.10. A pair of homomorphisms ¢ : ' — G and ¢ : G — H is exact (at G) if the
kernel of 1 equals the image of p. A sequence of maps

l1-F—-G—-H-—1 (2.1)

1s a short exact sequence if it is exact at F', G, and H. Here 1 denotes the trivial group with a
single element.

The short exact sequence in (2.1) splits if there is a homomorphism p : H — G so that g - h is
the identity.

Note that in equation (2.1), exactness at F' is equivalent to ¢ being injective and exactness at
H is equivalent to ¢ being surjective.

Proposition 2.1.11. If1 — FF — G — H — 1 is a short exact sequence and all three groups are
finite, then |G| = |F| - |H]|.

Proof. Let ¢ denote the homomorphism from F' to G, and let ¢ denote the homomorphism from
G to H. Since 1) is surjective, there is a subset U of G that maps one to one and onto H. If b is
any element of G, then there is some u € U so that ¢ (u) = 1(b). Then bu~' maps to the identity
in H, sobu™" = a € Im(p). Thus we can write b = au with a € Im(y). Suppose that au = a’v’ for
some a,a’ € Im(p) and u,uv’ € U. Then v'u™' = (a/)"a € ITm(p). It follows that o (u'u™t) = egy,
so ¥(u') = ¢ (u). By the choice of U, we have u = «’. Then also a = a’. It follows that for each b
there is a unique representation in the form b = au. The proposition is follows from this. O
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Proposition 2.1.12. Suppose 1 — F — G — H — 1 s a short exact sequence with ¢ : F' — G
and ¢ : G — H, all three groups are Abelian, and the short exact sequence splits via a homomor-
phism h : H — G, then there is an isomorphism between F' X H and G given by (a,b) — ¢(a)u(b).
Conversely, if G = F'x H, then there is a short exact sequence as in (2.1), where v is the projection
map and ¢ maps a to (a,1).

Proof. In Proposition 2.1.11 we can take U to be the image of u to prove the first statement. The
converse is trivial. O

2.1.d Quotients

If m is any positive integer, then the set of multiples of m, mZ, is a subgroup of the (additive)
group Z. In Sect. 2.1.a the quotient group Z/mZ is defined as the set of equivalence classes of Z
under the following equivalence relation: a = b (mod m) if a — b € mZ.

More generally, suppose G is any group and H is a subgroup of G. Define an equivalence
relation by saying a ~ b if there is an h € H such that b = ah (The proof that this is an
equivalence relation is left as an exercise). The equivalence class of a is aH = {ah: h € H} and
is called the left coset of a. The set of left cosets is denoted G/H. It is not always possible to form
a group out of these cosets (but see Sect. 2.1.e).

In fact, we could have started by defining a ~' b if there is an A € H such that b = ha. This is
also an equivalence relation. The equivalence class Ha of a with respect to this relation is called
the right coset of a, the set of which is denoted H\G. If G is Abelian, then Ha = aH for all a € G.
More generally:

Definition 2.1.13. If H is a subgroup of GG, then H is normal in G if for every a € G, we have
aH = Ha or equivalently, if aha™ € H for every a € G and every h € H.

Theorem 2.1.14. If H is normal in G, then G/H = H\G is a group under the operation
(aH)(bH) = abH . [

In this case, G/ H is called the quotient group of G modulo H. The natural mapping G — G/H
(given by a — aH) is a homomorphism. If the set of left cosets is finite, then we say H has finite

index in G. The number of left cosets (which equals the number of right cosets) is called the index
of H in G. Thus if H is normal in G and of finite index, then G/H is finite and |G/H| equals the
index of H in G. If G is finite, so is G/H, and we have |G/H| = |G|/|H].

Theorem 2.1.15. If p : G — G’ is a homomorphism then the following statements hold.

1. Ker(y) is normal in G.
2. The quotient G /Ker(p) is isomorphic to Im(yp).
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3. Conwversely, if H is a normal subgroup of G, then the natural mapping a — aH is a surjection
from G to G/H with kernel equal to H.
Il

Thus if H is normal in GG, then we have a short exact sequence

l1-H—-G—G/H—1.

2.1.e Conjugacy and groups acting on sets

Two elements a and b in a group G are conjugate if there is an element g € G such that b = gag™?.

This is an equivalence relation on G whose equivalence classes are called conjugacy classes. If G is
Abelian, then every conjugacy class has a single element, but if ab # ba, then both a and bab~! are
distinct elements in the same conjugacy class. Thus the number of conjugacy classes gives some
measure of how far G is from being Abelian. If H and H' are subgroups of GG, we say they are
conjugate if there is an element g € G such that H' = hHg ™.

An action of a group G on a set S is a mapping G x S — S, written (g, s) — ¢ - s, such that
(gh)-s=g-(h-s) for all g,h € G and all s € S. It follows that the identity e € G acts trivially
(e-s=s) and that each g € G acts by permutations. The orbit of an element s € S is the set

G-s={g-s: geG}.

If H C G is a subgroup then G acts on G/H by ¢g-xH = (gx) - H.
If G acts on S, and if s € S, define the stabilizer or isotropy subgroup,

Stabg(s) ={g€ G: g-s=s}.

It is a subgroup of G. If s, € S are in a single orbit then their stabilizers are conjugate. In fact if
s’ = gs then Stabg(s’) = gStabg(s)g™'. The action of G on S is transitive if there is a single orbit,
i.e., for every s, s’ € S there exists ¢ € G such that s’ = ¢g-s. Suppose this to be the case, choose a
“base point” sy € S, and let H = Stabg(sg). This choice determines a one to one correspondence
¢:G/H — S with ¢(gH) = g - sp. The mapping ¢ is then compatible with the actions of G on
G/H and on S, that is, g - ¢(xH) = ¢(g-zH) for all g € G and all zH € G/H. If |G| < o0 it
follows that |S| = |G|/|H| divides |G]|.

The group G acts on itself by translation (g -z = gz) and by conjugation (¢-x = gzg~!'). The
first action is transitive; the second is not, and its orbits are the conjugacy classes of G.

2.1.f Finitely generated Abelian groups

An Abelian group G is finitely generated if there is a finite set V' C G such that every element of
G is equal to a finite product of elements of V. We state without proof the fundamental theorem
of finite Abelian groups (See, for example, Lang [119, p. 46]):
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Theorem 2.1.16. Let G be a finitely generated Abelian group. Then G is isomorphic to a direct
product of cyclic groups.

Corollary 2.1.17. Let G be a finite Abelian group with nm elements, where n and m are relatively
prime positive integers. Then there are groups Hy and Hy with n and m elements, respectively, so
that G is isomorphic to Hy X Hs.

An element ¢ in an Abelian group G is a torsion element if g # 0 and if some finite sum
g+ g+ -+ g = 0 vanishes. That is, if it has finite order. The group G is torsion-free if it
contains no torsion elements.

Corollary 2.1.18. Let G be a finitely generated torsion-free Abelian group. Then G is isomorphic
to a direct product of finitely many copies of Z.

2.2 Rings

Many important algebraic structures come with two interrelated operations. For example, addition
and multiplication of integers, rational numbers, real numbers, and complex numbers; AND and
XOR of Boolean valued functions; and addition and multiplication of n x n matrices of integers,
ete.

Definition 2.2.1. A ring R is a set with two binary operations + and - and two distinguished
elements 0,1 which satisfy the following properties for all a,b,c € R:

1. R is an Abelian group with operation + and identity 0;
2.a-(b-¢c)=(a-b)-candl-a=a-1=a; and
3.a-(b+c)=(a-b)+(a-c) and (b+c)-a= (b-a)+ (c-a) (the distributive law).

It follows that @ -0 =0 for all @, sincea-0=a-(0+0)=a-0+a-0. If 0 =1 then R = {0}
is the zero ring. It is common to denote by RT the Abelian group that is obtained from R by
forgetting the multiplication operation.

A ring R is commutative if a -b = b - a for all a,b € R. Throughout this book, all rings are
commutative unless otherwise stated. We generally write ab for the product a - b.

2.2.a Units and zero divisors

Let R be a commutative ring. An element a € R is a unit if it is invertible, that is, if there exists
b € R so that ab = 1. In this case b is unique. The collection of all units in R is denoted R*. It
forms an Abelian group (under multiplication). An element a € R is a zero divisor if there exists
a nonzero element b € R such that ab = 0. The ring of integers Z has no zero divisors, but only
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1 and —1 are units. However if the ring R is finite then a given element is either a unit or a zero
divisor. Indeed, let ¢, : R — R be the mapping which is given by multiplication by a. If ¢, is one
to one, then it is also onto, hence a is invertible. If ¢, is not one to one, then there exist b # ¢
so that ab = ac or a(b — ¢) = 0, so a is a zero divisor. If a,b € R and ab = 0, then b is said to
annihilate a, and the set of such b is called the annihilator of a, denoted Z,.

Let b € R be a unit. The smallest integer m > 0 such that " = 1 is called the multiplicative
order of b, if such an m < oo exists; otherwise b is said to have infinite order. If b € R has order
m < 0o, if u € R and if ¢ > 0 is the smallest integer such that (b — 1)u = 0 then ¢ divides m.
(For, the group Z/(m) acts transitively on the set {u,bu,---, b lu} with k € Z/(m) acting by
multiplication by b*.) In particular, if s > 0 is relatively prime to m then b* — 1 is not a zero
divisor in R

Definition 2.2.2. An integral domain (also called an entire ring) is a commutative ring with no
zero divisors. A field is a commutative ring in which every nonzero element is invertible.

In particular, a finite integral domain is necessarily a field. Every commutative ring R embeds
in a ring S™!R which has the property that every element is either a zero divisor or is invertible,
cf. Section 2.2.e.

2.2.b Ideals and quotients

Definition 2.2.3. A subring S of a ring R is a subset of R, which is a ring under the same
operations as R, and with the same zero and identity.

If I is an additive subgroup of R (meaning that if a,b € I then a +b € I and —a € I) then
the quotient R/ is the set of equivalence classes under the equivalence relation a ~bifa —b € I.
The equivalence class containing a € R is the coset a + I. Then R/I is an Abelian group under
addition: (a+ 1)+ (b+ 1) = a+ b+ I. However, the multiplication operation on R does not
necessarily induce a well defined multiplication on R/I. For if a’ ~ a, say, ' = a+c and if b’ ~ b,
say, b’ = b+ d (where ¢,d € I) then a't/ = ab+ ad + bc + c¢d which is not equivalent to ab unless
ad 4+ bc + cd € 1. The following definition is necessary and sufficient to ensure this holds for all
a,b€e Rand c,d € I.

Definition 2.2.4. An ideal is an additive subgroup I C R such that for any a € I and for any
b€ R we have ab € 1.

It follows that the set of equivalence classes R/I inherits a ring structure from R if and only
if 1 is an ideal. Two elements a,b € R are said to be congruent modulo I if they are in the same
equivalence class. That is, if a — b € I. Each equivalence class is called a residue class modulo I.

An ideal [ is proper if I # R, in which case it does not contain any units. An ideal [ is
principalif there exists an element a € R such that [ = {ar: r € R}, in which case we write
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I = (a). If I, J are ideals then the sum I + J is the set of all sums a + b where a € [ and b € J.
It is an ideal and is the smallest ideal containing both I and J. The intersection I N J is also an
ideal. The product ideal I1.J is the set of all finite sums > a;b; where a; € I and b; € J. An ideal
I C R is mazimal if I is proper and is not a proper subset of any other proper ideal. An ideal I is
prime if ab € I implies a € [ or b € I. An ideal I C R is primary if I # R and whenever ab € I,
either a € I or b" € I for some n > 1.

A field contains only the ideals (0) and (1).

Theorem 2.2.5. Let R be a commutative ring. Then the following statements hold.

1. Anideal P C R is mazimal if and only if R/ P is a field (called the residue field with respect
to P).

2. An ideal P C R is prime if and only if R/ P is an integral domain. (See Definition 2.2.13.)

3. Every mazimal ideal is prime.

Proof. (1) Let P be maximal and @ € R — P. Then J = {ab+c:b € R,c € P} is closed under
addition and under multiplication by elements of R. It contains P (take b = 0) and a (take b =1
and ¢ = 0) so it properly contains P. By maximality it is not a proper ideal, so it must not be a
proper subset of R. That is, J = R. In particular, 1 € J, so 1 = ab+ c for some b € R and ¢ € P.
Therefore (a+ P)(b+P) =ab+P =1—c+ P =1+ P so a+ P is invertible in R/P. Thus R/P is
a field. On the other hand, suppose R/P is a field and J is an ideal containing P. Let a € J — P.
Then a + P is invertible in R/P, so there is a b € R such that (a + P)(b+ P) = 1+ P. That is,
such that ab = 1+ ¢ for some ¢ € P. But then 1 = ab— ¢ € J. By closure under multiplication by
R, we have R C J. But this contradicts the fact that J is an ideal. Therefore P is maximal.

(2) Let a,b € R. Then (a+ P)(b+ P) =0 in R/P if and only if ab € P. If P is prime, this
says (a + P)(b+ P) = 0 implies a € P or b € P, which impliesa+ P =0or b+ P =01in R/P,
so R/P is an integral domain. Conversely, if R/P is an integral domain, then ab € P implies
(a + P)(b+ P) = 0 which impliesa+ P =0or b+ P = 0. That is,a € Por b € P, so P is a
prime ideal.

(3) This follows from (1) and (2). O

For example, consider the ring of ordinary integers Z. Let I be an ideal containing a nonzero
element. Multiplication by —1 preserves membership in I, so [ contains a positive element. Let
m be the least positive element of I. Suppose that a € [ is any other element of I. Then
ged(m, a) = um + va for some integers u and v, so ged(m,a) € I. We have ged(m, a) < m, so by
the minimality of m, ged(m,a) = m. That is, m divides a. Since every multiple of m is in I, it
follows that I consists exactly of the multiples of m. In particular, I = (m) is principal.

The ideal (m) is contained in the ideal (n) if and only if m is a multiple of n. The ideal (m) is
prime if and only if m is prime. In this case it is also maximal. It is primary if and only if m is a
power of a prime.
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Definition 2.2.6. A function ¢ : R — S from a ring R to a ring S is a ring homomorphism if
w(a+b) = ¢(a)+¢(b) and p(ab) = ¢(a)p(b) for all a,b € R. The homomorphism ¢ is a surjection
(or epimorphism ) if it is onto. It is an injection (or monomorphism) if it is one to one. It is an
isomorphism if it is both an injection and a surjection. It is an endomorphism if R = S. It is an
automorphism if it is an endomorphism and an isomorphism.

The set of automorphisms of a ring S forms a group under composition, denoted by Aut(.S).
More generally, if R is a subring of S (we also say that S is an eztension of R), then the set of
automorphisms of S whose restrictions to R are the identity forms a subgroup Autg(S). The proof
of the following theorem is left as an exercise.

Theorem 2.2.7. If o : R — S is a ring homomorphism, then

Ker(p) ={reR: ¢(r) =0}

is an ideal of R, the image of ¢ is a subring of S, and ¢ induces an isomorphism between R/Ker(p)
and Im(p). Conversely, if I is an ideal of R then the map a — a+1 is a surjective homomorphism
from R — R/I with kernel I.

If f: R— S is a surjective ring homomorphism with kernel I C R, then
0—-I—R—S

is a short exact sequence of additive groups. Sometimes there is also an injection g : S — R such
that fog is the identity function (a right inverse of f). In this case it makes sense to think of S as
a subring of R so that R is an algebra over S. We say that ¢ is a splitting of f.

If R is a ring and a € R, then the annihilator Z, of a is an ideal. It is proper because 1 ¢ Z,,.

2.2.c Characteristic

Let R be a commutative ring. If m is a nonnegative integer, we write m € R for the sum 1+1---+1
(m times). This defines a homomorphism from Z into R. That this function is a homomorphism
can be shown by a series of induction arguments. In fact this is the unique homomorphism from Z
into R, since any such homomorphism is completely determined by the facts that 1z maps to 1g,
and the ring operations are preserved. The kernel of this homomorphism is an ideal in Z, hence
by the example in Section 2.2.b is of the form (m) for some nonnegative integer m. This integer is
called the characteristic of R. For any a € R, we have ma = a+a+---+a (m times). Hence if the
characteristic is nonzero, it is the smallest positive integer m such that ma = 0 for all « € R. If
the characteristic is zero, then no such m exists and Z is isomorphic to a subring of R. Otherwise
Z/(m) is isomorphic to a subring of R. If R is finite then its characteristic is positive since the
sequence of elements 1,2, 3,--- € R must eventually lead to a repetition.
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Theorem 2.2.8. If R is an integral domain then its characteristic is either 0 or is a prime number.
In particular, the characteristic of any finite field is prime.

Proof. Suppose R is an integral domain. Let £ > 0 be the characteristic and suppose k = mn (in
Z), with m,n > 0. Then mn =0in R, so m =0 or n = 0 in R. Suppose m = 0. For any ¢ € R,
the element ¢ + - -+ + ¢ (m times) is mc = 0. By the minimality of k£, we must have m = k and
n = 1. A similar argument holds when n = 0 in R. It follows that k is prime. O]

Lemma 2.2.9. Let R be a commutative ring. If the characteristic k of R is a prime number, and
if q is any positive power of k then

(a+b)¥=a’+0"€R (2.2)
for every a,b € R.

Proof. Suppose k is prime and 0 < m < k. The binomial coefficient

() =

is divisible by k since k appears as a factor in the numerator but not in the denominator. Conse-
quently (a + b)* = a* + b* and equation (2.2) follows by induction. O

If k£ is not prime, then equation (2.2) is generally false.

2.2.d The Ring Z/(N) and primitive roots

In this section we continue the example of the modular integers introduced in Section 2.1.a. Fix
a nonzero integer N. The ring Z/(N) is the (cyclic) group of order N, Z/(N), together with
the operation of multiplication. The same symbol is used for both structures, which often causes
some confusion. The group Z/(N) is sometimes referred to as the additive group of Z/(N). The
characteristic of the ring Z/(N) is |N|.

As in Section 2.2.c, the mapping (mod N) : Z — Z/(N) is a ring homomorphism. If x € Z we
sometimes write T € Z/(N) for its reduction modulo N. Conversely, it is customary to represent
each element y € Z/(N) by the corresponding integer y € Z with 0 < ¥ < N — 1, but note that
this association Z/(N) — Z is neither a group nor a ring homomorphism. It is also common to
omit the “bar” and the “hat”, thereby confusing the integers between 0 and N — 1 with Z/(N).

If m divides N then the mapping (mod m):Z/(N) — Z/(m) is a ring homomorphism. If a, b
are nonzero, relatively prime integers, then the mapping

Z/(ab) — Z/(a) x Z/(b) (2.3)
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given by x — (z (mod a),z (mod b)) is a ring isomorphism. (Since both sides have the same
number of elements it suffices to check that the kernel is zero. But if x is divisible by a and by
b and if a,b are relatively prime, then x is divisible by ab. This is a special case of the Chinese
remainder theorem, Theorem 2.2.18).

Let x € Z. The following statements are equivalent:

1. The element T =z (mod N) € Z/(N) is invertible in Z/(N).
2. The element N = N (mod x) € Z/(x) is invertible in Z/(x.)
3. The integers x and N are relatively prime.

4. There exists n > 0 so that z|(N™ — 1)

5. There exists m > 0 so that N|(z™ — 1)

6. The element T € Z/(N) generates the additive group of Z/(N). That is, the elements
{0,Z, T+ Z,T+T + 7T, - -} account for all the elements in Z/(N).

As we saw in Section 2.2.c, the units in Z/(NN) form an Abelian group under multiplication,
the multiplicative group Z/(N)*. Euler’s totient function, ¢(N) = |Z/(N)*| is defined to be the
number of units in Z/(N). For any y € Z/(N)* there is a least power d, called the order of y
and denoted d = ordy(y), such that y? =1 € Z/(N). It follows from Theorem 2.1.3 that d|¢(N),
so if y is relatively prime to N then y*®™) = 1 (mod N), which is called Fermat’s congruence or

Fermat’s little theorem. The least n,m in (4), (5) is n = ord,(N) and m = ordy(T) respectively.
Lemma 2.2.10. Let N be a positive integer. Then the following statements hold.

1. If N = Hlep:-”i is the prime factorization of N then ¢(N) = Hle o(pi™).
2. ¢(p™) =p"Hp—1) if p is prime.

3. N =3,y o(d).

Proof. The first statement follows from equation (2.3). In the second statement, since p is prime,
the only integers that are not relatively prime to p™ are the multiples of p. There are p™ ! of
these in Z/(p™), which leaves p™1(p — 1) integers that are relatively prime to p, proving the
second statement. (In fact, the group Z/(p™)* is described in Section 4.2.a: it is cyclic of order
p"Hp—1)if p>2. If p=2and m > 3 then it is a product of two cyclic groups, one of order 2

33



(generated by —1) and one of order p™~!, generated by 5.) For the third statement, consider the
set of fractions {1/N,2/N,---, N/N}. They are distinct, positive, and < 1. Reduce each of these
to its lowest terms. Then the denominator of each fraction will be a divisor d of N. For a given

denominator d the possible numerators will be any integer relatively prime to d and < d, so there
are ¢(d) of them. Therefore, adding ¢(d) over all d|N gives N. O

From the comments in the preceding paragraph, it follows that the multiplicative group Z/(N)*
is cyclic if and only if N = p™, 2p™ 2 or 4, where p > 3 is an odd prime. In this case a generator
a € Z/(N)* is called a primitive root modulo N. The number of primitive roots modulo N
is therefore ¢(¢p(N)). The Artin conjecture states in part that each prime number p € Z is a
primitive root modulo ¢ for infinitely many primes ¢q. The following proposition helps enormously
in verifying primitivity modulo a prime power p'. (cf. Section 16.1.)

Lemma 2.2.11. Let p be prime and let s > 1,t > 1,b € Z. Then b is a unit modulo p® if and only
if it is a unit modulo p.

Proof. We may assume that s = 1. If a is a unit modulo p’, then p‘|bc — 1 for some b, so p|bc — 1
as well, and b is a unit modulo p.

Conversely, suppose b is a unit modulo p, so p|bc — 1 for some ¢. We claim by induction that
for all 4 there is a ¢; so that p|bc; — 1. Indeed, for i > 2 by induction let

beir =14 p'~'diy.
Then by the binomial theorem,
(bei )’ = (L4 p ' dim)P =1+ p'dimy + (0 1)*2
for some integer z. But 2(i — 1) = 2i — 2 > 1, so
b(b"~'el_ ;) =1 (mod p')
as claimed. In particular, b is a unit modulo p’. ]

Proposition 2.2.12. Suppose N = p' with p > 3 an odd prime and t > 2. Let 2 < a < N — 1.
Then a is primitive modulo N if and only if a is primitive modulo p*. This holds if and only if a
is primitive modulo p, and p? does not divide a?~+ — 1.

Proof. If a is primitive modulo p!, then by Lemma 2.2.11 every unit b modulo p or p? is a unit
modulo pf. Thus b is congruent to a power of a modulo ¢, and hence also modulo p and p?. Thus
a it is primitive modulo p and p?. We prove the converse by induction on ¢, following [33, Section
4.1 Theorem 2]. Fix ¢t > 3 and suppose that a is primitive in Z/(p®) for all s < ¢t. The order of
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a is a divisor of ¢(p') = p'~}(p — 1), the cardinality of the group of units in Z/(p'). We want to
show that the order of a is not a divisor of p'~!(p — 1)/r, for any prime divisor r of p'~*(p — 1).
First we take r = p. Since

P 1) o) = (mod p'~?)

we have
P ol D pt?

for some ¢ # 0, and c is relatively prime to p since a is primitive for Z/(p'~!). Then
@ ) = (14 ep 2P =14+ p " #1 (mod p)

since (f) is a multiple of p. This shows that the order of @ modulo p' is not ¢(p')/r with r = p.
Now suppose that r is a prime divisor of p — 1 and

@ P=D/" =1 (mod ph).
Let b be a primitive element modulo p’ and a = b* (mod p'). Then
P e=D/" =1 (mod pt)
so p'~1(p — 1) divides kp'~!(p — 1)/r. Equivalently, r divides k. But then

Pt Po=D/r = pept 2 (o-1)/r = (mod p'™1)

as well and this is a contradiction. This proves the first statement.

We have shown that if @ is primitive modulo p’ then a is primitive modulo p, and p? does not
divide a?~! — 1. Now we prove the converse. If p? does not divide a?~! — 1, then the only way that
a can fail to be primitive modulo p? is if @ has order modulo p* dividing p(p — 1) /r for some prime
divisor of p — 1. But as we saw in the previous paragraph, this implies that a has order modulo p
dividing (p — 1)/r, which would contradict a’s primitivity modulo p. O

2.2.e Divisibility in rings

Let R be a commutative ring. If a,b € R then a is a divisor of b if there exists ¢ € R such that
ac = b, in which case we write a|b. The element a is a unit if it is invertible, or equivalently, if it is
a divisor of 1. Elements a,b € R are associates if a = €b for some unit €. A nonzero element ¢ € R
is a common divisor of a and b if c|a and c|b. It is a greatest common divisor of a and b (written
¢ = ged(a, b)) if it is a common divisor and if every other common divisor of a and b divides c.
An element ¢ # 0 is a common multiple of a and b if a|c and ble. It is a least common multiple
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(wri

tten ¢ = lem(a, b)) if it is a common multiple and if it divides every other common multiple of

a and b.
A nonzero element r € R is prime if (r) is a proper prime ideal, meaning that if ab € (r) then

a <€

(r)orb e (r). It is primary if (r) is primary, meaning that ab € (r) implies a € (1) or b" € (r)

for some n > 0. It is irreducible if it is not a unit and if » = ab implies that a or b is a unit. Two
nonzero non-units r, s € R are coprime or relatively prime if (r) + (s) = R or equivalently if there
exist a,b € R so that 1 = ar + bs. See also Theorem 2.2.15.

Definition 2.2.13. Let R be a commutative ring.

1
2

3.

. R is an integral domain (or simply a domain, or entire) if it has no zero divisors.

. R is principal if every ideal in R is principal. It is a principal ideal domain or PID if it is
principal and is an integral domain.

R is a GCD ring if every pair of elements has a greatest common divisor.

R is alocal ring if it contains a unique mazimal ideal (which therefore consists of the set of
all non-units).

R is a unique factorization domain (or UFD, or factorial) if it is an integral domain and
every nonunit a € R has a factorization into a product

a = Hpi (2.4)

of irreducible elements (not necessarily distinct), which is unique up to reordering of the p;s
and multiplication of the p;s by units. That is, if a = [[_, ¢;, then m = n and there is a
permutation o of {1,---,m} so that p; and do(i) are associates.

6. R is a factorization ring if every nonunit a € R has a factorization into a product of irre-

ducible elements, not necessarily distinct, and not necessarily in a unique way. An entire
factorization ring s a factorization domain.

7. R is Noetherian if every increasing sequence of ideals I; C Iy C --- stabilizes at some finite

point, or equivalently, if every ideal is finitely generated.
R is Euclidean if there is a function 6 : R — {0,1,2,---} U {—00} such that (1) for every
a,b € R with a and b both nonzero, we have 6(ab) > 6(a), and (2) for every a,b € R with
b # 0 there exist ¢ € R (the quotient) and r € R (the remainder)
so that

a=qgb+r and o(r) <i(b). (2.5)

Theorem 2.2.14 summarizes the various inclusions among the special types of rings that we
have discussed. We have included the polynomial ring R[z| for ease of reference although it will

not

be considered until Section 2.4.
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Theorem 2.2.14. Let R be a commutative ring and let R[x] be the ring of polynomials with
coefficients in R (see Section 2.4). Then we have the following diagram of implications between
various possible properties of R.

field = Fuclidean = PID = UFD = entire = R[z|entire
4 4
R|x]Euclidean GCD

If R is finite and entire then it is a field. If R is an order in an algebraic number field (see
Section 3.4.c) then it is entire and Noetherian. The following additional implications hold.

PID — Noetherian = factorization
(3 factorization
R[x]Noetherian = Rlz]factorization <= domain+ GCD

Proof. The properties of the polynomial ring R[x] are proved in Lemma 2.4.1 and Theorem 2.4.2.
If R is a field then it is Euclidean with 6(0) = —oo and §(r) = 0 for all nonzero elements r € R.

To show that every Euclidean ring is a PID, let R be Euclidean. Suppose a € R is nonzero.
We can write 0 = ga+r with §(r) < d(a). Suppose that ¢ is nonzero. Then 6(r) = d(—qa) > i(a),
which is a contradiction. Thus ¢ = 0 so » = 0. But then we must have §(0) < d(a) for every a # 0.
In particular, 6(a) > 0 if @ is nonzero. Now let I be a nonzero ideal in R. Let a € I — {0} be an
element such that 6(a) is minimal. There is at least one such element since §(/ — {0}) C N has a
least element (by the well ordering principal). We claim that I = (a). Let b be any other element
in I. Then b = ga + r for some ¢,r € R such that §(r) < §(a). But r =b—qa € I, so r = 0. That
is, b = qa, as claimed. Moreover, if 0 = ab for some nonzero a, then the argument above shows
that b =0, so R is an integral domain.

Now assume that R is a PID. If @ and b are two elements of R, then the ideal (a,b) has a
principal generator, (a,b) = (¢). Thus ¢ divides both a and b, and ¢ = ua + vb for some u,v € R.
Therefore any common divisor of a and b divides ¢ as well. That is, ¢ is a GCD of a and b. It
follows that R is a GCD ring. It also follows that the GCD ¢ can be written in the form ¢ = ua+wvb.

To see that R is Noetherian, let I; C I, C --- be an increasing chain of ideals in R. The union
of the I,s is an ideal, so it is principal,

UpeiIn = (a)

for some a. But there is a natural number n with a € I,,, so the chain stabilizes at I,,.

Suppose that R is Noetherian. We prove that R is a factorization ring. That is, that every
element a € R has a prime factorization. Let S be the set of nonzero elements of R that do not
have prime factorizations, and suppose S is nonempty. Let a € S. Then a is not prime, so we
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can write a = bc with neither b nor ¢ in (a). Since a is in S, either b or ¢ is in S. Repeating
this infinitely gives a chain (a1) C (az) C --- with a; € S and (a;) # (a;11) for every i > 1. This
contradicts the fact that R is Noetherian.

Now we return to the case when R is a PID (and hence a GCD ring and Noetherian and so a
factorization ring) and prove uniqueness of factorizations. Suppose a € R is irreducible and a|bc.
If @ fb, then 1 is a ged of a and b, so we have

1 = ua + vb,

for some u,v € R. Thus ¢ = uac + vbe, so alc. That is, if albe, then alb or ale. In other words, a
is prime if a is irreducible. Suppose some nonunit b € R can be factored in two ways,

k ‘
b= Hpi = qu‘-
=1 =1

Since b is not a unit, we have k > 0 and ¢ > 0. We use induction on k. Since py| Hle ¢, we have
Pk|gn for some n by the primality of py, say ¢, = dp;. By the irreducibility of p and ¢,, d is a
unit. Then Hi.:ll P = d(l_[f:1 i)/ qn, and the result follows by induction. This completes the proof
that a PID R is a UFD.

The implication UFD = GCD is straightforward. Every UFD is an integral domain by
definition. This completes the first diagram of implications.

The implication (finite + entire = field) was proven in Section 2.2.a. An order R in a number
field is a free Z module of finite rank, so the same is true of any ideal in R, hence such an ideal is
finitely generated (as an Abelian group). Thus R is Noetherian.

The proof that (Noetherian = R][z| Noetherian) is fairly long and will be omitted; it is called
Hilbert’s basis theorem, see any book on commutative algebra, for example [3]. The remaining
results involving polynomials are proved in Section 2.4.a. [

Theorem 2.2.15. Let R be a commutative ring and let a,b € R. Then

The element a is prime if and only if it has the following property: if alcd then a|c or ald.
If a is prime and is not a zero divisor, then a is irreducible.

If R is a UFD, then a s prime if and only if a is irreducible.

The elements a and b are coprime if and only if (the image of ) a is invertible in R/(b) (if
and only if the image of b is invertible in R/(a)).

If a and b are coprime, then every common divisor of a and b is a unit.

If R is a PID and if every common divisor of a and b is a unit, then a and b are coprime.
7. If R is a PID and a € R, then a is prime if and only if (a) is mazimal (if and only if R/(a)
is a field).

Lo o~

S &
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Proof. Part (1) is just a restatement of the definition that (a) is a prime ideal.

Now suppose a is prime and is not a zero divisor, and suppose a = cd. Then either ¢ € (a)
or d € (a); we may assume the former holds. Then ¢ = ea for some e € R, so a = c¢d = ead or
a(l —ed) = 0. Since a is not a zero divisor, we have ed = 1 hence d is a unit. This proves (2).

For part (3), first suppose that a € R is irreducible and let ¢d € (a). Then cd = ae for some
element e € R. The right side of this equation is part of the unique factorization of the left side, so
a must divide either ¢ or d. Therefore either ¢ € (a) or d € (a). The converse was already proven
in part (2). (Note that a UFD contains no zero divisors, due to the unique factorization of 0.)

For part (4), if a is invertible in R/(b) then there exists ¢ € R so that ac =1 (mod b), meaning
that there exists d € R so that ac = 1+ db. Hence (a) + (b) = R. The converse is similar.

For part (5), supposing a and b are coprime, we may write 1 = ac + bd for some ¢,d € R. If
ela and e|b then a = fe and b = ge for some f,g € R. This gives 1 = (fc+ gd)e so e is invertible.

For part (6), Suppose R is a PID. Given a, b the ideal (a) + () is principal, so it equals (c) for
some ¢ € R, which implies that c|a and ¢|b. Therefore ¢ is a unit, so (a) + (b) = (¢) = R.

For part (7), we have already shown, in Theorem 2.2.5 that (a) maximal implies that a is
prime. For the converse, suppose that (a) is prime and that (a) C (b) # R. Then b is not a unit,
and a = cb for some ¢ € R. Since the ring R is also a UFD, the element a is irreducible, so ¢ is a
unit. Therefore (a) = (b) hence (a) must be maximal. O

2.2.f Examples

Here are a few standard examples of rings.

1. The integers Z is a Euclidean ring with §(a) = |al.

2. The rational numbers Q, the real numbers R, and the complex numbers C are fields.

3. If k = mn is a composite integer (with m,n > 2) then Z/kZ is not an integral domain since
m-n = 0.

4. If R is a ring and S is a nonempty set, then the set of functions from S to R is a ring with the
operations (f + g)(x) = f(x) + g(x) and (fg)(z) = f(x)g(x). The zero is the function z(x) = 0
for all z, and the identity is the function i(z) =1 for all x.

5. If R is a ring then the collection R[z] of polynomials with coefficients in R (see Section 2.4) is
a ring.

6. Let G be an Abelian group with operation % and identity e. The set F of endomorphisms of G
is a ring with the operations +r = “product” and -g = “composition”. The zero is the function
z(a) = e for all a, and the identity is the function i(a) = a for all a.
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2.2.g The Euclidean algorithm

If R is Euclidean (and hence a GCD domain) via function § : R — {0,1,2,---} U{—oc}, then the
Euclidean algorithm, given in Figure 2.1, computes the ged of any two elements. We assume that
addition and multiplication of elements in R are atomic operations and that given a,b € R, we
can compute ¢, € R as in equation (2.5). The algorithm assumes that a and b are nonnegative.

EucLID(a,b)

begin

while (b # 0) do
Let a=qb+r
(a,b) = (b,r)

od

return(a)

end

Figure 2.1: The Euclidean Algorithm.

The proof of correctness of the Euclidean algorithm is essentially the same as in the integer
case, which can be found in most general texts on algorithms. The time complexity depends on
the ring, and in particular on the maximum time M (d) it takes to compute g and r as in equation
(2.5) when max(d(a),d(b)) < d.

If d = max(d(a),d(b)) decreases by an additive constant € at each stage, then the complexity
is at most O(dM(d)). This is the case when R = FF[z] for a finite field F' and 6(a) = deg(a).
In this case M is the time required to multiply polynomials, say M(d) € O(dlog(d)) using fast
Fourier transforms. The resulting complexity of the Euclidean algorithm is O(deg(a)? log(deg(a))).
However a better bound can be found in this case by taking into account the degrees of the
intermediate quotients. Two degree d polynomials can be divided in time O(d(e + 1)), where e is
the degree of the quotient. Suppose that the sequence of polynomials produced by the algorithm
is ro = a,r1 = b,r9,--+,r,. Then n < d. If r; has degree d;, then the 7th quotient has degree at
most d;_1 — d;. Thus the complexity is in

O(Z di—1(di-1 —d; + 1)) € O(d Z(d@;l —d; + 1)) = O(d(dy — d,, + d)) = O(d?).

=0 i=1

If for some constant € < 1, §(a) is decreased by a factor of € after a constant number ¢ of
steps, then a simple bound on the complexity is O(log(d)M(d)). This is the case when R = Z
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and 0(a) = |a|. However a better bound can be found in this case by taking into account the
actual numbers involved. Two k-bit numbers can be divided in time O(k(¢ + 1)), where ¢ is the
number of bits in the quotient. Suppose that the sequence of numbers produced by the algorithm
is ro = a,r1 = b,r9,---,7,. Then n < k. If r; has k; bits, then the ith quotient has at most
ki_1 — k; + 1 bits. Thus the complexity is in

O3 kicalkios — ki +2)) € Ok S (kiot — ki +2)) = O(k(ko — ko + 2k)) = O(k*) = O(log(d)?).

i=1 =1

Theorem 2.2.16. If R = F[x] for a finite field F, then the complexity of the Fuclidean algorithm
on inputs of degree < d is in O(d?). If R = Z, the the complexity of the Fuclidean algorithm on
inputs of size < d is in O(log(d)?).

If R is a Euclidean domain, then (by Theorem 2.2.14) it is also a PID. If a,b € R, then the
ideal generated by a and b has a generator c. As in the proof of Theorem 2.2.14, ¢ = ged(a, b) and
there are elements u, v € R so that ¢ = ua+wvb. The elements v and v are sometimes called Bézout
coefficients It turns out that with a simple modification, the Euclidean algorithm can be used to
compute the Bézout coefficients. This can be described by keeping track of all the intermediate
information in the computation of the Euclidean algorithm:

ro = a,up = 1,v9 = 0;
ry =b,u; = 0,0y = 1;
and for ¢ > 1
Tit1 = Ti—1 — T4, Ui+1 = Ui—1 — GiU4, Vip1 = Vi—1 — ¢35

The sequence halts with i = n so that r, = 0. The sequence (u;,v;,7;),7 = 0,1,---,n is called
the Bézout sequence of a and b. We have the following facts which we will make use of in Section
19.3.b on rational approximation of N-adic numbers using the Euclidean algorithm.

Lemma 2.2.17.

1. ry >ry> -+ >r, 1 =ged(a,b) > 0.

2. For 0 <1i<n,
u;a + v;b = ;. (2.6)

3. For0<i<n-—1, A
U;Vip1 — U110 = (—1)1. (27)
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4. If v is even then u; > 0 and v; > 0. If is odd then u; > 0 and v; > 0.
5. ur| < ug| < -+ |un| and |vo| < |ui| < -+ vl

6. For 0 <i<n—1, |ujgiry| < b, |vimari| < a, |wric1| < b, and |v;ris] < a.

2.2.h Fractions

The field of rational numbers Q is constructed from the ring of integers Z as the set of all fractions
a/b, where we identify a/b with (ax)/(bx) for any nonzero integer x. A similar construction can
be made in great generality. Let R be a commutative ring. A subset S of R is multiplicative if it
is closed under multiplication. If S is any multiplicative subset of R, define the ring S™'R to be
the collection of all formal symbols a/b (where a € R and b € S), under the following equivalence
relation: a/b ~ a’ /b’ if there exists s € S such that

s(ab’ — ba') = 0. (2.8)
Addition and multiplication of fractions are defined by the usual formulas:
a+a’_ab'+a’b q ad  ad
A Y A

The ring S~ R consists of a single element if 0 € S, so sometimes this case is excluded.

Now suppose that S does not contain any zero divisors (which will always be the case in our
applications). Then equation (2.8) may be replaced by the more familiar equivalence relation:
ab/ = a'b. The natural mapping R — S™'R (which takes a to a/1) is an injection, so S7'R
“contains” R. Every element of S has become invertible in S~'R. If the set S consists of all the
elements that are not zero divisors, then an element of S™!'R is either a zero divisor or else it is
invertible. In this case, the ring S™' R is called the (full) ring of fractions of R. If R is an integral
domain then its ring of fractions is a field, which is called the fraction field of R. See for example,
Section 3.4.7, Section 5.2 and Section 5.4.

2.2.1 Chinese remainder theorem

If Ry and R, are rings then their Cartesian product R; X Ry is a ring under the coordinate-
wise operations of addition and multiplication. The Chinese remainder theorem gives a sufficient
condition under which a ring may be decomposed as a product.

Theorem 2.2.18. Let R be a ring and let Iy, - - -, I}, be ideals such that I; +1; = R for every i # j.
Let
I=n"_1I,.

7=1%J
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Then for every a;,---,a; € R there is an element a € R such that for every i, a = a; (mod I;).
The element a is unique modulo I. Furthermore,

k
R/I=]]R/L.
7=0

Proof. For k = 1 the statement is trivial. If £ = 2, then there are elements b; € I; and by € I, so
that 1 = by + be. Let a = a;by + asb;.
Now suppose k& > 2. For every ¢ let
J#i
For every ¢ > 2 there are elements ¢; € I1 and b; € I; such that 1 = ¢; + b;. In particular,

k
i=2
This product is in I + Ji, so R = I; + J;. Similarly, R = I; + J; for every j. By the theorem in
the case of two ideals, there is an element d; € R such that d; =1 (mod I;) and d; =0 (mod J;).
Then a = a1dy + - - - + agd), satisfies our requirements
For each i there is a reduction homomorphism ; from R/I to R/I;. This induces a homomor-
phism ¢ from R/I to

whose kernel is

Thus ¢ is injective. By the first part it is surjective, hence an isomorphism. This also proves the
uniqueness of a. O

Corollary 2.2.19. Suppose R is a PID and by,---,by € R are pairwise relatively prime. If
ai,---,ar € R, then there exists an element a € R such that for every i, a = a; (mod b;).

Proof. By Theorem 2.2.18 it suffices to show that for each i # j we have (b;) + (b;) = R. The set
(b;) + (b;) is an ideal. Since R is a PID, there is some b € R so that (b;) + (b;) = (b). This says
that b is a common divisor of b; and b;, so b is a unit by assumption. Thus (b;) + (b;) = R. O

By Theorem 2.2.14, Corollary 2.2.19 applies in particular when R is a Euclidean domain. The
case when R = Z is the classical Chinese Remainder Theorem.
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2.2.) Vector spaces

In many settings we have a notion of one algebraic object “acting on” another by multiplication.
For example, a real number 7 acts on the set of points in the plane by (z,y) — (rz,ry).

Definition 2.2.20. A vector space over a field F' is a set V' such that V is an Abelian group with
an operation +, and there is a function - from F' X'V to V such that for all a,b € F and u,v € V

1a-(ut+v)=(a-u)+(a-v);

2. (ab)-u=a-(b-u);

3. (a+0b)-u=(a-u)+ (b-u); and
4. 1-u=u.

It follows from these axioms that for every u € V', 0-u = 0.

For example, the set of points in the real plane is a vector space over the real numbers. If F'is a
field which is a subring of a ring R, then R is a vector space over F' (just use the multiplication in
R for the action of F' on R). If F' is a field and S is a nonempty set, then the set of functions from
S to F'is a vector space over F' with the operations (f+g¢)(x) = f(z)+g(z) and (a- f)(z) = af(x)
forae F,xz €S, and f,g: S — F. Various restrictions can be put on the functions to produce
interesting vector spaces (e.g., continuity if S = F' = R).

Let V' be a vector space over a field F. The elements of V are called vectors. A linear
combination of vectors vy, ve, - -+, v, € V is a vector ajvy + asvs + - - -+ agvg with aq,aq, -+, ay € F.
A set of vectors S C V is linearly independent if the only linear combination of elements of S
that is zero is the one with all the coefficients a; equal to zero. S spans V' if every vector can be
written as a linear combination of elements of S. S is a basis for V' if it spans V and is linearly
independent. The proof of the following is an exercise.

Theorem 2.2.21. Let V' be a vector space over a field F'. If V' has more than one element then
it has a nonempty basis. If S is a basis, then every vector can be written uniquely as a linear
combination of elements of S.

If V has a basis S with a finite number of elements, then we say V' is finite dimensional with
dimension = |S|. In this case it can be shown that every basis has the same number of elements.
In the important case when F'is a subfield of a field E, F is called an extension field. If E is finite
dimensional as a vector space over F', then its dimension is called the degree of the extension and
is denoted [E : F].

Theorem 2.2.22. [f F' is a finite field and V' is a finite dimensional vector space over F' with
dimension d, then |V| = |F|%.
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Proof. Let S be a basis for V. Thus |S| = d. That is S = {v1, v, -, v4} for some vy, vy, - -, vg.
By the previous theorem, the elements of V' are in one-to-one correspondence with the linear
combinations Y% | a;v;, a; € F. There are exactly |F|% such linear combinations. O

Definition 2.2.23. If F' is a field and V and W are vector spaces over F, then a function
L :V — W 14s a homomorphism or us F-linear if it is a group homomorphism and for all a € F
and v € V we have L(av) = aL(v).

If S = {vy,vq,---,v4} is a basis for V, then an F-linear function L is completely determined
by its values on the elements of S since

L (Z aivi) = Z a; L(v;).

On the other hand, any choice of values for the L(v;) determines an F-linear function L. Further-
more, if T'= {wy, ws, -+, w.} is a basis for W, then each value L(v;) can be expressed as a linear
combination

L(vi) = ) _ bijw;
j=1

Theorem 2.2.24. If F' is finite and V and W are finite dimensional with dimensions d and e,
respectively, then there are |F|% F-linear functions from V to W.

The image and kernel of L are Abelian groups, and it is straightforward to check that they are
also vector spaces over F. Their dimensions are called the rank and co-rank of L, respectively. We
leave it as an exercise to show that the rank plus the co-rank equals the dimension of V.

We can identify an element Y. a;v; € V with the column vector (ay,---,aq)" (where the
superscript ¢ denotes the transpose of a matrix), and similarly for an element of W. Then the
linear function L is identified with ordinary matrix multiplication by the matrix B = [b;;]. The
rank of L is the size of a maximal set of independent columns or independent rows of B.

If B is a square matrix, then the determinant of B is defined as usual in linear algebra. In this
case the kernel is nonempty if and only if the determinant is zero.

If V and W are vector spaces over a field F', then the set of F-linear homomorphisms from V' to
W is denoted Homp(V, W). It is again a vector space over F' with F' acting by (a- L)(v) = L(av).
By Theorem 2.2.24, if V' and W are finite dimensional then the dimension of Homp(V, W) is the
product of the dimensions of V' and W.

In the special case when W = F| the dimension of Homp(V,F) is the same as that of V', so
Homg(V, F) and are isomorphic as vector spaces over F' (but not canonically — an isomorphism
depends on a choice of bases). Homg(V, F) is called the dual space of V.
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2.2.k Modules and lattices

The notion of a vector space over a field can be generalized to rings.

Definition 2.2.25. Let (R, +,-,0,1) be a commutative ring. A module over R is an Abelian group
(M, +,0p) with an operation - from R x M to M such that for all a,b € R and u,v € M

1. a-(u+v)=(a-u)+ (a-v);

2. (ab)-u=a-(b-u);

3. (a+b)-u=(a-u)+ (b-u); and
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U =1U.

Again, it follows from these axioms that for every u € V', 0-u = 0.

For example, every Abelian group is a module over the integers (if n € Z*, then n - a equals
the sum of n copies of a). If f is a homomorphism from a ring R to a ring S, then S is a module
over R with the operation a - u = f(a)u.

It is apparent that the notion of basis does not make sense for modules in general — even a
single element of a module may not be linearly independent. However, if there is a finite set of
elements my,---,my € M such that every element of M can be written (perhaps not uniquely)
as a linear combination aymq + --- 4+ apmy with aq,---,a, € R, then we say that M is finitely
generated over R. If M is finitely generated, then the size of the smallest set of generators for M
over R is called the R-rank or simply the rank of M.

A module M over aring R is free if M is isomorphic to the Cartesian product of a finite number
of copies of R. That is, M is free if there are elements mq,---,my € M such that every element
m € M can be represented uniquely in the form

k
m:E cmi, ¢ € R.

i=1
In this case the set mq, -, my is called a basis of M over R.

Definition 2.2.26. A lattice L is the set of integer linear combinations of a collection U =
{uy, -+, ux} of R-linearly independent vectors in R™. The set U is called a basis for L. The
lattice L is full if k = n, which we now assume. Then My is defined to be the matrix whose
rOWS are Uy, Us, - -+, Uy. The volume of the parallelepiped spanned by these vectors is denoted Dy =
| det(My)|, and it is referred to as the volume of the lattice L, or the determinant of L.

It is immediate that a lattice is a free Z-module. A basis for a full lattice L is also a basis for
R™. A full 2-dimensional lattice with basis (5,1), (3,4) is shown in Figure 2.2.k. The following
theorem says that vol(L) is well-defined and it gives a way to tell when a collection of vectors
forms a basis of a given lattice, cf. Chapter 19.
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®

Figure 2.2: A lattice with basis (5, 1), (3,4)

Theorem 2.2.27. Let L be a full lattice in R™. Then vol(L) is independent of the choice of basis.
If V. =Awy, -+, v,} C L is any linearly independent set of vectors in L, then Dy # 0 and it is an
integral multiple of vol(L). Moreover, Dy = vol(L) if and only if V is a basis of L.

Proof. Let U = {uy,---,u,} be a basis of L. Then each v; can be written as an integer linear
combination of the w;. This gives a matrix S with integer entries such that My = SMy. The
determinant of S is an integer so Dy = |det(S)|Dy is an integral multiple of Dy. If V' is also

a basis of L then we similarly obtain a matrix 7" with integer entries such that My = T My.
This implies T'S = I so the determinants of S and T are integers with integer inverses, hence
|det(S)| = 1 and Dy = Dy. This proves the first two statements.

For the last statement, suppose U C L and V' C L are collections of n linearly independent
vectors, suppose U is a basis of L, and suppose Dy = Dy. We claim that V is also a basis of
L. As above, write V' = SU where S is a matrix of integers. Then det(V) = det(S) det(U) so
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det(S) = £1. By Cramer’s rule, the inverse of S consists of rational numbers whose denominators
are det(S), so S7! also has integer entries. Hence, the equation U = S™!'V expresses the u; as
integer linear combinations of the v;, so V' is also a basis for L. O]

The proof of the following fact about lattice bases may be found in [I7] Lemma 1, Section 2.6.

Theorem 2.2.28. Let L C K C R"™ be full lattices. Then K/L is a finite Abelian group. Let

U, -, Uy and vy, - -+, v, be bases of L and K respectively. Fach u; is an integer linear combination
of the vectors v;, say, u; = Ajpvy + -+ Ayv,. Then the matriv A = (Aij) has integer entries and
|K/L| = | det(A)]. O]

In a lattice, linear dependence over R implies linear dependence over Z.

Lemma 2.2.29. Let uqy,---,u; be a set of vectors in R™ that is linearly independent over R. Let
v be a vector in the Z-span of uq,---,ur and suppose that v is in the R-span of uy,---,up, with
¢ < k. Then v is in the Z-span of uy,- -+, uy

Proof. Write v = ayjuy + - - - + agug with each a; € Z, and v = byuy + - - - + byuy with each b; € R.
By the uniqueness of the representation of a vector as a linear combination of a set of linearly
independent vectors over a field, we have a1 = by, a9 = by,---,ap =byand ap 1 =---=a=0. O

For any positive real number r, let B,.(z) C R" denote the (closed) ball of radius r, centered
at x € R". A subset L C R" is discrete if for every x,r the set B,.(x) N L is finite.

Theorem 2.2.30. Fvery lattice L € R™ s discrete.

Proof. Any lattice is contained in a full lattice, so we may assume L is full, say with basis uq, - - -, uy,.
Define f : R" — R" by f(aju; + -+ + ayu,) = (a1, a2,--+,a,). Then f maps the lattice L
isomorphically to the standard lattice Z™ C R" consisting of vectors with integer coordinates. For
any x,r the image f(B,(x)) is compact, hence closed and bounded, so it is contained in some
n-cube with integer vertices and with edges of some (possibly very large) integer length, D. Such
a cube contains (D 4+ 1)" integer vertices. Therefore B,.(z) contains no more than (D + 1)™ lattice
points in L. O

We leave as an exercise the proof that every discrete Z-module in R™ is a lattice. This provides
an alternate characterization of lattices that is sometimes used in the literature as definition.
Although we will not need to use it, we state for completeness the following theorem of Minkowski,

Theorem 2.2.31. Let L C R" be a full lattice and let X C R™ be a bounded convex subset that is
centrally symmetric. If vol(X) > 2"vol(L) then X contains a nonzero element of L.
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Sometimes a module M over a ring R has the structure of a commutative ring. If the function
a — a- 1y is a ring homomorphism, then we say that M is a (commutative) S-algebra. For
example, every commutative ring is a Z-algebra. If R is a subring of a ring R, then R’ is an
R-algebra. If R is commutative ring and S is a multiplicative set in R, then S™'R is an R-algebra.
More generally, if [ is an ideal of R and R/I is a subring of a ring R’, then R’ is an R-algebra.

2.2.1 Inverse limits

The notions of directed system and inverse limit provide a powerful mechanism for studying infinite
sequences.

Definition 2.2.32. Let R be a ring and let (P, <) be a partially ordered set. A directed system
of modules over R indexed by P is a set of modules {M, : r € P} and, for each pair p,q € P with
p < q, a homomorphism ji,, : My, — M,. If p < q <1, then we must have fi,, = [tgpolirq-

If {M, : r € P} is a directed system of modules over R indexed by P, then let the inverse limit
of the system be

lim M, =lim {M, :r € P} = {Z € HMT i p < g, then p,,(2,) = zp} :
reP

Here 2, denotes the pth component of z € [], .p M,..

Theorem 2.2.33. The set lim M, is a module. For each q € P there is a homomorphism
@q : lim M, — M,

s0 that pp = figpepq whenever p < q.
That is, the following diagram commutes.

lim M,
2T
M, M,
Hq,p

If N is any R-module and {7, : p € P} is a set of homomorphisms such that 7, = i, ,°7, whenever
p < q, then there is a unique homomorphism 7 : N — lim M, so that 7, = @po1. That is, the

following diagram can be completed to a commutative diagram.
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If also the M,’s are R-algebras and the homomorphisms p,, are R-algebra homomorphisms, then
lim M, is an R-algebra

Proof. Any Cartesian product [] .p M, of R-modules is an R-module, and lim M, is a subset

that is closed under addition and scalar multiplication, so is also an R-module. The function ¢, is
simply the restriction of the projection on M, to lim M,. The commutativity of the first diagram

follows from the constraint on the elements of lim M,..

If N and {7,} are as in the second condition and a € N, then we define 7(a) to be the element
of [],ep M, whose rth component is 7,(a). That 7(a) € lim M, follows from the commutativity

of the 7, and the p,,. It is immediate that the second diagram commutes and that 7 is unique.
The extension to R-algebras is straightforward. O

In the language of category theory, lim M, is a universal object for the directed system { M, :

r € P}. This theorem often allows simple proofs that certain rings defined by different infinite
constructions are isomorphic.

2.3 Characters and Fourier transforms

The Fourier transform can be defined in tremendous generality. In this section we describe the
main properties of the Fourier transform for finite Abelian groups.
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2.3.a Basic properties of characters

Definition 2.3.1. A (complex) character of an Abelian group G is a group homomorphism from
G to the multiplicative group C* = C — {0} of the complex numbers. That is, it is a function
X @ G — C such that x(a + b) = x(a)x(b) for all a,b € G. Such a character is nontrivial if
x(a) # 1 for some a. The trivial character is denoted 1, and the collection of all characters of G
is denoted G.

The group operation in an Abelian group is usually denoted “+”, and this can lead to some
confusion since a character takes values in a multiplicative group. In particular, if y is a character
of G then x(mg) = x(¢9)™ (for any integer m), and x(0) = 1. For example, if G = Z/(2) then
there is a unique nontrivial character x and it converts {0, 1} sequences into {£1} sequences. If
G is a finite Abelian group then |x(g)| = 1 for all ¢ € G (since x(¢)!“! = 1) so x takes values in
the set pq| of roots of unity. It follows that x(—g) = X(g) (complex conjugate) for all g € G.

The set of characters G of a group G is itself a group with group operation defined by

(X1 - x2)(a) = x1(a)xa(a)

and with the trivial character as identity. If G = Z/(IN) is the additive group of integers modulo
N then the group G of characters is also cyclic and is generated by the primitive character x (k) =
e? /N for k € Z/(N). If G = G| x Gy is a product of two groups then G =G, x Gs. Specifically,
if y is a character of G then there are unique characters x1, x2 of G1, G (respectively) such that

X(91,92) = x1(91)x2(g2), namely x1(g1) = x(g1,1) and xa(g2) = x(1,92) (for any g; € G, and
g2 € G2). From this, together with the fundamental theorem for finite Abelian groups 2.1.16, it
follows that the collection G of characters of a finite Abelian group G is itself a finite Abelian
group which is isomorphic to G. (The corresponding statement for infinite Abelian groups is false:
for example, any nonzero x € C defines a character of the integers Z by setting x(m) = z™.)

Proposition 2.3.2. Let G be a finite Abelian group, let x : G — C* be a character, and let g € G.

Then .
S =1l i 21 29)
and
v ={ o o 470 2.10)
peG

Proof. If x is nontrivial, there exists a € G with y(a) # 1. Then

X(@) Y x(h) = x(ah) = x(I)

heG heG heG
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SO

(1—x(a)) > _x(g) =0.

heG

For the second statement, note that g determines a character 1, of G by the equation Ye(x) = x(9).
This character is nontrivial precisely when g # 0. In this case, the sum is >z t,(x), which is
zero by the first part of the lemma. O]

Corollary 2.3.3. If G is a finite Abelian group and if g,h € G with g # h, then there exists a
character x such that x(g) # x(h).

Proof. If x(g — h) =1 for every x € @, then summing over all characters gives |G|. By equation
(2.10) we conclude that g —h = 0. O

Corollary 2.3.4. (Orthogonality relations) If G is a finite Abelian group and if 1, x € G are

distinct characters then
> w(g)x(g) = 0. (2.11)

If g, h € G are distinct elements then

> x(g9)x(h) = 0. (2.12)

Proof. The first equation follows by applying Proposition 2.3.2 to the character ¢y ~!. The second
equation is ) x(g — h) = 0, also by Proposition 2.3.2. O

2.3.b Fourier transform

Let G be a finite Abelian group and f : G — C be a function. Its Fourier transform f: G—Cis
defined by

700 =" x(9)f(g).

geG

There are three standard properties of the Fourier tranform. First, the inversion formula

f(g) = %l > Fooxts) (2.13)

XEG

expresses an arbitrary function f as a linear combination of characters, so in particular, the char-
acters span the group C[G] of complex-valued functions on G. Equation (2.13) follows immediately
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from the orthogonahty relation for characters, for the sum on the right hand side is

‘sz x(9) |G‘Zf )Y x(h—g) = fl9)

xe@ heG heq e

by equation (2.10). Second, the convolution formula

~

Fh=Fxh (2.14)

expresses the product of f,ﬁ as the Fourier transform of the convolution

n(y) = f9hly —

geG

Finally, Parseval’s formula says that for any function f : G — C,

G @) =Y 1F0I (2.15)

geG Xe@

To see this, multiply f(x) Zg x(9)f(g) by its complex
conjugate, 35, X(W)F(h) o get

S0P ZZZf (9)f(h) Zf ()Y x(9)x(h)

The inner sum vanishes unless g = h, which leaves |G|}, f(g) f(g) as claimed.

If G=Z/(N) is a cyclic group then a choice ( € C of primitive N-th root of unity determines
an isomorphism G = G which takes 1 to the character x1 with x1(k) = ¢*. The other nontrivial
characters x,,, are powers of this: Xm( )= (™. If f: G — C is a function, its Fourier transform
f may be considered as a function f : G — C by writing f ( ) rather than f(Xm) Thus

= Z_gmkf(k;), (2.16)

Finally we remark that throughout this section, it is possible to replace the complex numbers
C with any field K, provided K contains |G| distinct solutions to the equation z/¢! = 1. No
changes to any of the proofs are needed; see Section 3.2.h. The resulting function J?is defined on
all K-valued characters x : G — K*. If K is a finite field then f is called the discrete Fourier
transform.

A generalized discrete Fourier transform, applicable when z/¢l — 1 has repeated roots in K,

is described in Section 18.4.b. Applications of the Fourier transform appear in Sections 13.4 and
18.3.
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2.4 Polynomials

In this section we describe some of the basic properties of the ring of polynomials. The polynomial
ring is among the most fundamental algebraic constructions. It is needed for much of the analysis
of shift register sequences.

2.4.a Polynomials over a ring

Throughout this section R denotes a commutative ring. A polynomial over R is an expression
d
f=f(z)=ao+az+aa®+- - +a’ = Zaixl
=0

where ag, a1, --,aq € R and z is an indeterminate. The a; are called the coefficients of R. When
writing polynomials we may omit terms whose coefficients equal zero. We may also write the terms
in a different order. If a; # 0, then we say that f(z) has degree d = deg(f(x)). In this case aq
is called the leading coefficient of f(x). We say deg(0) = —oo. If deg(f(z)) = 0 then f(x) is a
constant polynomial. If ag = 1 then f(x) is monic. The term ay is called the constant term. The
value of f(x) at an element b € R is f(a) = Z?:o a;b'. An element a € R is a root of f(x) if
fla)=0. If g(z) = D5, bz is a second polynomial over R, then we define

max(d,e)

(f+9)(x) = f(2) +g(x) = D (ai+b)a’

1=0

(where we may have to extend one of the polynomials with zero coefficients so that this makes
sense) and
d+e min(d,)

=0 \ j=max(0,i—e)

The set of polynomials over R is denoted R[z|. The operations of addition and multiplication
make R[x] into a ring whose zero is the polynomial with every a; = 0, and whose identity is the
polynomial with ag = 1 and a; = 0 for ¢« > 1. The proof of the following lemma is straightforward.

Lemma 2.4.1. If f(z),g9(x) € R[z], then deg(f + ¢g) < max(deg(f),deg(g)) with equality if
deg(f) # deg(g). Also, deg(fg) < deg(f) + deg(g), and equality can fail only when the product of

the leading coefficients of f and g equals zero. In particular, if R is an integral domain then so is
Rlz].

o4



If R is an integral domain, then the units in R[z] are exactly the polynomials with degree zero
and whose constant terms are units of R. This is false in general. For example, if R = Z/(4), then
(1+2x)*> =1, so 1+ 2x is a unit with degree one. The following result says that sometimes we
can perform division with remainder in R[z].

Theorem 2.4.2. (Division Theorem for polynomials)
Let f(x),g(x) € R[x]. Suppose the leading coefficient of g is a unit in R. Then there exist
unique polynomials q,r € R[x] such that deg(r) < deg(g) and

fx) = q(x)g(z) +r(z).

Proof. By induction on the degree d of f. If deg(f) < deg(g), take ¢ = 0 and r = f. Otherwise,
suppose f has leading coefficient a4. Suppose g has degree e < d and leading coefficient b.. Then
we have f(z) = agb;'z?¢g(x) + f'(x) for some polynomial f’. The degree of f’ is less than the
degree of f, so by induction we have f' = ¢'g + r. It follows that f = (agb;' + ¢')x% g + r. For
uniqueness, suppose f = q1g+1r1 = g2g + 12 with deg(r;) < deg(g). Then 0 = (¢1 — q2)g + (11 —72).
The leading coefficient of ¢ is invertible, and deg(r; — r2) < deg(g). It follows that the leading
coefficient of q; — 9 is zero, that is, g1 — g2 = 0. Therefore r; — ry = 0. n

Corollary 2.4.3. If R is a field then R[z| is a Euclidean domain with 6(f) = deg(f).

Theorem 2.4.4. If a is a oot of f(x) € Rlx], then there exists a polynomial q(x) € R[z| such
that

f(@) = (x = a)q(x).
If R is an integral domain, then the number of distinct roots of f is no more than the degree of f
(but see exercise 16).

Proof. Use the division theorem (Theorem 2.4.2) with ¢ = # —a. The remainder r has degree zero
but has a as a root. Thus r is zero. If R is an integral domain and if b # a is another root of f(x)
then b is necessarily a root of ¢(x). So the second statement follows by induction. O

The following theorem completes the proof of Theorem 2.2.14.

Theorem 2.4.5. Suppose R is a GCD ring and a factorization domain. Then Rlx] is a factor-
1zation domain.

Proof. We claim that every f € R[x] can be factored into a product of irreducibles. First we show
that every f € R[z] has an irreducible divisor. Suppose not, and let d be the smallest degree of
an element f € Rx] that has no irreducible divisor. Since R is a factorization domain, d > 0.
Moreover, f is reducible. That is, f = gh with neither g nor A a unit. The elements g and h
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have no irreducible divisors since such a divisor would be a divisor of f as well. In particular,
deg(h) > 0. But then deg(g) < deg(f) since R is an integral domain and this contradicts the
minimality of deg(f).

Now let f be any element in R[x]. We already know that if f has degree zero, then it has
an irreducible factorization, so let f have positive degree. Let a be the greatest common divisor
of the coefficients of f and let ¢ = f/a. If g has an irreducible factorization, then we obtain
an irreducible factorization of f by multiplying those of g and a. Thus we may assume that the
greatest common divisor of the coefficients of f is 1.

Now we use induction on the degree of f. If f has degree 1, then it is irreducible since no
non-unit of R divides f other than an associate of f. If f has degree greater than 1, then by the
first paragraph of this proof f has an irreducible divisor h. But h has positive degree so f/h has
degree less than deg(f). By induction f/h has an irreducible factorization. Multiplying this by A
gives an irreducible factorization of f. m

A root a of polynomial f is said to be simple if a is not a root of f(z)/(z — a).

Lemma 2.4.6. Let ¢ = >.1" gix* € Rlz] be a polynomial with coefficients in R. Consider the
following statements

1. qo s tnvertible in R.

2. The polynomial x is invertible in the quotient ring R[x]/(q).

3. The polynomials q(x) and x are relatively prime in the ring R|x].

4. There exists an integer T > 0 such that q(x) is a factor of x7 — 1.
5. There exists an integer T > 0 such that 27 =1 in the ring R[x]/(q).

Then statements (1), (2), and (3) are equivalent and if they hold, then

e = =gy (@ gt g™ )
in R[z]/(q). Statements (4) and (5) are equivalent (and the same T works for both) and x=1 = 27!
in R[x]/(q). Statement (4) (or (5)) implies (1), (2), and (3). If R is finite then (1) (or (2) or
(3)) implies (4).(5).

Proof. The statements are all straightforward except (possibly) the last one. Suppose that R is
finite. Then the quotient ring R[x]/(q) also contains finitely many elements so the powers {z"} of
x in this ring cannot all be different. Hence there exists T such that 2" = 2™ (mod ¢) for all
sufficiently large n. Under assumption (2) this implies that 27 = 1 (mod ¢). In other words, ¢
divides the polynomial 7 — 1, as claimed. O

When condition (4) (or (5)) in Lemma 2.4.6 holds, the smallest T" such that ¢(z)|(z” — 1)
is called the order of the polynomial ¢q. This is admittedly confusing terminology since, in the
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language of group theory, the order of the polynomial ¢ is the order of x in the group (R|[x]/(q))*.
If condition (4) does not hold, then one may say that ¢ does not have an order, or that its order
is infinite. (For example, if R = Q the polynomial ¢(z) = = — 2 has infinite order.)

The following theorem will be useful when we discuss roots of unity.

Theorem 2.4.7. Let a and b be positive integers. Then over any ring R the polynomial z* — 1
divides x° — 1 if and only if a divides b.

Proof. By the Division Theorem for integers, we can write b = ga + r with 0 < r < a. Then

2 — 1= (b a2 ) (2% — 1) + 2" — L
Sine deg(2” — 1) < deg(x® — 1), it follows that 2% — 1 divides 2 — 1 if and only if 2" — 1 = 0. This
holds if and only if » = 0, hence if and only if a divides b. O]

2.4.b Polynomials over a field

Theorem 2.4.8. If F' is a field, then F[z] is Euclidean with §(f) = deg(f). FEwvery ideal in F|x]
has a unique monic principal generator. Any f(x) € Flx] can be written in the form

f(z) = api'ps? - - - pi*

where a € F, the p; are distinct monic irreducible elements of F|x|, and the e; are positive integers.
This representation is unique apart from changing the order of the p;.

Proof. 1t follows from Theorem 2.4.2 that F[x] is Euclidean. It is also principal and is a UFD by
Theorem 2.2.14. Each irreducible polynomial has a unique monic associate (divide by the leading
coefficient). This accounts uniquely for a. ]

It also follows from Theorem 2.2.14 that F[z] is a GCD ring, but to be precise we have the
following theorem.

Theorem 2.4.9. Let F' be a field and fi,---, fr € Flz], not all zero. There is a unique monic
g € Flx] such that (1) g divides every f; and (2) if h divides every f; then h also divides g.
Moreover, g can be written in the form

g=nhifi+hafo+--+hifi (2.17)
for some hy, ho, -+ hy € Flx].

Proof. Let I = {hifi1 + hofo+ -+ hifr : b1, he,---, hy € Flz]}. Then I is an ideal in Flz], so
by Theorem 2.4.8, I has a unique monic generator g. Since g € I, g can be written in the form in
equation (2.17). It follows that any h that divides every f; also divides g. Since f; € I, g divides

Ji- ]
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We write g = ged(fi,- -+, fr). It can be found by the usual Euclidean algorithm by repeatedly
using Theorem 2.4.2. There is also a notion of least common multiple in F[z]. The following
theorem later allows us to construct finite fields of all possible sizes. The proof is omitted.

Theorem 2.4.10. If F' is a finite field and d is a positive integer, then there is at least one
irreducible polynomial of degree d in F|x].

If F C E are fields and if a € E is an element that is the root of some polynomial with
coefficients in F', then we say a is algebraic over F. A polynomial f € F|x] is called a minimal
polynomial of a (over F) if it is monic, if f(a) = 0 and if it is a polynomial of smallest degree with
these properties.

Theorem 2.4.11. Suppose a is algebraic over F. Then it has a unique minimal polynomial
f € F[z|. The minimal polynomial f is also the unique monic irreducible polynomial in F|x]
having a as a root. If g € F|x] is any other polynomial such that g(a) = 0 then f divides g in

Proof. If two monic polynomials f, g € F[z] have the same (minimal) degree and both have a as
a root then f — g has smaller degree, which is a contradiction. If f is a minimal polynomial of a
and f = gh, then 0 = f(a) = g(a)h(a) so g(a) = 0 or h(a) = 0. By the minimality of f, whichever
factor has a as a root must have the same degree as f, so f is irreducible.

Now suppose f is a monic irreducible polynomial such that f(a) = 0. The set

J={h € Flz]: h(a) =0}

is an ideal, so it is principal. It contains f, but f is irreducible, so J = (f) is the ideal generated
by f, and f is the unique monic polynomial with this property. If g(a) = 0 then g € J so g is a
multiple of f. In particular, f is the minimal polynomial of a. O

More generally, we can think consider the “operator” on rings that takes a ring R to the
polynomial ring R[x]. Strictly speaking this is not a function since there is no set of all rings.
Rather, it is a (covariant) functor on the category of rings. We shall not, however pursue these
notions in this book.

2.5 Exercises

1. Prove that if G; and G5 are groups, then the direct product G; x G5 is a group. Prove that
G X G4 1s Abelian if G; and G5 are Abelian.

2. Describe the set of all subgroups of the group Z/mZ.
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3. Let ¢ : G — H be a group homomorphism. Prove that Ker(y) is a subgroup of G and Im(y)
is a subgroup of H.

4. Let G be a group and let H be a subgroup of G. Prove that the relation defined by a ~ b
if there is an h € H such that b = ah is an equivalence relation. Find an example where the
definition a HbH = abH does not make the set of equivalence classes into a group.

5. Prove that a subgroup H of a group G is normal if and only if for every a € G and h € H, we
have aha™ € H.

6. Theorem 2.1.15: Let ¢ : G — G’ be a homomorphism.

a. Prove that Ker(y) is normal in G.

b. Prove that the quotient G/Ker(y) is isomorphic to Im(y).

c. Conversely, prove that if H is a normal subgroup of G, then the map a — aH is a surjection
from G to G/H with kernel equal to H.

7. Show that the set of endomorphisms of an Abelian group is a ring.
8. Theorem 2.2.7:

a. Suppose ¢ : R — S is a ring homomorphism. Prove that Ker(y) is an ideal of R and ¢
induces an isomorphism between R/Ker(y) and the image of f.

b. Prove that if I is an ideal of R, then the map a +— a + I is a homomorphism from R onto
R/I with kernel I.

9. Prove that a GCD ring with no infinite chain of proper ascending ideals is also a LCM (least
common multiple) ring.

10. Let {Rs : s € S} be a family of rings. Prove that Rg is the unique (up to isomorphism)
ring such that if 7" is any ring and ¢y : T — R, any set of homomorphisms, then there is a
homomorphism g : T — Rg such that ¥ = @,eg for every s € S.

11. Prove that if V' is a vector space over a field F, then for every u € V we have 0 - u = 0.

12. Theorem 2.2.21:

a. Prove that every vector space has a basis. (Hint: use Zorn’s Lemma.)
b. Prove that if S is a basis for a vector space V', then every vector can be written uniquely as
a linear combination of elements of .S.

13. Prove by induction on the dimension that every discrete Z-module in R" is a lattice.
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14. Let f(x) = ag + a1 + - - + agz? € C[z] be a polynomial and let F' : Z — C be the function
F(i) =a; (and F(i) =01if i <0 ori > d). Let g(z) = by + byz + - + b.z® and let G : Z — C
be the corresponding function. Show that the product f(z)g(z) polynomial corresponds to the
convolution F'* (.

15. Develop a theory of characters as functions with values in an arbitrary field F' rather than C.
For certain parts you will need to assume that F' contains the n-th roots of unity.

16. Let R =7 x Z. Let f(z) = (1,0)x — (1,0) € R[x]. Show that f has infinitely many roots in
the ring R.
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Chapter 3 Fields

Fields are rings where every nonzero element is a unit. Many sequence generators can be viewed
as implementing multiplication by a fixed element in a ring. Since finite fields have cyclic groups
of units, they provide a source of large period sequence generators. In Section 3.1 we describe the
Galois theory of field extensions. In Sections 3.2 and 3.4 we study in some detail two important
classes of fields — finite fields, which give us a way to make algebraic constructions with finite
alphabets, and algebraic number fields, which generalize the field of rational numbers. In Section
3.5 we describe local fields. These are fields that are complete with respect to a notion of convergent
sequences. Elements of these fields can sometimes be viewed as infinite sequences over some
alphabet. We also study quadratic forms, which are the source of several important constructions
of sequences with good correlation properties (see Section 3.3).

3.1 Field extensions

In this section we summarize (without proofs) some standard facts about field extensions.

3.1.a (Galois group

If Fis a field and E is a ring, then the kernel of any nonzero homomorphism F — FE is the
zero ideal (the only proper ideal), so every homomorphism is an injection. We say that E is an
extension of F. Elements of E can then be added and multiplied by elements of F' so F becomes
a vector space over I'. The dimension of E as a vector space over F' is called the degree or the
dimension of the extension.

A field R is algebraically closed if every polynomial p(x) € Flz| factors completely, p(x) =
k(x —ay)(x —as) - - (x — a,) where deg(p) = n and where k, a; € F. Every field F' is contained in
an algebraically closed field F' of finite degree over F, called an algebraic closure of F.

If G is a subgroup of the group of automorphisms of a field E, then the set of elements in
that are fixed by every automorphism in G (that is, o(a) = a for every a € E and every o € G) is
denoted E¢. It is necessarily a field since it is closed under addition, multiplication, and inverse.
If F' C F are fields then the group Autp(F) of automorphisms of £ which fix each element of F is
the Galois group of E over F and it is denoted by Gal(E/F). If G = Gal(E/F), then FF C EY. If
in fact F = E%, then we say that F is a Galois extension of F'. The discovery of Galois extensions
by Evariste Galois was a turning point in the understanding of the nature of algebraic equations
and triggered a great transformation in the way mathematics was done.
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If F C E is a finite extension of fields and if F is an algebraic closure of F then there are finitely
many embeddings hy,---,h, : E — F. If E is a Galois extension of F then these embeddings all
have the same image. In this case, a choice of one embedding (say, hy) determines a one to one
correspondence h; <> o; with elements of the Galois group Gal(E/F) by h;(z) = hy(0;(2)).

Proposition 3.1.1. Let F' C E be a finite extension and let T : E — F be a nonzero F-linear
map. Then for any F-linear map f : E — F there exists a unique element a € E such that

f(z) =T (ax) for all x € E.

Proof. The field E has the structure of a vector space over F', of some finite dimension, say, n.
Then Homp(E, F) is the dual vector space and it also has dimension n. Each a € E gives an
element f, € Homg(E, F) by f.(x) = T'(ax) which is also nonzero unless a = 0. So the association
a — f, gives a mapping £ — Homp(E,F) which is a homomorphism of n dimensional vector
spaces, whose kernel is 0. Therefore it is an isomorphism. O

3.1.b Trace and norm

Let E be an extension of degree n < oo of a field F'. Choose a basis ey, es, -, e, of E as a vector
space over F. Each a € E defines a mapping L, : £ — E by L,(z) = ax. This mapping is
E-linear, hence also F-linear, so it can be expressed as an n x n matrix M, with respect to the
chosen basis. If a # 0 then the matrix M, is invertible. The trace, Tri(a) and norm N%(a) are
defined to be the trace and determinant (respectively) of the matrix M,. It is common to write
Tr(a) = TrE(a) and N(a) = N&(a) if the fields £ and F are understood.

Theorem 3.1.2. Let F' C FE be a finite extension of fields.
1. For all a,b € E and ¢ € F we have Tr(a + b) = Tr(a) + Tr(b) and Tr(ca) = cTr(a). That is,

Tr is F'-linear.
2. For all a,b € E we have N(ab) = N(a)N(b) so NE : EX — F* is a homomorphism of

multiplicative groups. It is surjective.
3. If F C L C E are finite extensions then for all a € F,

Tri(Tri(a)) = Triz(a) and Np(Nf(a)) = NE(a).
4. If E is a Galois extension of F then Tre : E — F is nonzero and
Tria(a) = Z o(a) and NZ = H o(a).
ceGal(E/F) ceGal(E/F)

Parts (1) and (2) are straightforward. We omit the proofs (see [119], [17]) of parts (3) and (4)
but we will return to the trace and norm in Section 3.2 and Section 3.4. There are situations in
which the trace Try : E — [ is the zero map, but if E, F' are finite fields or if char(FE) = 0 or if
FE is a Galois extension of F' then the trace is not zero.
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3.2 Finite fields

In this section we analyze the structure of finite fields, or Galois fields. For a more complete
treatment see the excellent reference by Lidl and Niedereitter [123]. Our first task is to identify
all finite fields and all inclusion relations among them.

3.2.a Basic properties

Theorem 3.2.1. Let p be a prime number. For each d > 0 there is (up to isomorphism) a unique
field Fpa with p? elements. These account for all finite fields. If e > 0 is another integer, then there
is an inclusion Fya C Fpe if and only if d divides e. That is, the (combinatorial) lattice of finite
fields with characteristic p under inclusion is isomorphic to the lattice of whole numbers under
divisibility. The subfield F,a consists of those elements a of Fye satisfying a’’ = a.

The field F,q is sometimes denoted GF(p?) (for “Galois field”). The proof of Theorem 3.2.1
will occupy the rest of Section 3.2.a.

Suppose d is a positive integer and F' is a finite field with r elements. Let f(z) be an irreducible
polynomial over F' with degree d. Then by Theorem 2.2.5.4, F[z]/(f(z)) is a field. It has r¢
elements. In particular, if p is a prime integer and we take F' = Z/(p), then this together with
Theorem 2.4.10 shows that there exists a finite field of order p? for every prime p and positive
integer d.

Next suppose F' is a finite field with characteristic p > 0. Recall that we showed in Theorem
2.2.8 that p is prime. It follows that the mapping Z/(p) — F which takes an element n to
1+14---+1 (n times) is a ring homomorphism. So we can view Z/(p) as a subfield of F'. Hence
F has the structure of a finite dimensional vector space over Z/(p). By Theorem 2.2.22, F has p?
elements for some d.

Proposition 3.2.2. If FF C E are two finite fields, then E and F' have the same characteristic. If
p is the characteristic, then |F| = p and |E| = p° for some integers d and e such that d divides e.

Proof. If F has characteristic p and E has characteristic 7, then |F| = p? and |E| = r¢ for some d
and e. But F is a vector space over I, so r¢ = (p?)* for some k. Thus r = p and e = dk. O

To complete the picture of the set of finite fields we want to show that there is, up to isomor-
phism, a unique finite field of a given cardinality. First we need a lemma.

Lemma 3.2.3. If F is a finite field, then every a € F is a root of the polynomial z'¥! — x and we
have
ol — ¢ = H(x—a).

aclF
No other element of any extension field of F is a root of this polynomial.
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Proof. The multiplicative group of F' has order |F'| — 1, so by Theorem 2.1.3 any nonzero element
a € F satisfies alf1=! = 1. Therefore any element a € F satisfies a/fl = a. That is, every a is a
root of the polynomial /¥l — z. It follows that « — a divides z!*! — 2. Furthermore, the degree of
21l — 2 equals | F|, so there are no other roots of this polynomial in £. The factorization follows
from Theorem 2.4.4. O

Corollary 3.2.4. Suppose E is a field, p is a prime number, and d is a positive integer. Then E
contains at most one subfield of order p°.

Proof. Suppose F is a subfield of E of order p?. By Lemma 3.2.3 every a € F is a root of 27— x,
and there are no other roots of this polynomial in F.

Now suppose F’ is another subfield of E of order p?. The same reasoning applies to F’. Thus
F=F. [

Proposition 3.2.5. Let p be a prime number and let d > 0 be an integer. Any two finite fields
with p? elements are isomorphic.

Proof. Let E = (Z/(p))[z]/(f(x)), where f(z) is an irreducible polynomial with degree d and
coefficients in Z/(p). It is enough to show that any field F' with p? elements is isomorphic to E.
By Lemma 3.2.3, every a € F satisfies o =a. In particular, ' —2=01in E, so f(x) divides
27" — x as polynomials. That is, 2" — 2 = f(2)g(z) for some g(z) € (Z/(p))[x].
On the other hand, we can think of 27" — z as a polynomial over F'. By the same reasoning,
every element of F' is a root of this polynomial, so

f@)g(z) =" —z = [[(z - a).

In particular, f(z) factors into linear factors over F'. Let a be a root of f(z) in F. If the elements
{1,a,a? ---,a% 1} were linearly dependent over (Z/(p))[z], a would be a root of a lower degree
polynomial, and this polynomial would divide f(z). That would contradict the irreducibility of
f(z). Thus they are linearly independent and hence a basis (F' has dimension d over (Z/(p))[x]).
That is, every b in F' can be written

with ¢; € (Z/(p))[z]. We define a function

d—1 d—1

i i

L E ca' | = E C;T
i=0 i=0

from F' to E. This function is one-to-one and it can be checked that it preserves multiplication
and addition. Hence it is an isomorphism. O]
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Thus for each prime power ¢ = p? there is a unique field F, with ¢ elements.

Proposition 3.2.6. Let p be prime and let d, e be positive integers. Then the field F' = Fya may
be realized as a subfield of E = Fpe if and only if d divides e. In this case it is the set

F:{er: :Upd:a:}.

Proof. 1f F' is a subfield of F then E is a vector space over F', of some dimension k. Consequently
|E| = |F|*¥ so e = dk. To prove the converse, assume e = dk for some positive integer k. Let
q = p® = |F|. Recall from Lemma 3.2.3 that F consists of the distinct roots of the polynomial
2?° — gz =19 — z. This polynomial is divisible by the polynomimal x? — x, for the quotient is

2@ =D=(a=1) 4 p(d"=1)=20=1) 4 ... 4 g1 4 q

Thus E contains a set S of ¢ distinct roots of the polynomial (z¢ — x). By Lemma 2.2.9, both
addition and multiplication commute with raising to the ¢th power, so the subset S C F is a field.
Therefore it is isomorphic to the field F' = F,. n

Suppose f € F[z] is irreducible. Recall that in the terminology of Section 2.4.a, the order
of f is the smallest T such that f(z)[(z? — 1). This is the order of x in the group of units of
F[z]/(f), a group that has |F|%°¢(f) — 1 elements. Thus by Theorem 2.1.3 the order of f divides
|F’|4ee(f) — 1.This completes the proof of Theorem 3.2.1.

3.2.b Galois groups of finite fields

Some of the preceding notions can be understood in terms of Galois groups (see Section 3.1.a).
Let E = Fje where p is prime. By Lemma 2.2.9 the mapping 0 : E — E, o(z) = 2P is a field
automorphism, meaning that it is additive, multiplicative, and invertible. However 0¢(z) = 27" = x
so 0¢ = [ is the identity. Thus the various powers of ¢ (including ¢° = I) form a cyclic group of
automorphisms, of order e, which fix each element of IF,.

Proposition 3.2.7. The group {c° =1,0,---,0°'} is the Galois group Gal(E/F,).

Proof. The Galois group Gal(E/F) is the set of automorphisms of E that fix each element of F'. So
it suffices to show that any automorphism 7 : £ — FE is some power of . Let f be an irreducible
polynomial over F, with degree e, and let a be a root of f. Then F,« = F,[a] and 1, a, a?, -, a7t
is a basis for [Fe over IF,,. Thus to show that two automorphisms are equal, it suffices to show that
they are equal on a. We have that o'(f) = f for every i, so '(a) is a root of f. Similarly, 7(a)
is a root of f. The o’(a) are distinct — otherwise a and hence Fe are in a proper subfield, which
is a contradiction. Thus there are e = deg(f) of them, and they account for all the roots of f. In
particular, 7(a) = o%(a) for some i. So 7 = o', proving the proposition. ]
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Theorem 3.2.8. Let F' = Fu C E = Fye be finite fields. Then the Galois group Gal(E/F) is
a cyclic subgroup group of Gal(E/F,), of order e/d. It is generated by the automorphism o :
z — a7, The field F C E consits of those elements of E that are fixed by every element of
Gal(E/F) (which is the same as being fized by the generator o). Consequently the field E is a
Galois extension of the field F.

Proof. Tt follows from Proposition 3.2.6 that F is the subfield of E that is fixed by ¢¢. So the
various powers of o are contained in Gal(E/F). By Proposition 3.2.7, every automorphism of F
is some power of . But d is the smallest power of o that fixes F' because the equation 2" = z has
at most p* solutions. Consequently Gal(E/F) consists of all powers of o?. These elements form a

cyclic subgroup of Gal(E/F,) of order e/d. ]

Thus we have an inclusion reversing correspondence between the lattice of subfields of F,« and
the lattice of subgroups of Gal(F,«/F,). The main theorem of Galois theory describes the solutions
of a polynomial equation in terms of the Galois group.

Theorem 3.2.9. Let F' be a finite field with q elements and let f(x) € Flx] be a polynomial of
degree d with coefficients in F'. Let E be an extension field of F' and suppose o € E is a root of f.
Then for any o € Gal(E/F), the element () € E is also a root of f. If f is irreducible in F|x]
and if E s the degree d extension of F' then all the roots of f are contained in E. They consist
exactly of the Galois conjugates, .

oi(a) =af,

where 0 < i < d— 1. That is, where o; ranges over all elements of Gal(E/F).

Proof. Let ¢ = |F|. The Galois group Gal(E/F) is cyclic and it is generated by the mapping
o:FE — FE given by o(a) =al. If f(z) = Z?:o a;z" and if o € E is a root of f, then

0=0(f(a)) = (Z aiai) = Z ala'l = Zaio(a) = f(o(a))

(by Lemma 2.2.9), so o(«) is also a root of f.
Now suppose f is irreducible and, without loss of generality, monic. Then it is the minimal
polynomial of o by Theorem 2.4.11. But the polynomial

g@)= I @-7()eElql

TEGAl(E/F)

has the same degree as f, and it is fixed under each element of Gal(E/F'). So g € F|x], and it has
a as a root. Therefore g = f, so the roots of f are all the Galois conjugates of a. [
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3.2.c Primitive elements

To work within a particular finite field F, it is useful to have some structural information. An
element a € F is called primitive if every nonzero element of F' can be written as a power of a. A
polynomial f € F,[z]| of degree d is primitive if it is irreducible and if one (and hence all) of its
roots in [Fj« are primitive elements. The following lemma will be used in Section 12.2.

Lemma 3.2.10. Let F' =T, be the field with q elements. Let f € F[z]| be a polynomial. Then f
is primitive if and only if its order is 38 — 1.

Proof. In the ring F[z]/(f) the element z is a root of the polynomial f(x). If = is primitive then
the order of zis T = |F|—1 = ¢%°8) —1. Thus T is the smallest integer such that z” = 1 (mod f),
which is to say that T is the smallest integer such that f divides 7 — 1. Thus the order of f is T
The converse is similar. O

We next show that every finite field has primitive elements. This implies that the multiplicative
group of a finite field is cyclic.

Proposition 3.2.11. The finite field F,a has ¢(p* — 1) primitive elements.

Proof. Suppose that a € F,q« has order e. That is, a® = 1 and no smaller positive power of a equals
1. Then the elements 1, a,a?,---,a®" ! are distinct and are all roots of 2¢ — 1. That is,

2 —1=(z—1)(z—a)(x—a®) - (z —a").

It follows that every element whose eth power equals 1 is a power of a, and an element b = a’ has
order e if and only if ged(i,e) = 1. Thus if there is at least one element of order e, then there are
exactly ¢(e). That is, for every e there are either 0 or ¢(e) elements of order e.

Furthermore, by Lemma 3.2.3 every nonzero a € F'is a root of the polynomial 27"~1 — 1. Thus
if there is an element in F' with order e, then e divides p? — 1. By Lemma 2.2.10, for any positive

integer k
> ble) =k

elk

Thus we have

pl—1 = Z |{a € F : the order of a = e}
elpd—1
< Y dle)=p"-1
e|p?—1

Therefore the two sums are equal. Since each term in the first sum is less than or equal to the
corresponding term in the second sum, each pair of corresponding terms must be equal.
In particular, the number elements with order p¢ — 1 equals ¢(p? — 1) > 0. ]
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In fact, it can be shown that every finite field F,« has a primitive normal basis over a subfield

F,e. This is a basis of the form a,a?, - - . with a primitive. The interested reader can find
the details in [123, Section 2.3].

3.2.d Roots of unity

Let N € Z be a positive integer. Over the complex numbers the polynomial " — 1 factors
completely into distinct linear factors

N—

1= [Je-¢)

—_

<
Il
o

where ¢ € C is a primitive N-th root of unity, for example, ¢ = e>™/N. These N-th roots of unity
form an Abelian group under multiplication, denoted py, that is isomorphic to Z/(N). The field
Q(¢) is called a cyclotomic field. Tt is a Galois extension of Q of degree [Q(¢) : Q] = ¢(n). The
Galois group is Abelian and is isomorphic to Z/(N)*. If s € Z/(N)* is relatively prime to N then
the corresponding element o, € Gal(Q(¢)/Q) acts on Q(¢) by 0,(¢*) = ¢*. The following fact is
used in Proposition 13.4.4.

Lemma 3.2.12. Let ( € C be a primitive Nth root of unity and let p(z) € Qx| be a polynomial
with rational coefficients. Suppose |p(¢)|> € Q is a rational number. Then |p(¢%)* = |[p(¢)|? for
any integer s relatively prime to N with 1 < s < N — 1.

Proof. Let p(x) = ap+a1x+- - -+ aqz? with a; € Q. Then [p(¢)]* = p(¢)p(¢) € Qs fixed under the
action of the element o, € Gal(Q(¢)/Q), where ¢ = (™! denotes complex conjugation. Therefore

PO = o (POPQ)
= (a0+ a1 ®+ -+ arl™) (a0 + a1 + -+ ar )

= p(¢)p(¢) =

The situation is more complicated over a finite field. Let /' = [F, be a finite field of characteristic
p. Let N € Z be a positive integer. Define d as follows. Write N = p°n where p does not divide
n. Let d = ord,(¢). (In the group theoretic sense: the image of ¢ in Z/(n) is invertible, and d is
the least integer such that ¢ = 1 (mod n), cf. Section 2.2.d.) The following theorem says that
¥ — 1 factors completely in the extension field [F,a of IFy, but the roots are not distinct if p® > 1.

Theorem 3.2.13. Given N,q as above, there exists 3 € F,a such that

n—1

N —1=]]@-p8)" (3.1)

1=0
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Moreover, Fa is the smallest extension of F, over which N — 1 splits into linear factors.

Proof. Let o € Fa be a primitive element and let § = ol =D/n Since ¢* = 1 (mod n) the
exponent (¢? — 1)/n is an integer. The powers 8, 8!, ---, "1 € Fa are distinct, and " = 1.

Thus 3 is a primitive n-th root of unity, and 2™ — 1 = H?;ll(x — (3%). Equation (3.1) follows. The

minimality of F « is left as an exercise. [l

The factors in equation (3.1) can be grouped together to give the factorization of ¥ — 1 over
the field F,. Let v = ¥ € Fa be any root of 2™ — 1. Then the remaining roots of the minimal
polynomial of v over F, are {y¢ = ¥ : i > 0}. The set of exponents

Cir(q) = Cr = {k, gk (mod n),¢*k (mod n),---}

is called the kth cyclotomic coset modulo n relative to q (the terms “modulo n” and “relative to ¢”
may be omitted if n and/or ¢ are understood). The minimal polynomial of v is then the product

file) = 1] (@ - 8.

1€Cy,

If C,,---,Cj, are the distinct cyclotomic cosets in {0,1,---,n— 1}, then they form a partition of
{0,1,---,n — 1} and the desired factorizations are

m

"t —1= ka(x) and 2V —1 = ka(x)pﬁ.

=1
3.2.e Trace and norm on finite fields

Theorem 3.2.14. Let ' =F, C E = Fyn be finite fields of characteristic p. Then the following
statements holds.

1. The trace function Trg - E— F 1is given by

Trh(a)=a+a'+a” +-- a7 = Z o(a). (3.2)
r€Gal(E/F)

2. The norm is given by

NE(a) = o(a) = "D/ ¢ |
s€Gal(E/F)

3. The trace is nonzero and for all ¢ € F, we have |{a € E : Tr(a) = c}| = p*~.
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4. For all 0 # c € F we have |[{a € E': N(a) =c}| = (|E|-1)/(|F| —1).

5. For all a € E we have TrE(a?) = Tri(a)?.

6. Tri(1) € F, and TrE(1) = n (mod p).

7. If L . E — F is an F-linear function, then there is an element a € E such that L(b) = Tr(ab)
forallbe E.

Proof. 1. Verification of the second equality in equation (3.2) is left as an exercise. It follows
that the quantity on the right side of equation (3.2), which we denote by T'(a), is fixed by each
o € Gal(E/F) so it is indeed an element of F'. Both maps 7" and Tr are F-linear, hence are equal if
and only if they are equal on a basis. Let a € E be a root of an irreducible polynomial of degree n
over F. Then the set {1,a,a? -+, a"" '} forms a basis for E (over F). If the minimal polynomial
for a is

f(x)=ay+ax+ -+ ap_12" ' 4+ 2"

then the matrix

0 r - 0 0
M, = 0 0o .- 1 0 (3.3)
0 0o .- 0 1
—Qp —a1 - —Qp-2 —Am-1
is the corresponding companion matriz: it has 1 in each entry of the superdiagonal, —aq, - - -, —aq_1

in the last row, and Os elsewhere. The characteristic polynomial of the matrix M, is exactly the
polynomial f(x), so the eigenvalues of M, (i.e. the roots of its characteristic polynomial) are the
Galois conjugates of a. So the trace of M, is —a,,_;. On the other hand,

f@) = I -o)

c€Gal(E/F)
50 —Qp—1 = ZoeGal(E/F) o(a).
2. The same argument applies to the determinant of the matrix M,, which is

(-1'ao= (-1 [ ol

c€Gal(E/F)

3. Thinking of E as an n-dimensional vector space over F', the mapping Tr : E — F' is linear, so
its rank is either zero or 1. If the rank is zero then Tr(z) = 0 for all z € E, however this equation
is a polynomial of degree ¢"~! so it has at most ¢! < ¢" solutions. Therefore Tr : E — F is
surjective so its kernel K = Tr '(0) C E is a vector subspace of dimension n — 1 which therefore
contains ¢" ' elements. For any 0 # a € F the set Tr '(a) is a translate of K, that is, an affine
subspace of the same dimension, which therefore contains the same number of elements.
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4. The norm is a homomorphism N&: EX — F*. If o is a primitive element in E, then
n—1
NE(a) = H Ql = glio 4 — o(@"=D/(a=1)
=0
which is primitive in F. Thus N£ surjective so its kernel is a subgroup of order (|E|—1)/(|F]—1).
5. All the operations used to define Tr commute with raising to the pth power.

6. We have Tr(1) =1+ 194--- 419" =1+1+---+ 1, with n terms.

7. This is a special case of Proposition 3.1.1. O]

3.2.f Quadratic equations in characteristic 2

Let F' = Fy- be a finite field of characteristic 2 and let a,b,c € F with a # 0. The trace function
is a necessary ingredient for determining when the quadratic equation

ax’+br+c=0 (3.4)
has a solution z € F'.

Theorem 3.2.15. If a,b # 0 then the quadratic equation (3.4) has a solution © € F if and only
if Triy, (ac/b%) = 0, in which case it has two distinct solutions. If b= 0 (and a # 0) then it has a
unique solution.

Proof. First consider the case a = b = 1. To solve the equation 2% + x = ¢, consider the following
sequence, where ¢ : F' — F is the linear map, ¢(z) = 2> — . = 2? + z,

TrZ
0 F, F—2,F 2T 0

Then this sequence is exact (see Definition 2.1.10): exactness at the first term is immediate and
exactness at the fourth terms follows from Theorem 3.2.14. The kernel Ker(¢) = {0,1} = Fy is
1-dimensional. It follows that the sequence is exact at the second term, and in particular, the
mapping ¢ is two-to-one. Therefore the mapping ¢ has rank r — 1. But Tr: F' — 5 is surjective
so its kernel also has dimension  — 1. Since Im(¢) C Ker(Tr), and they have the same dimension,
they must coincide. In other words, ¢ € Ker(Tr) if and only if ¢ = 22 — x for some x, and in this
case there are two such values of x.
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Qz,y) conditions Nyyv=0| N,, v#0
Typel | zy b# 0, Tri, (ac/b?) = 0 29— 1 g—1
Type II | 22 b=0 q q
Type III | h(z? +y?) +ay | b# 0, Try, (ac/b?) =1 1 q

Table 3.1: Quadratic forms in characteristic 2.

For the general case, the transformation

b
r=-y
a
converts equation (3.4) into the equation
o
(" +y) =c

a
which therefore has a solution if and only if
TrﬁQ(ac/bQ) =0,

in which case it has two solutions. Finally, if b = 0 then the equation 22 = c¢/a has one solution
because 2 is relatively prime to 2" — 1 so the mapping F — F given by z — z? is invertible (and
in fact it is an isomorphism of Fy-vector spaces). O

Corollary 3.2.16. Let a,b,c € F'=Fqy-. Fix h € F with Tr]ﬂ(h) = 1. Then the quadratic form
Q(z,y) = ax® + bry + cy®

can be transformed, using a linear transformation of variables, into one of the three quadratic
forms in Table 3.1. The number N, of solutions to the equation Q(x,y) = v is also given.

Proof. The transformation x — ax + [y changes () into the quadratic form
ac’z? 4 baxy + (af® 4 bB + )y’

By Theorem 3.2.15 if Trf (ac/b%) = 0 then 3 € F can be chosen so that the coefficient of y?
vanishes. Taking ov = 1/b leaves

a
Q= ﬁxQ + xy.
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Now the transformation .

b2

Yy— 5Tty
changes () to zy. This is Type L.

If Trf, (ac/b?) # 0 then choose 3 so that aB? + b3 + ¢ = b*h? /a (which is possible, by Theorem
3.2.15) and choose o = bh/a. Then the transformation x — ax + [y converts the quadratic form

() into the form
2

b*h
7(hx2 + zy + hy?).

The further transformation
r — ﬁx and y — ﬁy
wh wh

transforms @ into ha? + zy + hy?. This is Type II. Finally, if b = 0 (and a, c # 0), use

T+ ey
r— —

Ja

to convert Q(z,y) into x2. This is Type IIL.

Counting the number N, of solutions to Q(x,y) = v is trivial for Types I and II. For Type III,
if v = 0 then for any nonzero choice of y we need to solve for x in the equation hz?+ zy + hy? = 0.
Since Trgq(h) = 1 this has no solutions. Thus (0,0) is the unique solution. If v # 0, imagine

choosing y and solving for z, which will be possible if and only if Trf;2 (h?y? — hv) = 0. As y varies
in I the quantity inside the trace varies among all elements of F', and ¢/2 of these have trace zero.
For each such choice of y there are two distinct choices for x, for a total of ¢ solutions. O

3.2.g Characters and exponential sums

Let F be a finite field, say, |F'| = ¢ = p” where p is a prime number. Let F* be the group of all
nonzero elements of F' under multiplication and let F'* be the group of all elements of F under
addition. A character y : F'* — C* is called an additive character. If x is a nontrivial additive
character then every additive character is of the form ¢(x) = y(Ax) for some element A € F.
(Different values of A give distinct characters, and there are |F'| of them, which therefore account
for all additive characters.)

A character ¢ : F* — C* is called a multiplicative character of F. It is common to extend
each multiplicative character ¢ : F* — C to all of F' by setting 1(0) = 0. If ¢ is odd then the
quadratic character

B 1 if x is a square
n(w) = { —1 otherwise (3.5)
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is a multiplicative character. If p is an odd prime and 0 # = € F, then the Legendre symbol is

G-

Since the prime field F, = Z/(p) is cyclic, the additive group F™ is isomorphic to the additive
group (Z/(p))", so we obtain from Section 2.3.b the notion of a Fourier transform f of any function
f  F — C, with respect to this additive group structure. Since the multiplicative group F* is
cyclic, we obtain a second notion of Fourier transform of any function f : F* — C. Equation
(2.16) gives explicit formulae for these Fourier transforms. In this case they are sometimes called
the Hadamard and Walsh transforms (respectively).

If ¢ is a multiplicative character one can take its Fourier transform QZ with respect to the
additive structure to obtain the Gauss sum

D) =G, x) =Y x(g)lg) = > x(g)¥(g) (3.6)

geF geFX

for any additive character y. Conversely, equation (3.6) may be interpreted as the Fourier trans-
form X of the additive character x evaluated on the multiplicative character 1. The results in
Section 2.3.b therefore give a number of simple facts concerning Gauss sums. In particular, the

Fourier expansion of a multiplicative character v in terms of additive characters as in equation
(2.13) gives

B(g) = |—;| S G x(9) = |—;| S G, Dx().

We state without proof the following classical Gauss bound and Weil bound (cf. [123] Section 5.2,
Section 5.4) and its improvement by Carlitz and Uchiyama [22].

Theorem 3.2.17. If x,v are nontrivial additive and multiplicative C-valued characters (respec-

tively) of a finite field F' then
G, ) = VIF|.

Theorem 3.2.18. Let F' = F,» with p prime. Let f € F[x] be a polynomial of degree n > 1. Let
X be a nontrivial additive character of F. Suppose either (a) ged(n,p) =1 or (b) f is not of the
form g° — g+ b where g € Flx| and b € F. Then

Y X(f@)| < (n=1)V|F]. (3.7)

zeF

Let v be a nontrivial multiplicative character of F' of order m > 1 and let d be the number of
distinct roots of f in its splitting field over F. Instead of assumptions (a) or (b) above, assume
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that the monic polynomial a=f (where a is the leading coefficient of f) is not the m-th power of
a polynomial g(x) € Fx]. Then

> W(f(@)] < (d—1)V/IF. (3.8)

zeF

The following theorem of A. Weil [189], [173] combines all of the above.

Theorem 3.2.19. Let ' = F, be a finite field. Let ¢ be a nontrivial multiplicative character
of order d. Let x be a nontrivial additive character. Let f(x),g(x) € Flx] be polynomials with
n = deg(g). Assume that f(z) has m distinct roots in F', and further assume that ged(d, deg(f)) =
ged(q, deg(g)) = 1. Then

S(m—l—n—l)m.

> U(f@)x(g(x)

zeF

For polynomials in several variables there is the following bound of Deligne [36] (Theorem 8.4):

Theorem 3.2.20. Let F be a finite field and let x be a montrivial additive character. Let
f(z1, 29, -+, 2,) be a polynomial of degree m. Assume m is relatively prime to |F|. Assume
also that the homogeneous part of f of mazimal degree (= m) is nonsingular, when it is considered
as a form over the algebraic closure of F'. Then

S x(f@)| < (m=DVIF])"

xeFm

3.2.h The Discrete Fourier transform

While the (usual) Fourier transform involves complex valued functions, the discrete Fourier trans-
form involves functions with values in a finite field F'. It is defined in a manner completely
analogous to equation (2.16), provided the field F' contains all the required roots of unity. (For
cyclic groups G = Z/(N), this assumption may be relaxed, see Section 18.4.b.)

Let G be a finite Abelian group and let N € Z be its characteristic, that is, the smallest integer
such that 0 = x + 2z + -+ + = (N times) for all z € G. (Then N divides |G| and it is the order
of the largest cyclic subgroup of G.) Let F' =, be a finite field and suppose that N and ¢ are
relatively prime. Let d = ordy(q) and let £ = F «. By Theorem 3.2.13 the field E is the smallest
field extension of F' that contains all the N-th roots of unity. (In what follows, the field £ may be
replaced by any larger field.)
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Continue to assume that N = char(G) and char(FE) are relatively prime. The group of discrete
characters G is the set of (group) homomorphisms ¢ : G — E*. It forms a group under multipli-

cation of characters, (x1)(g) = x(¢9)¥(g). If G = Z/(N) then @ is also cyclic of order N and is
generated by the primltlve character x(xz) = b* where b € F is a primitive N-th root of unity. If
G = Gy x Gy then G = Gy x Gs. It follows that the group of characters G is a finite Abelian group
that is abstractly isomorphic to G and in particular that |G| = |G|. The proof of Proposition 2.3.2
works here too and we obtain the following.

Lemma 3.2.21. Let G be a finite Abelian group characteristic N, ' = F,, and E =
d = ordy(q). Then the following hold.

If x : G — E* is a nontrivial character then deGx(g) =0.
If0#g€G then ) ax(g)=0.

If g# h e Cithen there exists x € G such that x(g) # x(h).
Ifp # x € G then Y .o ¥(g9)x ' (g) = 0.

Ifg#heGtheny ax(g)x ' (h)=0.0

With G, F, F, G as above, for any f : G — FE define its Fourier transform f: G—F by

=> x(9)f(9)

geG

qd Where

G Lo o=

Then the convolution formula (2.14) and the Fourier inversion formula (2.13) hold:

J-3=7+C and f(g ‘G’Zf
x€G

with the same proof as in Section 2.3.b. The proof in Section 2.3.b gives a weak analog to Parseval’s

equation,

S F0Fh =D fl9)? and D> F()* =D f(9)f(~g

xe@ 9eG xeG geG
Although the discrete Fourier transform and the complex Fourier transform are entirely parallel
in their definition and properties, there is no apparent relation between them.

If G =7Z/(N), then a choice of primitive N-th root of unity b € E determines an isomorphism

G = G which takes 1 € Z/(N) to the character y; with x1(k) = b*. The other characters are
powers of this one: x,,(k) = v™. If f : Z/(N) — FE is a function, then its discrete Fourier
transform may be considered as a function f : Z/(N) — E by writing J?(m) rather than f(xm)

In other words,
N-1

1
N

m=1

N-1
=Y 0" f(k) and f(g) =
k=0
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3.3 Quadratic forms over a finite field

3.3.a Quadratic forms and their classification

The standard reference for this section is Lidl and Niederreiter’s book on finite fields [123]. Let
F =TF, be a finite field with ¢ elements. A quadratic form in n variables over F' is a polynomial
Q(z1,x9,- -+, x,) in n variables such that each term has degree two, that is,
Qe+ wa) = > Y aywi;,
i=1 j=1

It follows that Q(cz) = *Q(x) for any ¢ € F. If ¢ is odd then the function Q(x) may be expressed
as Q(z) = a'Az where A is the symmetric matrix A;; = %(aij + aj;) for i # j and A; = ay.
Consequently there is an associated bilinear form B(z,y) = x'A (here we are thinking of the
vectors = and y as column vectors).

If ¢ is even then every quadratic form @ may be expressed as Q(z) = z' Az where the matrix
A is not necessarily symmetric, and where the transpose matrix A* gives the same quadratic form.
If M : F™ — F" is an invertible n X n matrix representing a linear change of coordinates, then
the matrix of the quadratic form with respect to the new coordinates is M*AM . In particular, the
determinant of A changes by the factor det(M)?.

The rank of a quadratic form () is the smallest integer m such that there exists a linear change of
variables (z1, -+, 2,) — (y1,- -, yn) so that the resulting quadratic form involves only the variables
Y1,Y2, *+, Ym- A quadratic form in n variables is nondegenerate if its rank is n. If Q : F" — F'is
a quadratic form then there exists a mazimal nondegenerate subspace that is, a subspace V' C F"
such that dim(V') = rank(Q)) and so that @ restricted to V' is nondegenerate. A vector w € F"
is in the kernel of @ if Q(w + x) = Q(x) for all x € F". The kernel of @) is a vector subspace
of F™ and it is complementary to any maximal nondegenerate subspace V' C F", meaning that
VAW ={0}and V+W = F".

If F is a field of characteristic 2 then every element is a square. But if the characteristic of F'is
odd then half the elements are squares, and the quadratic character n: F* — {0, 1} is defined by
n(z) = 1if x = a® for some a € F and n(x) = —1 otherwise. (It is customary to define (0) = 0 as
this convention can often be used to simplify various formulae.) Denote by A(Q) the determinant
of the restriction of ) to a maximal nondegenerate subspace; it is well defined up to multiplication
by a square in F. If rank(Q)) = m define

, —1)™2A if m is even,
AQ) = { E—1§<m—1>/(2QA)(Q) if m is odd. (3.9)

If the characteristic of F' is odd, the properties of the quadratic form () depend on whether or not
the element A'(Q) € F is a square, that is, whether n(A/(Q)) is +1 or —1.
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The following theorem gives the classification of quadratic forms over the finite field F' = F,
of arbitrary characteristic. Although the proofs are not difficult, they are tedious and they can be
found in [123]. (See Theorem 3.2.15 for the case m = 2 and characteristic 2.) In this classification,
the symbol B,, denotes the quadratic form

Bo(xy, -+, xy) = X129 + T3Ty + -+ + Ty 1T (3.10)

Theorem 3.3.1. ([123] Thm 6.30) Suppose Q is a quadratic form of rank m in n > m variables
over a field F' = F,. If q is even, fix an element h € F' such that Tr[?;(h) = 1. Then there is a
linear change of variables so that Q) is one of the quadratic forms listed in Table 3.2.

q even

Type I (m even) | Q(x) =B
Type IT | (modd) | Q(z) = B_1(x) + 22,
Type III | (m even) | Q(z) = Bp_2(2) + Tpm_1Zm + h(22,_| + 22))

q odd
Q(r) = a12? + asxs + - - + apx?,, a; # 0

Table 3.2: Classification of quadratic forms over F,

(If g is odd and if b € F is a fixed non-square then Q(z) can even be reduced to one of the two
quadratic forms Q(z) = 22 + -+ + 2%, + ax?, where a = 1 or a = b, but for most purposes the
above diagonal form suffices.)

3.3.b Solutions to Q(x) + L(z) = u

Let F be a finite field. In this section we wish to count the number of solutions to the equation
Q(z) + L(z) = u where @Q : F™ — F is a quadratic form and L : F" — F is a linear mapping.
This calculation is the central step in determining the cross-correlation of m-sequences, geometric
sequences, GMW sequences, and Gold sequences. In order to simplify the presentation we define
the following function v : F' — {—1,q¢ — 1} by

B -1 ifx#0
”(“’)_{ g—1 ifz=0

With A'(Q) = £A(Q) as defined in equation (3.9), the following theorem counts the number of
solutions to the equation Q(xz) = wu. The proof is not difficult but it is tedious and it will be
omitted. We use the convention that n(0) = 0.
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Theorem 3.3.2. ([123] Thm. 6.26, 6.27, 6.31) Let Q be a quadratic form of rank m in n variables
over a field F =F,. Letu € F. Then the number N of solutions to the equation Q(x1, T2, - -, T,) =
u 15 given in Table 3.35.

q even
Type I (m even) | N = ¢" ' + v(u)g"—1—m/2
Type II | (modd) | N=q¢""!
Type III | (m even) | N = ¢" ! — v(u)g" 1 —"/2
q odd
(modd) | N = ¢" !+ n(u)n(A’)g"(m+/2
(m even) | N = ¢! + v(u)n(A)g1—m/?

Table 3.3: Number of solutions to Q(z) = u

We now use this result to describe the number of solutions z € F™ of the equation
Q)+ L(z) =u (3.11)

where @) is a quadratic form and L is a linear function. We first show that the case rank(Q) < n
can be reduced to the case when () has maximal rank, then we count the number of solutions to
(3.11) assuming () has maximal rank. The answer shows, in particular, that if @ # 0 then the
function Q(x) 4+ L(x) cannot be identically zero.

Proposition 3.3.3. Let F' = F, be a finite field, let Q : F" — F be a quadratic form with
m = rank(Q) < n and let L : F" — F be a nonzero (hence, surjective) linear mapping. Let
V. C F™ be a maximal subspace on which Q) is nondegenerate. Then the number N, of solutions
to the equation Q(z) + L(x) = u is

N — { gt if Ker(Q) ¢ Ker(L)
“ ¢"~™N, if Ker(Q) C Ker(L)

where N/ is the number of solutions x to equation (3.11) with x € V.

Proof. This follows immediately from the direct sum decomposition F™ = Ker(Q) @ V and the
fact that L can be written as the sum of a linear function Ly on Ker(Q) and a linear function Ly
on V. O
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Theorem 3.3.4. Letu € Fy. Let Q : F' — F, be one of the standard quadratic forms of (mazimal)
rank m listed in the classification, Theorem 3.5.1. Let L(x) = Y_1", c;x; be a linear function. Let
N = N, denote the number of elements x € F}' so that Q(z) + L(x) = u. Then N, is given in
Table 3.4, where T(c,u) =0 if ¢,, = 0, otherwise

TI’II;2 (EFB:;WL—NC)

T(c,u) = (—1) ) =+1; (3.12)

and where R = R(Q, ¢) is given in equation (3.13).

TypeI | (meven) | N =gq
Type IT | (modd) | N = ¢™ ' + 7(c,u)q™ /2
Type III | (m even) | N = ¢

(modd) | N =q¢™ ' 4+n(u+ R)n(A)gm—1/2
(m even) | N = ¢ ' +v(u+ R)n(A)g™/?>"!

Table 3.4: Number of solutions to Q(z) + L(z) = u

Proof. When ¢ is even, the results for Type I and III follow from Theorem 3.3.2 after an affine
change of coordinates which replaces x; by x1 + ¢, and x5 by x5 + ¢, etc. This eliminates the
linear terms and replaces u with u + Q(c). In the case of Type II (Q(z) = B,_1(x) + 22,), the
same trick eliminates the first m — 1 linear terms and replaces u with u+ B,,_1(c). If ¢;,, = 0 then
we are done: there are ¢"~! solutions as in Theorem 3.3.2. But if ¢,, # 0 we are left with the
equation

Bp1(z) = 22, + ¢ + u+ Bp_1(c).

The number of solutions (z1, -+, Z,,_1) to this equation depends on whether or not the right side
vanishes. By Theorem 3.2.15, this in turn depends on

t = Tr{;Z <w) .

2
Cm

If t = 0 then there are two values of x,, for which the right side vanishes, and ¢ — 2 values for
which the right side is nonzero. This gives

N =9 <qm72 +(q— 1)q(m71)/271) +(g—2) (qm—z _ q(mfl)/271) — g™ 4 q(mfl)/g_

80



If t # 0 then the right side never vanishes, so choosing x,, arbitrarily and then choosing the other
variables x1,- -+, T,,_1 gives

N = q (q q(m 1)/2— 1) — qm—l o q(m—l)/2.

If ¢ is odd we may assume Q(z) = >.7", a;x} with a; # 0 for all i. The substitution z; —
, — bi/2a; converts the equation Q(x) + L(x ) = u into the equation Q(y) = u + R where

2 2 2
(L) (O AN
R= Q(Qa) —a (2a1> + 2<2a2) to ot am (2%) . (3.13)

By Theorem 3.3.2 the number of solutions to this equation is

N =g n(u+ R)n(A)g™=Y/2 if m is odd
— 1 v(u+ R)m(A)g™?=1  if m is even.

This completes the proof of Theorem 3.3.4. O]

3.3.c The Quadratic form Tr(cz?) for d = ¢' + ¢/

One important source of quadratic forms is the following. Let F' = F, C L = F» be finite fields.
Let ¢ € L. Let d = 1+ ¢*. Then, as shown below, the function ) : L — F defined by

Q(z) = Trk(ca?) (3.14)

is a quadratic form. We may assume that i < n because 29" = z for all x € L. We remark that
the function TrF(cx ") where d’ = ¢’ 4 ¢' is no more general than (3.14), because the change of
variable y = 29 converts this form into Trk(cz®) where e = 1 4 ¢' .

Theorem 3.3.5. If d = 1+ ¢’ then the function Q(x) = Tri(cx?) is a quadratic form over F. Let
g = ged(i,n). The rank of this quadratic form is given in Table 3.5, where g = ged(n, i), e = 1+¢9,
n=n(A") as in equation (3.9), and ¢ = s* means that c is a d-th power of some element s € L.

The following lemma is used in the proof of Theorem 3.3.5.

Lemma 3.3.6. Let n,j > 1 and b > 2. The greatest common divisor g = ged(n, ) is given in
Table 3.6.

Proof. The first statement follows from a simple calculation. It is possible to use the identity
bk —1 = (bF — 1)(0* + 1) (with k = j and k = n respectively) to deduce the second and third
statements from the first statement. m
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q even

Conditions Type Rank
n/g even | n/2g odd | ¢ = s¢ | n—2g
c# st I11 n
n/2g even | ¢ = s? I11 n—2g
c # s¢ I n
n/g odd I1 n—g+1
q odd
Conditions Type Rank
T e
n/g even | n/2g odd 27&_32 n=-1|n-2g
otherwise | n =1 n
n/2g even | ¢ = s° n=1 |n—2g
c#s° n=-1|n

n/g odd | n odd

n even

Table 3.5: The quadratic form Tr(cx?), d = 1 + ¢*

ged(d” — 1,00 — 1) = b —1
1+b ifn/giseven
ged(b” —1,0° +1) = 2 if n/g is odd and b is odd
1 if n/g is odd and b is even
1+ ifn/gisodd and j/g is odd
ged(B" + 1,00 +1) = 2 if n/g is even or j/g is even, and b is odd
1 if n/g is even or j/g is even, and b is even

Table 3.6: ged(b™ + 1,07 +1)

Proof of Theorem 3.3.5 Let e1,e9,---,€, be a basis for L as a vector space over F. Let
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r=ae1+---+ae. €L Then

i r r q
TrIL;(cxHqi) = Trf; c(Zah6h> <Zah6h>
h—1 h=1

= Tl’i—/‘ C (i ah€h> <i ahe,q;) ]
L h=1 h=1
= Z Z brranay

h=1 k=1

i

where ‘
bpe = Trk (ceheg> )
This is a quadratic form. In order to determine its rank we start by determining its kernel
W = Ker(Q). Equating ‘ ,
Tri(e(y +w)'™) = Tri(ey'™)
gives _ _ _
Tri(cw'™ + cyw? + ey w) = 0.
Hence w € W if and only if '
Tri(cw'™ ) =0 (3.15)

and
Tri(cwy?) = —=Trk(cw?y) for every y € L.

Since Trj(29) = Trj(z) the right side of this equation is unchanged if we raise its argument to the
power ¢', which gives
0 214 %
Tre((cw 4+ cTw? )y?) =0

for all y € L, so

cw = —cT
or, assuming w # 0,
i 21
It T = 1, (3.16)
Let :
z=cw''?,
Then equation (3.16) is equivalent to: ,
277 =1, (3.17)

At this point we must separate the cases, when ¢ is even or odd. From here on we let g = ged(n, 7).
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q even: Here,
i
T =—1=1

so an element w € L is in Ker(Q) if and only if:
2=cw't €FuNFy =Fy and Trk(z) =0. (3.18)
The set
F,o N Ker(Trg)

is either all of Fy, which is a vector space of dimension g, or it is a hyperplane in F, which
therefore has dimension g — 1. It remains to determine the number of elements w € L that satisfy
equation (3.17) with

z € Fyo N Ker(Trg).

We claim that W = Ker(Q) is nonzero if and only if there exists s € L so that s¢ = c. That is,
so that ,
st = (3.19)

First, suppose such an s exists. Then every element
2" € Fpo N Ker (TrIf{)

gives rise to an element w’ € Ker(Q) as follows. Since 1+ ¢' is relatively prime to ¢° — 1 and hence
also to ¢? — 1 there exists b’ € F,o such that

(h,)Hqi =z
Set w' = h'/s € L. It follows that
7 = c(w’)Hqi

so w' satisfies equations (3.15) and (3.16).

We remark that if n/g is odd then 1 + ¢' is relatively prime to ¢" — 1 so such an element s
satisfying equation (3.19) exists, hence the dimension of W = Ker(Q) is g — 1. If n/g is even and
if such an element s exists, then

Fuo N Ker(Trg) = Fye;

for if 2/ € Fye and n/g is even then (writing £ = Fys to ease notation),
Tri(2') = TrTr(2') = (n/g)Tri (2') = 0. (3.20)

Thus, in this case, the dimension of W = Ker(Q) is g.
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Next, we prove the converse: suppose there exists w # 0 € W; we claim there exists s € L
satisfying equation (3.19). We may suppose that n/g is even (since the odd case was handled
above). We find an element u # 0 € L so that u?*! is a primitive element of Fys. This will suffice
because z = cw? t! € Fyy so there exists m with z = u(@+D™ hence ¢ = (u™ /w)7+1.

The element v € L = Fy» should be taken to be a primitive element of the sub-field F 2, (which
is contained in L since n/g is even). Then

w??1 = @ -D@+)

Moreover, u? 1 € o for the following reason: i/g is odd so by Lemma 3.3.6, ¢ + 1 divides ¢’ + 1.

Therefore A
L@-D@+) _

Finally, u? 1 s primitive in Fy because ¢' + 1 and ¢9 — 1 are relatively prime. We remark that as
u varies within the field F 2, the element uw varies within Ker(Q) because

c(uw)'* e FiNFgn

and the trace condition is satisfied by equation (3.20). So in this case, dim(Ker(Q)) = 2g.

q odd: In this case

T __
P |

so 22 € F,:. Hence
z € Fqu ﬂ Fqn - Fqgcd(n,2i).

If n/g is odd then ged(n,2:) = ged(n,i) =g, so z € Fge C F . Hence
2=, (3.21)

which is a contradiction. Therefore w = 0, so the quadratic form () has maximal rank, n.
Now suppose n/g is even, so ged(n, 2i) = 2g. Equation (3.21) holds, so
22 6 ]Fqi ﬂ ]Fqn — ]Fqg,
SO
27 = 41,

The +1 is not possible, so
27 = 1. (3.22)

We claim that
if € L =TF, and 277" = —1 then Trk(z) = 0.
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For 29" = —x, let T=x+27+---+ 27 ". Then
Tri(z) = TeETrk(2) =T -T+T -T---+T

(where E =1TF ) and there are n/g terms (an even number), so this last sum vanishes.
It follows that (when n/g is even), w € Ker(Q) if and only if

2= cw't?
satisfies equation (3.22). Thus, if @ € Fpes and w € Ker(Q) then aw € Ker(Q). If v,w # 0 €
Ker(Q) then
(v/w)HE=D = 1
SO
U/w G Fqu qun - ]Fng.

In summary, either Ker(Q) = {0} or Ker(Q) has dimension 2g.
It remains to determine when Ker(Q) has a nonzero element. Let o € Fyn be a primitive
element and set ¢ = af. Equation (3.22) becomes

alwHe) — oa"=1)/2e?=1)
So we search for w = a” such that oft"(1+4") = o(a"=1/2(@=1) o
i —1
(= —— dg? +1
2 1) (mod ¢? + 1)

since ged(q'+1,¢" —1) = ¢+ 1 in this case. If n/(2g) is even then ¢+ 1 divides (¢" —1)/2(¢? — 1)
hence w # 0 exists if and only if £ =0 (mod ¢? + 1), which is to say that ¢ = s¢ for some s € L,
where e = ¢9 + 1. If n/(2g) is odd then

q¢"—1 ¢’ +1
2(q9 — 1) 2

(mod ¢ + 1)

so w # 0 exists if and only if £ = (¢ +1)/2 (mod ¢ + 1).

Determining n(A’) We do not know n(A’) when ¢ is odd and n/g is odd. But if ¢ is odd and
n/g is even, it is possible to determine when A’(Q) is a square because this is detected (according

to Theorem 3.3.2) by the number |Z| of nonzero solutions Z to the equation Q(z) = 0. If z € Z
and 0 # a € L and if a'* € F then a'*"z € Z. Hence the group

G={a€lL: o't e F}={a€L: a(ta)a=1) - 1}
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acts freely on Z so |G| = (14 ¢%)(q — 1) divides |Z|. If n/g is even this says,

G _
qg—1

|Z| q" —1 qnil rank(Q)/2 /
q— 1 = q— 1 - qrank(Q)/2 (q - U(A (Q)))

(¢ + 1) divides

with n(A'(Q)) = £1. Together with the rank of () determined above and the divisibility properties
in Lemma 3.3.6, this gives the values of n(A’(Q)) listed in Theorem 3.3.5. O

Corollary 3.3.7. Let F =F, C L = F be finite fields, let d =1+ ¢', let A, B € L with B # 0,
and let F': L — F be the function

F(x) = Tri(Az + Bx?).
Then F' is identically zero if and only if the following conditions hold.
1. A=0.

2. n is even and ged(i,n) =n/2.
3. Try(B) = 0 where E =TF .2 (so that F C E C L.)

Proof. We may assume that i < n (since 27" = x for all € L), so the second condition is
equivalent to i = n/2. If the three conditions hold then d = (|L| — 1)/(|E| — 1) so 2 € E for any
x € L. Therefore

TrE (Trg(Bxd)) = TrE (a:dTré(B)) = 0.

To prove the converse, let L(z) = Trk(Az) and Q(z) = Trk(Bz?). Suppose F(z) = L(z) + Q(x)
is identically zero. If A # 0 then Proposition 3.3.3 implies that Ker(Q) C Ker(L) so @ is a
non-vanishing quadratic form of some rank m > 0. So there exists a subspace V' C E whose
F-dimension is m, such that the restriction of () to V' is non-degenerate. But Ny, = ¢" since
F' is identically zero, so in the notation of Proposition 3.3.3, NJ = ¢, which is to say that the
restriction of @ to V' is zero. This is a contradiction. Therefore A = 0 which proves (1). Therefore
the quadratic form @ has rank zero. By theorem 3.3.5 (and Table 3.5) it follows that n = 2¢ where
g = ged(i,n), which proves (2). Thus ¢ = i = n/2. To prove (3) we must consider two cases,
depending on the parity of ¢q. Let £ = Fq.
First suppose ¢ is even. From Table 3.5 we see that B = s? for some s € E. Therefore

Trh(B) = s? + 584" = g110" 4 s(Fa7a? — gl+a? | '+l —
Now suppose ¢ is odd. From Table 3.5 we see (since n/2¢g = 1 is odd) that

B? = st
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(for some s € L) but B cannot be so expressed. Therefore
B =1

since its square is
g(IFa)(e=1) — 1

In summary,
Tri(B) =B+ B "' =B - B=0. O

3.4 Algebraic number fields

3.4.a Basic properties

So far our examples of fields have consisted of finite fields and the familiar fields Q, the rational
numbers, R, the real numbers, and C, the complex numbers. Recall that we we obtain the various
finite fields of characteristic p > 0 from the prime field F,, by constructing the quotient F,[z]/(f(z))
where f(x) is an irreducible polynomial. We can think of this construction as adjoining a root
(the variable x) of f(x) to the field F,. Similarly, we obtain the complex numbers from the real
numbers by adjoining a root of the polynomial 22 + 1.

In this section we study a class of fields, called algebraic number fields that are obtained in the
same way from the rational numbers. For the most part we omit proofs and leave the interested
reader to find them in other references.

Definition 3.4.1. An algebraic number field E is a finite extension of the rational numbers Q.

This means that E is a field that contains Q and that as a vector space over Q it is finite
dimensional.

A complex number a € C is algebraic over Q, or simply algebraic, if it is a root of some
polynomial f(x) € Q[z] with coefficients in Q. As in Theorem 2.4.11, there exists a unique monic
minimal polynomial f(z) € Qz], irreducible in Q[z], such that f(a) = 0. If Q(a) C C denotes
the smallest field that contains both Q and a, then the mapping Q[z] — Q(a) which takes x to a
induces an isomorphism

Q[z]/(f) — Q(a),

where f is the minimal polynomial of a. The proof is left as an exercise. An important result is
the following:

Theorem 3.4.2. Suppose that E and F' are algebraic number fields with F' C E. Then there is
an element a € E such that E = F(a). In particular, every algebraic number field is of the form
Q(a) for some algebraic number a.
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A field F' is algebraically closed if every polynomial with coefficients in F' splits as a product
of linear factors. Every field is contained in an algebraically closed field, and any two minimal
algebraically closed fields containing a given field F' are isomorphic. Thus in general we may speak
of the algebraic closure of a field F'.

For example, C is algebraically closed. The set Q of all algebraic numbers over Q is an
algebraically closed subfield of C, and we shall refer to this particular field as the algebraic closure
of Q. It is not a finite extension of @, so it is not a number field. However, this observation allows
us to embed any algebraic number field in the complex numbers. For any prime number p, the set

]Fpoo - Uded
is a field. It is the algebraic closure of every Fq.

Theorem 3.4.3. Let I be a number field. Then there are exactly [F : Q| embeddings of F in C.
If K C F is a subfield then every embedding 7 : K — C extends to [F' : K] distinct embeddings
o: F — C such that o(b) = 7(b) for allb € K.

Proof. Let F' = Q(a). An embedding o of F' in C is completely determined by its value on a.
The image o(a) is a root of the minimal polynomial f € Q[z] of a over Q (thinking of f as a
polynomial over C). It is straightforward to check that every root of f determines an embedding.
The number of roots of f is exactly its degree, since C is algebraically closed. Thus the number
of embeddings of F' in C is exactly the degree of f, which equals [F': Q]. The proof of the second
statement is similar, and is left as an exercise. O

Theorem 3.4.4. Let F' be a number field and let oy, - - -, 04 be the distinct embeddings of F in C.
Letb € F and let e = [Q(b) : Q]. Then

1. Trg(b) = o1(b) + 02(b) + -+ + 0q(b) = eTrg(b)(b).
2. NE®) = 01 (0)aa(b) - 0a(b) = (NG 0))
3. If F is a Galois extension of Q then

To) = > o) and N(b) = o (b).
oe€Gal(F/Q) o€Gal(F/Q)

4. The trace map Trg : F— Q 1s surjective.

Proof. (See also Theorem 3.2.14.) Let f(z) = ap+ a1z + - - - + a.xz® be the minimum polynomial of
b. By definition, the roots of f (in C) are distinct (although they are not necessarily all contained
in Q(b) or even in F'). The set {1,b,0%, -+ b} forms a basis for Q(b) as a vector space over Q.
With respect to this basis, the matrix M, for the mapping ¢, : Q(b) — Q(b) ({4(a) = ba) is the
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companion matriz of f(z),that is, it has ones on the superdiagonal, —ag, —ay, - - -, —a._1 in the last
rown, and zeroes elsewhere. See equation (3.3). The characteristic polynomial of M, is exactly the
polynomial f(x) and the eigenvalues of M, are the distinct roots of f(x). So the trace and norm
of b are the sum and product of the roots of f(x) which are

T5" () = ~acr and NG"(0) = (~1)‘a.

Let 7y, ---, 7. denote the distinct embeddings of Q(b) into C. The elements 7(b), 72(b), - - -, 7e(b)
are exactly the roots of the polynomial f. Consequently

Trg(b)(b) =7 (b) 4+t Te(b) and Ng(b)(b) =T (b)Tz(b) s Te(b)'

Let ug,---,u; be a basis for F over Q(b) (hence te = d). Then the set {u;t’} (1 <1 < ¢,
0<j<e— 1) forms a basis for F' over Q. With respect to this basis the mapping L; : F' — F
(Lp(a) = ba) is a “block matrix” with ¢ diagonal blocks, each of which is a copy of the matrix
M,,. Tt follows that the characteristic polynomial of Ly is (f(x))!, that Tr(Ly) = tTr(M,) and that
det(Ly) = (det(My))". By Theorem 3.4.3, each embedding 7; : Q(b) — C extends to ¢ distinct
embeddings F' — C but these embeddings all take b € F' to the same element, 7;(b). Therefore

d
> ai(b) = tzn = tTr(M,) = Tr(Ly) = Triy(b)
and .
[[o: HTZ (det(My))" = det(Ly) = NE(b).

If F'is a Galois extension of @ then the embeddings o; : ' — C have the same image, and the
Galois group Gal(F'/Q)) permutes these embeddings. Consequently,

T5b)= > o) and Nf) = [[ o).

ceGal(F/Q) o€Gal(F/Q)

Finally, the trace Trg is surjective if and only if it is nonzero, but Trg(l) =d#0. O

3.4.b Algebraic integers

Just as algebraic number fields are generalizations of the rational numbers, there is a generalization
of the rational integers Z.

Definition 3.4.5. An algebraic number a is an algebraic integer or is integral if its minimal
polynomial f € Qx| over Q has all its coefficients in Z.
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Theorem 3.4.6. The following are equivalent

1. a s an algebraic integer.

2. Zla] is a finitely generated Z-module.

3. a € R for some ring R C C that is a finitely generated Z-module.
4. aM C M for some finitely generated Z-module M C C.

Proof. If a is an algebraic integer, then a? is a linear combination of 1,a,---,a%"! with integer

coefficients, and it follows that Z[a| is generated as a Z-module by 1,a,---,a%"!. The implications
(2) = (3) = (4) are straightforward.

To prove that (4) implies (1), suppose that M is generated by my, - -+, my. Thusforj=1,--- k,
we have

k
am; = Zb@jmj‘ (323)
i=1

with b, ; € Z. Let ¢;; = b;; if i # j, and ¢;; = b;; — x. It follows from equation (3.23) that the
determinant of the matrix [c;;] is zero at = a. But the determinant of this matrix is a monic
polynomial with integer coefficients, so a is algebraic. O]

3.4.c Orders

Let F' be an algebraic number field and let m = [F : Q]. If R C F is a subring, then it is
automatically an integral domain. An order R C F is a subring of F' that is finitely generated as
a Z-module with rank m. In this case, Corollary 2.1.18 implies that R* is isomorphic to Z™. A
standard result is the following.

Theorem 3.4.7. A subring R in a number field F' is an order in F if and only if it satisfies the
following three conditions,

1. RNQ =%
2. The fraction field (Section 2.2.h) of R is F.
3. The Abelian group (R,+) is finitely generated.

Except when F' = Q, there are infinitely many orders in F'. Every order R C F' consists entirely
of algebraic integers and in fact the intersection Zr = F NFA (where FA denotes the set of all
algebraic integers) is an order which contains all the other orders in F'. This maximal order Zg
is called the ring of integers of F'. It is integrally closed in F', meaning that if o € F' is a root of
a monic polynomial with coefficients in Zr then o € Zp also. In fact, Zpg is the integral closure
of Z in F, that is, it consists of all elements o € I which are roots of monic polynomials with
coefficients in Z. So a subset R C F'is an order if and only if it is a subring and it is contained in
Zr as a subgroup of finite index.

91



The ring of integers of Q is Z; the ring of integers of Q[i] is Z[i]. However the ring of integers
of Q[v/5] is larger than Z[v/5] (which is an order). Rather, the ring of integers consists of all
integer linear combinations of (14 +/5)/2 and (1 — v/5)/2. For any number field F' the maximal
order Zp has several particularly nice properties (it is a Dedekind ring, for example). However in
Section 8.3.a we consider algebraic shift registers whose entries come from an arbitrary order in
an arbitrary number field.

Lemma 3.4.8. Let R be an order in a number field F'. Let a € R. Then the number of elements
in the quotient ring is |[R/(a)| = |N(a)|.

Proof. (See also Exercise 5.) Let {uy,---,u,} be an integer basis for the Z-module R. Then
the set {auy,---,au,} is an integer basis for the Z-module (a). Each au; is some integer linear
combination, say, au; = Ajuy + - - - + Aipu,. On the one hand, the matrix A = (A,;;) describes the
action of multiplication by @ on M so N(a) = det(A). On the other hand, according to Theorem
2.2.28, |R/(a)| = | det(A)]. O

In particular, the theorem says that the norm of any algebraic integer is an ordinary integer.
The absolute value of the norm gives a candidate function for defining division with remainder, see
Definition 2.2.13. If F' = Q(v/d) is a quadratic number field then its ring of integers is a Euclidean
domain with respect to this function if and only if d =2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37,
41, 57, 73, —1, =2, =3, =7, —11, see [17] Section 3.2. A number field has class number one if and
only if its ring of integers is a unique factorization domain. The Stark-Heegner Theorem states
that the only quadratic imaginary number fields with class number one are Q(\/E) for d = —1,
-2, =3, =7, —11, —19, —43, —67, —163. However the ring of integers of any number field is a
Dedekind domain, and as such it admits unique prime decomposition of ideals, i.e., for any ideal
I there are uniquely determined prime ideals Py, Ps, - -, P, and integers my, mg,---,my so that
I =Pm™P™ ... P Moreover, we next show that every element in an order can be written in at
least one way as a product of irreducible elements, so it is a factorization ring.

Theorem 3.4.9. Let R be an order in a number field F' and let a € R. Then there is a unit u and
irreducible elements f1,---, fx € R so that a = ufifo--- fx. (If a is not a unit then the element u
can be absorbed into one of the irreducible factors.)

Proof. Use induction on |[N(a)|. If [N(a)] = 1, then a is a unit so we are done. Likewise, if
a is irreducible we are done. Otherwise we can write a = bc where neither b nor c is a unit.
Then [N(a)] = [N(b)|IN(c)| and neither |[N(b)| nor |N(c)| is equal to 1. Thus [N(b)| < |[N(a)| and
IN(c)| < [N(a)|]. By induction both b and ¢ can be written as units times a product of irreducible
elements, and we can combine these expressions into such an expression for a. O
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3.5 Local and global fields

3.5.a Local fields

There are two types of local fields: local function fields, and p-adic fields. They are discussed in
more detail in Section 5.6.c (where local fields are defined) but here are the basic definitions. If F'is
a field, then the (local) function field F((x)) consists of all formal Laurent series Y .o, a;z", with
a; € F. Such a series has finitely many terms of negative degree and possibly infinitely many terms
of positive degree. Its ring of “integers” is the subring F[[z]] of formal power series, that is, sums
with no terms of negative degree. The ring F[[z]] is a local ring with unique maximal ideal (z).
The field F((x)) is the fraction field of F[[z]]. That is, every formal Laurent series a(z) € F((z))
may be expressed as a quotient a(z) = f(x)/g(x) of two formal power series f,g € F[[z]] (and
in fact the denominator g(z) may be chosen to be a power of x). Addition and multiplication in
F((x)) are performed in a way that is analogous to the addition and multiplication of polynomials.
One must check that only finitely many terms contribute to any term in a product.

Let p be a prime number. The p-adic field Q, consists of all formal Laurent series > > , a;p’
(with finitely many terms of negative degree and possibly infinitely many terms of positive degree),
where 0 < a; < p — 1, and where addition and multiplication are performed “with carry”. It
contains a ring Z, of “integers” consisting of formal power series with no terms of negative degree,
which is a local ring with maximal ideal (p). The field Q, is the fraction field of Z,: every a € Q,
can be expressed as a fraction f/g with f, g € Z, and in fact the denominator g may be chosen to
be a power of p. A p-adic field is a finite degree extension of Q,.

3.5.b Global fields

There are also two types of global fields: function fields and algebraic number fields. The algebraic
number fields (= finite degree extensions of Q) have been previously discussed in Section 3.4. Let
F be a field. A global function field over F' is any finite degree extension of the field F'(x) of
rational functions. The field F(z) is the fraction field of the ring F[z] of polynomials, that is,
every element of F(z) is of the form f/g where f and g are polynomials. If K is a finite degree
extension of F'(x) then there exists n so that K = F[zy,xs, -+, x,|/I where [ is an appropriate
maximal ideal in the ring F[zy, 29, -, x,| of polynomials in n variables. One normally assumes
that K has transcendance degree one over F', in other words, the set

V(I)=A{(x1,29, -, x,) € F": h(z)=0for all h € I'}

is a one dimensional algebraic variety, or an algebraic curve. Then K is called the field of rational
functions on the algebraic curve V(I).
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3.6 Exercises

1. Lemma 3.2.14: Let d and e be positive integers with d dividing e. Prove that if a € Fje, then
a+a” +a”" - 4+ €Fp.

2. Suppose p is prime and ¢, d, and e are integers with c|d|e. Prove that TrgfoTrZ = Triz.

3. Develop an alternate definition of the trace function for a finite field F' in terms of embeddings
of F in its algebraic closure. Prove that your definition agrees with the previous one.

4. Let F = Q[v/5]. Show that the full ring of integers of F is K = Z[(1 £ /5)/2] and that the
norm of an element a + bv/5 is a2 + 5b2.

5. (continued) Let L = Z[/5]. It is an order in K. Let a = 2 € L. The inclusion L C K
induces a homomorphism of quotient rings L/al. — K/aK. According to Lemma 3.4.8, both
rings have 4 elements. Show that L/aL = Fy[x]/(2?), that K/aK = F,, and that the mapping
L/aL — K/KakK is neither injective nor surjective. (Hint: The elements of L/aL are represented
by 0, 1, v/5, 1 + /5, from which multiplication and addition tables can be constructed. The ring
K/aK can be similarly analyzed.)
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Chapter 4 Finite Local Rings and Galois Rings

Local rings have a single maximal ideal. In algebraic geometry they are used to understand the
local geometry at a single point on an algebraic variety. These rings, and especially the special
case of Galois rings (see Section 4.5), generalize finite fields. They have recently been used in
several constructions of error correcting codes and families of sequences with interesting correlation
properties. They are useful models of multiphase signals.

4.1 Finite local rings

In this section we examine the structure of a commutative ring (with identity) which has finitely
many elements. The standard reference for this section is [111]. During the last decade a consider-
able amount of effort has been directed towards developing linear feedback shift register sequences
based on a finite local ring R. The analysis of these sequences depends on an understanding of
the units in R (see Theorem 6.6.4).

Let R be a commutative ring. Recall from Definition 2.2.13 that R is a local ring if it contains
a unique maximal ideal m. In this case (see Section 2.2.a), the maximal ideal m consists precisely
of the non-units of R. The quotient F' = R/m is a field and is called the residue field of R. For
each 7 > 0 the quotient m*~! /m’ is naturally a vector space over F', because R acts on this quotient
by multiplication, and m acts trivially. The following are examples of finite local rings.

e any finite (Galois) field.

e 7/(p™) for any prime number p, with maximal ideal (p) and residue field Z/(p).

o [Flx]/(f™), where F is a finite field and f is an irreducible polynomial, with maximal ideal
(f) and residue field Flz]/(f).

e R[z]/(f™) where R is a finite local ring and f is a basic irreducible polynomial (see below).

Any commutative finite ring may be expressed as a direct sum of finite local rings. For the
remainder of this section we assume that R is a finite local ring.

Basic irreducible polynomials: Let R be a finite local ring with maximal ideal m. Let u :
R — F = R/m be the projection. Applying u to each coefficient of a polynomial gives a mapping
which we also denote by p : R[x] — Flx]. A polynomial f(z) € Rx] is regular if it is not a zero
divisor, which holds if and only if u(f) # 0. Let f(x) € R[z]. If pu(f) is nonzero and is irreducible
in F'[z] then f is irreducible in R|x], and we refer to f as a basic irreducible polynomial. In this case
R[z]/(f™) is again a local ring for any n > 0 (see ([111], XIV.10). Its maximal ideal is m[z]| + (f)

95



and its residue field is F[z]/(u(f)), where m[z] is the collection of those polynomials f € R[z] all
of whose coefficients are in m.

If the leading term of a basic irreducible polynomial f(x) € R[z] is in the maximal ideal m then
the degree of the reduction p(f) € F[z] will be less than deg(f). If f(z) is a monic polynomial
then deg(f) = deg(u(f)) since the leading term is 1. For this reason we will often consider monic
basic irreducible polynomials.

Lemma 4.1.1. Let f € Rx| be a regular polynomial and suppose & € F is a simple zero of
wu(f) € Flz]. Then f has one and only one root a € R such that u(a) = a.

Proof. This is proven in Lemma (XV.1) of [111]. O

Further properties of polynomials over R are described in Section 4.3. The following is a
powerful tool for studying local rings.

Theorem 4.1.2. (Nakayama’s Lemma for local rings [1/1], [159, p. 11]) Let R be a finite local
ring with mazimal ideal m. Let M be a module over R.

1. If M 1is finite and mM = M, then M = 0.
2. If N s a submodule of M and M = N +mM, then N = M.

4.1.a Units in a finite local ring

Let R be a finite local ring with maximal ideal m and residue field F. Let R* be the set of
invertible elements in R. Let 1 + m = {1+ a: a € m}. By [I11], Theorem (V.1) and Proposition
(IV.7),

e the ideal m consists precisely of the non-units of R,
e for every a € R, at least one of a and 1+ a is a unit, and
e there is a positive integer n such that m™ = 0.

The details are left as an exercise.

An element a is nilpotent if for some natural number k we have a* = 0. It follows from the
above that every element a of R is either a unit or is nilpotent. In fact we can take the same k for
all a.

Proposition 4.1.3. There exists an isomorphism of Abelian groups

R~ F* x (1+m) (4.1)
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Proof. Let n be the smallest integer such that m”™ = 0. It is called the degree of nilpotency of m.

As in [141] Exercise (V.9), we have a sequence of surjective ring homomorphisms
R=R/m" 2~ R/m» ! L, ... 2, R/m=F

For 2 < i < n, the kernel Ker(o;) = mi~!/m' is a vector space over F. If |F| = ¢ it follows by
induction that there exists an integer j such that

m| =¢’ and |R| = ¢ (4.2)

The natural ring homomorphism p : R — F = R/m gives an exact sequence of (multiplicative)
Abelian groups,
l=14m—R*— F* — 1.

The Abelian group F* is cyclic of order ¢ — 1, and 1 + m has order ¢/, which is relatively prime
to ¢ — 1. It follows (from the structure theorem for finite Abelian groups, Theorem 2.1.16) that
there is a splitting ¢ : F* — R* and this gives the isomorphism (4.1). O

The structure of 1 + m is often very complicated. However it is possible to identify the cyclic
group F* as a subgroup of R*.

Lemma 4.1.4. There is a unique (group homomorphism) splitting v : F* — R* of the projection
i, and its image consists of all elements o € R such that a4~ = 1.

Proof. Every element a € F* satisfies a?! = 1 so if ¢ exists, the same must be true of ¢(a). Let
g(z) = 27! — 1. Then every element of F* is a (simple) root of u(g) € F[x]. Therefore g is a
regular polynomial, and Lemma 4.1.1 implies that every element a € F* has a unique lift ¢(a) € R
such that ¢(a)?! = 1. Hence the splitting ¢ exists, and there is only one such. O

4.2 Examples
4.2.a Z/(p™)

Fix a prime number p € Z and let R = Z/(p™). This is a finite local ring with maximal ideal
m = (p) and residue field F' = Z/(p). The multiplicative group F* is cyclic, of order p — 1. By
Proposition 4.1.3 the group of units R* is the product F'* x (1 + m).

Proposition 4.2.1. If p > 2 then 1+ m is a cyclic group of order p™ ! so R* = Z/(p — 1) x
Z)(pm Y 2Z/(pmp—1)). If p=2 and if m > 3 then 1 +m is a product of two cyclic groups,
one of order 2 (generated by the element —1), the other of order 22 (generated by the element

5).
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Proof. The order of the group of units is easy to calculate: since every pth integer is a multiple
of p, there are p™/p = p™~! non-invertible elements in R. So there are p™ — p™~! = (p — 1)p™~!
units. It follows that 1 4+ m contains p™~! elements.

Now consider the case p > 3. Define £ : Z — R =7Z/(p™) by E(a) = exp(pa) (mod p™). That
is,

2 2 33
E(a):1+pa+%+%+--- (mod p™) (4.3)

Consider the nth term, a"p™/n!. The number n! is not necessarily invertible in Z/(p™) but the
number p"/n! does make sense in Z/(p") if we interpret it to mean that the factor p® which occurs
in the prime decomposition of n! should be canceled with the same factor p® which occurs in the
numerator. In fact, the prime p occurs in the prime decomposition of n! fewer than n/p + n/p* +
n/p*--- =n/(p—1) times. Since it occurs in the numerator n times, it is possible to cancel all
occurrences of p from the denominator. This leaves a denominator which is relatively prime to p
and hence is invertible in Z/(p™). It follows, moreover, that after this cancellation the numerator
still has at least n(p — 2)/(p — 1) factors of p. Soif n > m(p—1)/(p — 2) the term a™p™/n!is 0 in
Z/(p™). Therefore the sum (4.3) is finite.

Since E(a + b) = E(a)E(b), the mapping E is a group homomorphism. Moreover E(a) = 1 if
and only if @ is a multiple of p™~!. So F induces to an injective homomorphism

E:Z/(p" ) —1+m.

This mapping is also surjective because both sides have p™~! elements.

Now consider the case R = Z/(2™) with m > 3. The element {—1} generates a cyclic subgroup
of order 2. The element 5 generates a cyclic subgroup of order 2™~2. To show this, first verify by
induction that

577 = (142" =14 2™ (mod 2™)

so this number is not equal to 1 in Z/(2™). However
5" = (142" =1 (mod 2™).

So 5 has order 272 in R. Since —1 is not a power of 5 (mod 4) it is also not a power of 5 (mod 2™).
Therefore the product of cyclic groups (—1)(5) has order 27! and it consequently exhausts all
the units. O

4.2.b  Flz]/(z™)

Let F' be a finite field and let R = F[z]/(z™). Then R is a finite local ring with maximal ideal
m = (z) and with residue field F'. The mapping u : R — F' (which associates to each polynomial its
constant term) takes R* surjectively to F*. This mapping has a splitting F* — R* which assigns
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to any nonzero a € F the polynomial a+0z. This gives an isomorphism R* = F'* x (14+m), where
1 + m is the (multiplicative) group of all polynomials of the form 1+ xzh(z), h(x) a polynomial of
degree < m — 2. (So we have recovered Proposition 4.1.3.) It is fairly difficult to determine the
exact structure of the group 1 + m but the following proposition describes its general form. Let
q = |F| = p? with p prime.

Proposition 4.2.2. The (multiplicative) group 1 + m is isomorphic to a product of (additive)
cyclic groups,
L+m=Z/(p") x - X Z/(p™) (4.4)

where each r; < [log,(m)] and where

Zri =d(m—1).

Proof. The Abelian group 1+ m is finite. It is thus isomorphic to a product of cyclic groups whose
orders divide |1 + m| = ¢™ ! which is a power of p. This gives an abstract isomorphism (4.4).
Counting the number of elements on each side of this equation gives

m—1 __  ri4-+4rg
q =p

SO N
i=1

Let 7 be the smallest integer such that p” > m. Then y?" = 1 for any y € 1+m, because expressing
y =14 zh(z) and computing in F[z] we find that

Yy =1+2"h" =1 (mod z™).
Thus the cyclic groups occurring in (4.4) each have r; < r = [log,(m)]. O

4.2.c Flz|/(f™)

Let F be a finite field and let f € F[z| be an irreducible polynomial. Fix m > 1. The ring
R = Flx]/(f™) is a finite local ring with maximal ideal (f) and with quotient field K = Fx]/(f).
The next result identifies the ring R with that of Section 4.2.b. Let

p:R=Flz]/(f™) — K = Flz]/(f)

be reduction modulo f. It is a surjective ring homomorphism.
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Proposition 4.2.3. There is a unique splitting of . That is, there is a unique injective ring
homomorphism ¢ : K — R so that p(p(a)) = a for all a € K. Moreover the mapping ¢ extends
to a mapping ¢ : Kly] — R by setting p(y) = f. The resulting mapping

?: Klyl/(y") = R
s an isomorphism of rings.

Proof. Let q denote the number of elements in F' and let Q = ¢¢ denote the number of elements
in K, where d = deg(f). First we show that the set

Zm = {9 € Fla]/(f™): ¢° =g}

is a lift' of the field K to R. It is therefore a candidate for the image of .
The set Z,, is closed under addition and multiplication, because if g1, g» € Z,, then

(o +92)Q = g? +g§2 =01+ g2

Moreover the restriction y : Z,, — K is an injection, for if g € Z,, lies in the kernel of p and if
g € F[z] is any lift of g, then f divides §. However f™ divides g% — ¢ = (¢9~' —1)(g). Since these
two factors are relatively prime, it follows that f™ divides g, which says that ¢ = 0 in R. Now let
us show that the restriction u : Z,, — K is surjective. Fix a € K. We need to find g € Z,, so that
1(g) = a. We use induction on m, and the case m = 1 holds trivially. So let m be arbitrary and
consider the mapping
pom + Fla]/(f™) — Flal/(f™7).
By induction, there exists ¢ € Flz]/(f™ 1) so that (¢')? = ¢’ and so that ¢’ maps to the given
element a € K, that is, ¢ (mod f) = a. Let ¢’ € F[z] be any lift of ¢’ to Flx]. Then f™ ! divides
()9 =g or
(g/)Q . g/ — fmflh

for some polynomial h € Fx]. Set g = ¢ + hf™ . Then
(909 =g = ()% = § + R — gt = Qgm0

which is divisible by f™. This says that the class [g] € Flz]/(f™) lies in the set Z,, and that
g (mod f) = a as needed.

The splitting ¢ is unique because every element g in the image of a splitting must satisfy
g? = g. This function ¢ : K — R. extends to a function ¢ : K[y] — R by mapping y to f. We

If 7: A — B is a set function, then a lift of a subset C' C B is a subset of D C A that is mapped by 7 one to
one and onto C. A lift of an element y € B is an element x € A so that 7(z) = y.
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claim that the kernel of ¢ is (y™) and that ¢ is onto. The kernel contains (y™) since f™ = 0 in R.
Let

with ¢(g) = 0. Thus
m—1
Z gif' = 0. (4.5)
i=0

As a vector space over K the ring R has dimension m since |R| = Q™ = |K|™. R is spanned over
K by {1, f, f?,--+, f™ '} (this can be proved by induction on m). Therefore these elements form a
basis. As we have seen in the preceding paragraph, the projection p,, : Flz]/(f™) — Flz]/(f™")
takes Z,, to Z,,—1 (both of which are lifts of the field K). Applying the projection u,, to equation
(4.5) gives

m—2
Z gif’ =0
=0

and by induction we conclude that gg = g1 = ... = gm_o = 0. This leaves g,,_1 f™ ' = 0 in
the ring R, which means that f™ divides g,,_1f™ ! in the polynomial ring F[z]. But F[z] is an
integral domain, so we conclude that f divides g,,_1, hence g,,_1 = 0 as an element of K.

In conclusion, we obtain a well defined surjective ring homomorphism K[y] — R by sending y to
f. The kernel of this homomorphism is the ideal (y™) so we obtain an isomorphism Ky]/(y™) —
R. O

4.2.d Equal characteristics

Suppose that R is a finite local ring with maximal ideal m and quotient field F' = R/m. Recall
that there is a unique homomorphism Z — R (taking m to 1+ ---+ 1, m times). Its kernel is an
ideal (t) C Z where t = char(R) is the characteristic of R. Since R is finite, its characteristic is
nonzero. If the characteristic of R were divisible by two distinct primes, say p and ¢, then neither
p nor ¢ would be a unit, hence both would be in m. It would follow that 1 is in m, since 1 is an
integer linear combination of p and ¢. Hence char(R) = p° is a power of a prime p. Moreover, the
image of Z in F is a quotient of its image Z/(p°¢) in R. Thus char(F') = p.

Let p: R — F be the quotient mapping. Set ¢ = |F'|. Let ¢ : F* — R* be the homomorphism
described in Lemma 4.1.4. Extend ¢ to F' by mapping 0 to 0.

Proposition 4.2.4. The function . : F — R is a ring homomorphism if and only if R and F' have
the same characteristic (sot =p and e =1).
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Proof. Whenever f : A — B is a ring homomorphism, char(B) divides char(A) because the kernel
of the homomorphism from Z to B contains the kernel of the homomorphism from Z to A. If ¢ is
a ring homomorphism then char(R)|char(F') so e = 1.

For the convese, suppose that R and F' have the same characteristic, p. Since ¢ is multiplicative,
to show that ¢ is a ring homomorphism we need only show that for every a,b € F we have
t(a) + ¢(b) = t(a+b). The polynomial x? — x is regular over F' and has only simple roots. Thus
t(a) can be defined to be the unique element of R so that u(t(a)) = a and that is a root of x7 — z.
This element exists by Lemma 4.1.1. We have

ple(a) + 1(b)) = p(e(a)) + p(u(d)) = a + b= p(ua + b)),
so that ¢(a) + ¢(b) and ¢(a + b) are congruent modulo m. Also,
((a) +¢(b))" = 1(a)? + ¢(b)" = ¢(a) + (D),

because (z + y)? = aP + y? in any ring of prime characteristic p. Thus ¢(a) + ¢(b) is in the image
of + and must equal ¢(a + b). O

Proposition 4.2.5. Let R be a finite local ring with quotient field F = R/m. Then char(R) =
char(F') if and only if there exists r,k so that R is isomorphic to the quotient F[xy,xq,- -, x|/
where I is an ideal that contains every monomial of degree > k.

Proof. Suppose char(R) = char(F). Use ¢ to identify F' as a subring of R. Let M be a set of
variables in one to one correspondence with the elements of m. Then R = F[M]/I, where [ is the
set of all polynomials in M that vanish when the elements of M are replaced by the corresponding
elements of m. Since m* = (0) for some k, every monomial of degree > k is contained in I.
Conversely, if F' is a finite field, M is a finite set of variables, and [ is an ideal in F[M] containing
every monomial of degree > k, then R = F[M]/I is a finite local ring with maximal ideal generated
by M whose characteristic equals that of its quotient field. O

4.3 Divisibility in R[z]

Throughout this subsection, R denotes a finite local ring with g : R — F = R/m the projection
to its residue field. Let f,g € Rz].

1. f is mulpotent it f™ = 0 for some n > 0.

2. fis a unit if there exists h € R[z] so that fh = 1.

3. f is reqular if f is not a zero divisor.

f is prime if the ideal (f) is a proper prime ideal.

f is irreducible element if f is not a unit and, whenever f = gh then g or h is a unit.

AN
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6. f and g are coprime if R[z] = (f) + (g).
In [141] the following results are proven.
Theorem 4.3.1. Let f =ag+ a1z + -+ +asX? € R[z]. Then
1. The following are equivalent:
(a) f is a unit.
(b) p(f) € Flx] is a unit.
(¢) ag is a unit and the remaining coefficients ay, - - -, aq are nilpotent.
2. The following are equivalent:
(a) f is nilpotent.
(b) u(f) = 0.
(c) All the a; are nilpotent.
(d) f is a zero divisor.
(e) there exists a # 0 in R such that af = 0.

3. The following are equivalent:

(a) f is regular.
(b) u(f) # 0.

(¢) a; is a unit for some i (0 <i<d).

4. f and g are coprime if and only if u(f) and u(g) are coprime. In this case, f* and ¢’ are
coprime for all i,5 > 1.

5. If p(f) is irreducible then f is irreducible. If f is irreducible then u(f) = ag™ where a € F
and g € Flz| is a monic irreducible polynomial.

6. (Euclidean algorithm) If f # 0 and if g € Rlx] is reqular then there exist (not necessarily
unique) elements q,r € R[x] such that degr < degg and f = gq+r.

7. If f and g are monic and regular and if (f) = (g) then f = g.

Recall that an ideal I C R[z] is primary if I # R[x] and whenever ab € I, then either a € I or
b" € I for some n > 1. An element g € R[z] is primary if (g) is primary.

Proposition 4.3.2. An element f € Rx] is a primary reqular non-unit if and only if f = ug"+h
where u € R[x] is a unit, g € Rlx| is a basic irreducible, n > 1, and h € m[z] (that is, all the
coefficients of h lie in m).

Although R[z] is not necessarily a unique factorization domain, the following theorem ([111]
Thm. XIII.11) states that regular polynomials have unique factorization.

Theorem 4.3.3. Let f € R[z] be a reqular polynomial. Then there exist unique (up to reordering
and multiplication by units) reqular coprime primary polynomials g1, g2, -+, 9, € R[x] so that

f=0g192+" 9n.
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4.4 Tools for local rings

In this section we develop several tools for the analysis of finite local rings — Galois theory, the
trace and norm, and primitive elements. These are all generalizations of the similarly named tools
for analyzing finite fields, and in most cases we use the finite field versions to help construct the
finite local ring version.

4.4.a Galois theory of local rings

In the next few paragraphs we see that a finite local ring R has a distinguished collection of Galois
extensions GR(R,n), one for each positive integer n, which are themselves local rings and for which
many of the familiar properties of Galois fields continue to hold.

Extensions. Let R be a finite local ring. An extension ring is a finite local ring S which contains
R. Any extension S of R is an R-algebra. A ring homomorphism ¢ : S — S is said to be an R-
algebra automorphism of S provided it is both surjective and injective, and provided ¢(ac) = ap(c)
for all a € R and ¢ € S. Define the Galois group

G = Gal(S/R) = Autg(S)

to be the set of R-algebra automorphisms of S. The Galois group G acts on S. Let S¢ denote the
set of elements which are fixed under the action of G' (hence R C S¢). Then S¢ is an R-algebra.
If 9 is the maximal ideal of S, then S¢ is a finite local ring with maximal ideal S¢ N 90, hence
is an extension of R. An extension S of R is unramified if the maximal ideal m of R generates
the maximal ideal of S; otherwise it is said to be ramified If S is an unramified extension of R
then m’ generates 9 so the degree of nilpotency of m equals the degree of nilpotency of 9. An
unramified extension R C S is said to be a Galois extension if R = S°.

Example Let R be a finite local ring with maximal ideal m. Let f € R[z| be a monic basic
irreducible polynomial. The extension S = R[x]/(f™) is again a finite local ring (see Section 4.1).
Its maximal ideal is MM = m + (f). If m > 1 then S is a ramified extension of R. If m =1 then S
is an unramified extension and 2t = mS is generated by m.

The following result is the main theorem in the Galois theory of finite local rings. The proof
may be found in [111].

Theorem 4.4.1. Let R be a finite local ring. Then every unramified extension R C S is a Galois
extension. Suppose R C S is such an extension, with corresponding mazimal ideals m C 9. Then
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the following diagram
S 2 K=S5/Mm

U U (4.6)
R ‘Xt F=R/m

induces an isomorphism Gal(S/R) = Gal(K/F) which is therefore a cyclic group. There exists
h € S so that S = R[h]. The mapping determined by h — hi¥l generates Gal(S/R). Let h =
hi, ha, ..., hq be the distinct images of h under Gal(S/R). Then the following polynomial

f(@) = (& = hi)(x = hg) - (¥ — ha) (4.7)

actually lies in R[x]. It is a (monic) basic irreducible polynomial of degree d = |Gal(S/R)|. The
mapping R[z]/(f) — S which takes x € Rx] to h € S is an isomorphism of rings (and of R-
algebras). The ring S is a free module of rank d over the ring R, hence |S| = |R|? and we say
that S is an extension of degree d. The above diagram induces a (combinatorial) lattice preserving
bijection between the Galois extensions of R which are contained in S and the field extensions of
F which are contained in K. The ring S is a field if and only if the ring R is a field. If f' € R[x]
is another monic basic irreducible polynomial of the same degree d then there exists an R-algebra
isomorphism S = Rlz|/(f"). In particular, f' also splits into linear factors over S.

Corollary 4.4.2. Let R be a finite local ring, let S be an unramified degree d extension of R, and
let f € R[z] be a monic basic irreducible polynomial of degree d. Let o € S be a root of f. Then
the collection

2 d—1
) & T
{1aa « }

15 a basis of S over R. The element « is invertible in S.

Proof. According to Theorem 4.4.1, we may replace S with R[x]/(f) and we may replace o with
x. By the division theorem for polynomials, the set

{1737,.2172,"'7.’136!71}

is a basis of R[x]/(f) over R. If f(z) = ag+az+- - -+aqgz? then u(ag) # 0 since u(f) is irreducible.
Therefore aq is invertible in S and

—1
zt = a—(al + asx® + - + agr®)
0

in Rlz]/(f). O
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4.4.b The Trace and the norm

Let R,m, F' = R/m be a finite local ring with y : R — F the reduction map. Let S,9, K = S/9M
be a Galois extension of degree d with v : S — K the reduction map. Let a € S. The trace
Trs/r(a) € R and norm Ng/r(a) € R of a are defined to be

Trs/r(a) = Z o(a)

o€Gal(S/R)

and

Nyrla) =[] ola).

oeGal(S/R)

Consider the mapping k., : S — S which is given by multiplication by a. Since S is a free
module over R it has a basis consisting of d elements, and the mapping x, may be expressed as a
d x d matrix M,. Then the trace and norm of a equal the trace and determinant (respectively) of
this matrix (which are thus independent of the choice of basis).

Lemma 4.4.3. Trg/r(a) equals the trace of M, and Ng/r(a) equals the determinant of M,. Also,
we have p10 Trg/p = Trg/pov and ppo Ng/gp = Ngjpov.

Proof. The last statement of the theorem follows from Theorem 4.4.1. We know the first statement
concerning the trace is true for the fields K and F' by Proposition 3.2.14. Let N be the set of
elements a of S such that the trace of a equals the trace of M,. Then N is an R-submodule of §
since the mapping from a to the trace of M, is R-linear. Moreover S = N + 915 = N +mS. By
Nakayama’s lemma (Theorem 4.1.2) we have S = N, which proves the claim.

Next we consider the norm. Let us denote the determinant of M, by D(a). We want to show
that D(a) = Ng/r(a) for every a € S. Since both Ng/p and D are multiplicative, it suffices to
show this for a set V' such that every element of S is a product of elements of V.

If a € R, then M, = al so D(a) = a?, and Ng/g(a) = a®.

Suppose that a € S reduces to a primitive element of K modulo 9. If N is the R-submodule
of S spanned by 1,a,---,a%!, then S = N + 9, so by Nakayama’s lemma S = N. That is,
1,a,---,a% ! is an R-basis for S. With respect to this basis M, has the form described in the

proof of Proposition 3.2.14. If
e/d—1

f(z) =a%+ Z a;x’"
i=0

is the minimal polynomial of a over R, then D(a) = a9 = Ng/r(a). Thus D(a’) = Ng/g(a") for
every i. If n is the degree of nilpotency of S and R, then |S| = |K|". We have thus far accounted
for the (|K| — 2)|K|"~! elements of S that are congruent to some a’, i = 1,---,|K| — 2. We also
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have D((a +b)/a) = Ng/r((a + b)/a) if b € M. This accounts for the [M| = [K|"! elements in
1 + 91, and hence for all the units. Finally, since 9t = m.S, every element of 9 can be written
in the form cb with ¢ € m for some i and b a unit. Using multiplicativity again completes the
proof. O

Corollary 4.4.4. The trace Trg/p : S — R 1s surjective.

Proof. First we show there exists an element s € S so that Tr(s) is invertible in R. If this were
false, then we would have Tr(s) € m for all s € S which would imply that the induced mapping
S/9M — R/mis 0. This would contradict the above lemma which states that this induced mapping
is the trace, Trx,p, which is surjective. So choose ¢ € S so that Trg/z(c) is invertible and let a € R
denote its inverse. Then for any b € R we have Trg/g(bac) = baTrg r(c) = b. O

Theorem 4.4.5. Let 0 € Gal(S/R) be a generator of the Galois group. Then Trg/p(a) = 0 if and
only if there exists ¢ € S such that a = ¢ — o(c), and Ng/r(a) = 1 if and only if there is a unit
be S sothat a=bo(b)™ .

Proof. The ring S is a free module over R of rank d. First we prove the statement about the trace.
Let ¢ : S — S be defined by ¢(x) = 2 — o(z). The kernel of ¢ is R since S is a Galois extension of
R. As a homomorphism of R modules the rank of ¢ is d — 1 because its kernel is 1-dimensional.
Therefore the image of ¢ contains |R|?"! elements. The image of ¢ is contained in Ker(Tr) which
by Corollary 4.4.4 also contains |R|9"! elements, so they coincide. Thus Tr(a) = 0 if and only if
a=>b—o(b) for some b € S.

The statement concerning the norm is similar, but it uses the function v : §* — S§* defined
by ¥(z) = zo(z)~t. O

Suppose L : S — R is any R-linear mapping. Then for any ¢ > 1 we have L(9") C m’. (Since
M = mS, any element in MM’ may be expressed as ac with a € m* and ¢ € S, in which case
L(ac) = aL(c) € m'.) In particular, L induces an F-linear mapping L : K = S/M — F = R/m
and the diagram
S 2= K=S5/M

Ll Jz (4.8)
R ‘- F=R/m

commutes. Let us say that L is nonsingular if this mapping L is surjective. This is equivalent to
saying that L is not the zero map.

Theorem 4.4.6. Let L : S — R be an R linear mapping. Then

1. The mapping L : S — R is surjective if and only if L is nonsingular. (In particular, the
trace Trg g is nonsingular.)
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S

If L is nonsingular, then L(ON') = m® for any i > 1.

If L is nonsingular, b € S and L(ab) =0 for all a € S, then b = 0.

4. There exists b € S so that L(a) = Tr(ba) for all a € S. The element b is invertible if and
only if L 1s nonsingular.

co

Proof. It L is surjective then it is nonsingular by diagram (4.8). On the other hand, if L is
nonsingular then (as above) there exists b € S such that L(b) is invertible in R. If a = L(b)™!
then, for any ¢ € R, L(cab) = ¢ so L is surjective. This proves (1). We already know that
L(9') C m’ so let ¢ € m* and, by part (1), let ap € S be an element such that L(ag) = 1. Then
cag € M' and L(cag) = ¢, which proves (2).

To prove (3), let n be the degree of nilpotency of m. That is, m"™ = 0 but m"~! # 0. Then n is
also the degree of nilpotency of 9. Let b # 0 € S and suppose that L(ab) = 0 for all a € S. Let
m < n be the largest integer so that b € 9. Then b = db; with d € m™ — m™*"! and b; a unit in
S. Therefore for all a € S we have 0 = L(da) = dL(a). But m < n so we must have L(a) € M
which contradicts the nonsingularity of L, proving (3).

To prove (4), consider the mapping S — Hompg(S, R) which assigns to any b € S the R linear
mapping a — Trg/r(ab). This mapping is injective, for if o’ € S and Trg p(ab) = Trg/r(ab’) for all
a € S, then by part (3) this implies b = /. Since S is a free module over R of some rank d, there
are |R|? elements in Homp(S, R). But this is the same as the number of elements in S. Therefore
every R-linear mapping L : S — R is of the form a — Trg/p(ab) for some b € S. If b is invertible,
then the mapping L is nonsingular, whereas if b € 9t then L(ab) € m so the resulting mapping
L:S/M — R/m is zero. O

4.4.c Primitive polynomials

Let R be a finite local ring with maximal ideal m and residue field p: R — F' = R/m. Let S be a
degree d Galois extension of R, with maximal ideal 9t and residue field v : S — K = S/ as in
(4.6). Let f € R[x] be a basic irreducible polynomial of degree d. Then f is said to be primitive if
the polynomial f = u(f) € Fl] is primitive. That is, if for some (and hence for any) root @ € K
of f, the distinct powers of @ exactly account for all the nonzero elements in K. Unfortunately
this is not enough to guarantee that each root a € S of f generates the cyclic group ¢«(K*) C S.

Lemma 4.4.7. Let f € R[x| be a basic irreducible polynomial of degree d and let S be a degree d
Galois extension of R, so that f splits into linear factors over S. Let a € S be a root of f. If u(f)
is primitive (in F[z]) then the elements {1,a,a? ---,a9%} are distinct, where Q = |K| = |F|.
The roots of f lie in L(K*) C S* if and only if f divides x° — 1. Thus, if u(f) is primitive and f
divides 29 — 1, then «(K*) C S* consists of the Q — 1 distinct powers {1, a,a®, - ,aQ_z} of a.

Proof. The element p(a) € K is a root of u(f) € Flz]. If u(f) is primitive, then p(a) is a primitive
element in K and the elements u(a)’ (0 < i < Q—2) are distinct, so the same is true of the elements
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a' (0 <i<Q—2). By 4.1.4 the polynomial g(z) = 2971 — 1 factors completely in S as

o) = T (== u(v)).

be K>

Since f also factors completely over S, we see that the roots of f lie in +(K*) if and only if f

divides g(x). O

4.5 Galois rings

Let p € Z be a prime number. According to Theorem 4.4.1, for each n,d > 1 the ring Z/(p™) has
a unique Galois extension of degree d. This extension S = GR(p",d) is called the Galois ring of
degree d over Z/(p"). For n =1 it is the Galois field F,«. For d = 1 it is the ring Z/(p"). Let us
review the general facts from Section 4.4 for the case of a Galois ring S.

The Galois ring S = GR(p",d) is isomorphic to the quotient ring Z/(p™)[x]/(f) where f €
Z/(p™)[x] is a monic basic irreducible polynomial. That is, it is a monic polynomial such that its
reduction f (mod p) € Z/(p)[z] is irreducible. The ring S contains p"? elements. For each divisor
e of d the Galois ring S contains the ring GR(p", e) and this accounts for all the subrings of S. For
any m < n there is a projection S — GR(p™, d) whose kernel is the ideal (p™), and this accounts
for all the nontrivial ideals in S. In particular the maximal ideal 9t = (p) = pS consists of all
multiples of p. The quotient S/9 = F,a is isomorphic to the Galois field with p? elements. If p
denotes the projection to this quotient, then it is compatible with the trace mapping in the sense
that the following diagram commutes,

S =GR(p",d) - K =T,

| |7

Z/(p") T) Iy

where ¢ = p?. There is a natural (multiplication-preserving) splitting ¢ : K — S of the mapping u
whose image is the set all elements x € S such that 29 = x. The group of units of S is the product

S* = o(K*) x (1+9M).

If p > 3 then
L+MZ/(p" ) x - x Z/(p™ ") (d times).

If p=2and n > 3 then

1+ (Z/(2")) T x 2/(2"7%) x Z/(2)

109



If p=2and n = 1,2 then in this equation, each factor Z/(2") should be dropped whenever m < 0.
It follows that, in general, S* contains cyclic subgroups of order (p? — 1)p"~! and that |S*| =

(v = 1pe

Lemma 4.5.1. For any x € S there are unique elements ag,aq,- -, a,—1 € L(K) such that
r=ay+ap+--+an_1p" "t (4.9)

The coefficients ag,aq,- - an—1 in (4.9) are called the coordinates of x, and the expansion (4.9) is
called the p-adic expansion of x.

Proof. First note that if t € «(K) and if 1 — ¢ is not a unit, then ¢ = 1. Next, according to the
comments in the first paragraph of this section, |90 /9| = ¢ for 1 <i < n — 1. We claim that
every element of /9! has a unique representative of the form ap’ where a € «(K). Certainly
ap’ € M' and there are no more than ¢ such elements, so we need to show these elements are
distinct modulo 9. Suppose ap’ = bp' (mod M) with a,b € «(K). Then p'(1—ba~') € M+
from which it follows that 1 — ba™! € 9. But ba~' € 1(K) so the above note implies that a = b.
It now follows by induction that every z € 9" has a unique expression = = p'(ag + a1p+ - - +
ap—i—1p" ") with a; € «(K). The coefficient ag is the unique representative of x (mod 9*1),
while the inductive step applies to & — plag € M. O

The advantage of Lemma 4.5.1 is that multiplication by elements in ¢(K) is described coordin-
atewise. That is, if b € «(K) and if z is given by 4.9, then bag + ba;p+ - - - +ba,_1p" ' is the p-adic
expansion of bx. Multiplication by p is given by a “shift” of the coefficients a;. However addition is
described using a generalized “carry” procedure: if a,b € «(K) and if a+b = co+cip+- - +cp_1p" "
is the p-adic expansion of a + b then we may think of the coefficient ¢y as the “sum” and the
coefficients ¢; (for i > 1) as being higher “carries”.

4.6 Exercises

1. Let R be a finite local ring with maximal ideal m. Show that

a.the ideal m consists precisely of the non-units of R,
b.for every a € R, at least one of a and 1 + a is a unit, and
c.there is a positive integer n such that m™ = 0.

2. Let R be a finite local ring with maximal ideal m and residue field F' = R/m. Show that
m'~! /m’ naturally admits the structure of a vector space over F.

3. If R is alocal ring and ¢g € R[z] is regular, then use Nakayama’s Lemma to show that for every
f € R[z] there exist ¢,r € R[z] with f = gq+ r and deg(r) < deg(g).
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4. Show that for p = 3 and m = 3, the mapping F : Z/(3?) — Z/(3%) of Section 4.2.a is given by

E(a) =1+ 3a+ 18a* + 18d°.

5. Let S/R be a Galois extension of finite local rings ¢ € Gal(S/R) be a generator of the Galois
group. Prove that Ng/g(a) =1 if and only if there is a unit b € S so that a = bo(b) .
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Chapter 5 Sequences, Power Series and Adic Rings

The central theme of this work is the design and analysis of sequences by identifying them with
algebraic structures. The most common example associates to a sequence a its generating function,
the formal power series whose coefficients are the elements of the sequence. This idea has been
extremely fruitful, with applications to many disparate areas including probability theory, cryp-
tography, combinatorics, random number generation, and algebraic topology. However, an infinite
sequence may also be associated to a p-adic number, a m-adic number, or a reciprocal power series.
Despite their differences, these algebraic structures can all be described in terms of a single general
construction known as “completion”. In this chapter these structures are individually described
and an outline of the general theory is given.

5.1 Sequences

In this section we describe basic combinatorial notions concerning sequences. See also Section
11.2.

5.1.a Periodicity

Let A be a set and let a = (ag, a1, a9, - - +) be a sequence of elements a; € A, also called a sequence
over A. If the set A is discrete (meaning that it is finite or countable) then we refer to A as the
alphabet from which the symbols a; are drawn. If N is a natural number and A ={0,1,---, N —1},
then we refer to a as an N-ary sequence. The sequence a is periodic if there exists an integer T' > 0
so that

a; = Q4T (51)

for all i = 0,1,2,---. Such a T is called a period of the sequence a and the least such T is called
the period, or sometimes the least period of a. The sequence a is eventually periodic if there exists
N > 0 and T > 0 so that equation (5.1) holds for all # > N. To emphasize the difference, we
sometimes refer to a periodic sequence as being purely periodic or strictly periodic. A period (resp.
the least period) of an eventually periodic sequence refers to a period (resp. least period) of the
periodic part of a.

Lemma 5.1.1. Suppose a is a periodic (or eventually periodic) sequence with least period T'. Then
every period of a is a multiple of T.
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Proof. If T" is a period of a, then dividing by T gives T = ¢T + r for some quotient ¢ > 1 and
remainder 7 with 0 < < T — 1. Since both T" and 7" are periods, a;+7 = Gitqr+r = Gitr for all
1 > 0. Therefore r is a period also. Since r < T', the minimality of T implies r = 0. O]

5.1.b Distinct sequences

Let A be an alphabet and let a = (ag, aq,---) and b = (bg, by, - - -) be sequences of elements of A.
We say that b is a shift of a if there exists 7 > 0 so that b; = a;,, for all © > 0. We write b = a".
If no such shift 7 exists then we say that a and b are shift distinct. If a and b are periodic with
the same period and b is a shift of a, then we say that b is a left shift of a. If no such shift exists
then a and b are shift distinct. More generally, if a is a sequence over an alphabet A and b is a
sequence over an alphabet B, we say that a and b are isomorphic if there exists an isomorphism
of sets 0 : A — B so that b; = 0(a;) for all i > 0. (If A = B are the same alphabet then o is just a
permutation of the symbols in the alphabet.) We say the sequences a and b are isomorphic up to
a shift if there exists an isomorphism o : A — B and a shift 7 such that b; = o(a;,,) for all i > 0.
If no such pair o, 7 exists then we say that a and b are non-isomorphic, even after a shift.

5.1.c Sequence generators and models

The sequences described in this book are generated by algebraic methods involving rings. We
formalize constructions of this type by defining a sequence generator. In the models we encounter,
the state space of the sequence generator usually corresponds to a cyclic subgroup of the group of
units in a ring.

Definition 5.1.2. A sequence generator, or discrete state machine with output
F=UZf9)

consists of a set U of states, an alphabet 32 of output values, a state transition function f: U — U
and an output function g : U — Y.

Such a generator is depicted as follows:

fC,U—g»z.

The set U of states is assumed to be discrete, meaning that it is either finite or countably infinite.
We also assume the alphabet ¥ of possible output values is discrete. Given an initial state s € U,
such a sequence generator outputs an infinite sequence

F(s) = g(s), 9(f(s)),9(f*(s)), -
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with elements in 3. A state s € U is aperiodic if, starting from s, the generator never returns
to this state. The state s is periodic of period L if starting from s, after L steps, the generator
returns to the state s. That is, if fX(s) =s. The least period of such a periodic state is the least
such L > 1. A state s is eventually periodic if, starting from s, after a finite number of steps,
the generator arrives at a periodic state. If U is finite then every state is eventually periodic. We
say a set of states is closed if it is closed under state change. It is complete if it consists of all the
periodic states. If a state s is periodic (resp., eventually periodic), then the output sequence F(s)
is periodic (resp., eventually periodic) as well. The converse is false, however. For example, let
F = (N,{0,1}, f,g) with f(n) = n+ 1 and g(n) = 0 for all n. Then the output sequence from
every state is periodic but no state is even eventually periodic.

Definition 5.1.3. Let F = (U, %, f,g) and G = (V, %, f', ¢') be sequence generators. A homomor-
phism from F' to G is a partial function ¢ from U to V so that

1. for alls € U, if a is in the domain of ¥, then f(a) is also in the domain of v, and
2. the following diagram commutes:

NE%

That is, ¢'(¥(a)) = g(a) and Y(f(a)) = f'(¥(a)) for all a in the domain of ).

If Ris aring and b € R, then let hy, : R — R denote multiplication by b. That is, hy(z) = bz.
Then for any function 7' : R — ¥, the 4-tuple R®T = (R, X, hy, T) is a sequence generator.

Definition 5.1.4. Let F' = (U, %, f,g) be a sequence generator. An algebraic model or simply a
model for F' is a homomorphism 1 of sequence generators between F and R*T for some ring R,
be R, and T : R — X. The model is injective if ¥ : R®T — F and the model is projective if
W F— RbT.

In the case of an injective model, if @ is in the domain of ), then the output sequence generated
from v (a) is described by the exponential representation,

T(a), T (ba), T(b%a),---.

In the case of a projective model, if s is in the domain of v, then the output sequence generated
from b is described by the exponential representation,

T(i(s)), T(b(s)), T(b*(s)), -+ -
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If the ring R is a finite field, then every such sequence is strictly periodic (because bfa = b¥*"a
implies that @ = b"a). We say that the model is complete if every periodic state s € X is in the
range (in the injective case) or domain (in the projective case) of 1. A complete model, if one
exists, allows us to analyze the behavior of the sequence generator using the algebraic structure
of the ring R. In this book we encounter many different types of sequence generators and their
models.

If ¥ is a one to one mapping on its domain, then it can be inverted (possibly resulting in a
partial function), allowing us to replace a projective model with an injective model, or vice versa.
In practice, however it may require a nontrivial amount of computation to describe the inverse
mapping, particularly when attempting to describe the initial state of the generator, cf. (6.5),
(7.4), (8.5). Thus one or the other version may be a more natural way to describe a model.

5.2 Power series

5.2.a Definitions
Throughout this section we fix a commutative ring R (with identity 1).

Definition 5.2.1. A (formal) power series over R is an infinite expression

a(r) = ap + ayx + agx® + -+,

where x is an indeterminate and ag, a1, --- € R. As with polynomials, the a;s are called coefficients.
The sequence (ag, ay,---) of coefficients of a power series a(x) is denoted seq(a). If b(x) = by +
bix + box® + - - - is a second power series over R, then define
(a+0)(z) = a(x) + b(x) = Z(ai + b))z’
i=0
and

(ah)(2) = ala)b(z) = Y (O ajbi )

i=0 j=0
The set of power series over R is denoted R|[x]]. The least degree of a nonzero power series
a(x) = D2, a;x’ is the least index i such that a; # 0. The least degree of 0 is cc.

These operations make R|[[z]] into a ring with identity given by the power series 1 = 1 + 0x +
022 + - --. The following lemma concerns a remarkable property of the ring of power series: most
elements have inverses in R|[[z]] and it is easy to determine when an element is invertible.
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Lemma 5.2.2. Let b(z) =Y oo bx' € R[[z]] be a power series. Then (1) b is invertible in R[[z]]
if and only if (2) the constant term by € R is invertible in R.

Proof. The constant term of a product is the product of the constant terms, so (1) = (2). We
claim that (2) = (1). If by is invertible then the equation b(x)c(x) = 1 may be solved inductively
for c(z) = >°°° cir® because ¢y = by and

C; = —bal (b1ciz1 + baciz1 + -+ -+ bico) . O

The set of polynomials over R is the subring of R[[z]] consisting of those power series with
finitely many nonzero coefficients. In fact there is a chain of subrings,

R C R[z] ¢ E C Ry(zr) C Rlz]] € R((x))
N
R(x)

which is described in the next few sections. The ring R((x)) of formal Laurent series consists of
infinite sums

CL(SL’) = a/fmxim + aierleerl +---+a t+ax+---

with coefficients a; € R and at most finitely many nonzero terms of negative degree. Addition
and multiplication are defined as with power series. The ring of rational functions R(x) consists
of all fractions f(x)/g(x) where f,g € R[x] and ¢ is not a zero divisor. So R(x) = S;'R[z] is
the full ring of fractions, obtained by inverting the set S; C R[x] consisting of all nonzero-divisors,
cf. Section 2.2.h. (The ring R(z) is usually of interest only when R is a field, in which case
S1 = R[z] — {0} consists of the nonzero polynomials, cf. Section 5.2.d.) The rings Ry(x) and E
merit special attention.

5.2.b Recurrent sequences and the ring Ry(z) of fractions

Let Sy C R[z] denote the multiplicative subset consisting of all polynomials b(x) such that the
constant term by = b(0) € R is invertible in R and define (cf. Section 2.2.h)

Ro(x) = Sy ' Rlz]
to be the ring of fractions a(z)/b(z) with b(z) € Sy. We obtain an injective homomorphism
¥ : Ro(x) — R[[z]] by mapping a(z)/b(x) to the product a(z)c(x) where ¢(x) € R[[z]] is the power

series inverse of b(x) which was constructed in Lemma 5.2.2. The series

Y(a(x)/b(x)) = ag + a1x + apx® + - -+ € R[[x]]
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is referred to as the power series expansion of the fraction a(z)/b(x), and we write

a = seq(a(x)/b(x)).

Henceforth we identify Ry(z) with its image in R[[x]].
A sequence a = ap,ay,--- of elements of R is linearly recurrent (of degree d) if there exist
G, qq € R (with ¢; # 0,4 # 0) such that for all n > d we have

Ap = Q10p—1 + -+ q4Gn_q- (52)

More generally, we say that a satisfies a recurrence of degree d for n > N if equation (5.2) holds
for all n > N. The following theorem characterizes the ring Ry(z) as consisting of those power
series a(x) having linearly recurrent coefficient sequences.

Theorem 5.2.3. Let a = ag+ ayx + --- € R|[z]] be a formal power series. Fix N > d > 1. The
following statements are equivalent.

1. There exist polynomials f(x), g(x) € Rlx] such that g(0) is invertible, deg(g) = d, deg(f) <

N, and afz) = f(z)/9(z).
2. For all n > N the sequence of coefficients a,, ani1,anio, - = seq(f/g) satisfies a linear
recurrence, of degree d.

Proof. First suppose that statement (1) holds, say a(z) = f(z)/g(x) with g(x) = go+g12+- - -+ gax?
and g4 # 0. Then f(x) = a(x)g(z) which gives

d
fn = Z Giln—i
1=0

for n > d. Since f(z) is a polynomial, these coefficients vanish for n > deg(f). Consequently, if
n > N > max(d,deg(f) + 1) we have,

an = —90_1 (91001 + g2an—2+ -+ - + gaGn_a)

which is a linear recurrence (of degree d). Conversely, suppose the coefficients of f satisfy a linear
Tecurrence a, = giln_1+- -+ gan_q (With gg # 0) for alln > N. Let g(x) = =1+ g1x+- - - + gga*
and set go = —1. Then the product f(x) = g(x)a(x) is a polynomial of degree less than N, because
for n > N its term of degree n is
d
Z gilp—i = 0.
i=0

Consequently a(z) = f(z)/g(x), go is invertible, and deg(f) < N. O
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5.2.c Eventually periodic sequences and the ring £

Definition 5.2.4. The ring E C R|[[z]] is the collection of all power series a(x) =Y ooy a;x" such
that the sequence of coefficients seq(a) = (ao, a1, --) is eventually periodic.

Theorem 5.2.5. Let a(x) = > 0y a;x’ be a power series over a ring R and let n > 1. Then the
following are equivalent. (See also Lemma 2.4.6.)

The sequence seq(a) = (ag, a1, - ) is eventually periodic and n is a period of seq(a).
a(x) = h(x)/(z™ — 1) for some h(x) € R[z].

a(z) = f(x)/g(x) for some f,g € R[x] such that g(z) is monic and g(x)|(z" — 1).
a(z) = f(z)/g(z) for some f,g € Rlx] such that g(z)|(z" — 1).

oo~

These statements imply
5. a(x) = f(x)/g(x) for some f,g € Rlx] such that g(0) is invertible in R.

Hence E C Ro(x). The eventual period is the least n for which (2), (3), or (4) holds. If R is finite
then statement (5) implies the others (for some n > 1), so E = Ro(x). (In other words, if R is
finite then a sequence over R satisfies a linear recurrence if and only if it is eventually periodic.)

The sequence seq(a) is purely periodic if and only if (2) holds with deg(h(z)) < n or equiva-

lently, if (3) or (4) holds with deg(f(z)) < deg(g(x)).

Proof. To see that condition (1) implies condition (2), suppose a(z) is eventually periodic with
a; = a;yy for all ¢ > N. Then we have

N-1 00 n—1

i N i\ nj

a(r) = E a;x’ + x E g AnjrirNe’ | 2™
=0 7j=0 \k=0

(" — 1)(21{2_01 aixi) — ZZ;é anj+z’+1v$i

an —1

This can be written as a rational function with denominator 2™ — 1.

That conditions (2), (3) and (4) are equivalent is left to the reader. In case (3) or (4), if
b(z)g(x) = 2™ — 1, then deg(b(z)f(z)) < n if and only if deg(f(z)) < deg(g(z)), which reduces
the statements about purely periodic power series to the statement about purely periodic power
series in case (2).

To see that condition (2) implies condition (1), suppose a(z) = h(z)/(z™ —1) with h(x) € R[z].
By the division theorem we can write h(z) = (2" — 1)u(z) + v(z) with u(z),v(z) € R[x] and
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deg(v(x)) < n. Thus

a(r) = wu(z)+

" —1
(v(x) + 2™ (x) + 2*"v(x) + - ).

+

= u(z)

The power series v(z) + 2™v(z) + x?"v(x) + - - - is strictly periodic since there is no overlap among
the degrees of the monomials in any two terms zv(z) and 2/"v(z). The addition of u(z) only
affects finitely many terms, so the result is eventually periodic. Also, the sequence is periodic if
and only if u(z) = 0, which is equivalent to deg(h(x)) < n.

It follows immediately that the eventual period is the least n for which (2), (3), or (4) holds.
Lemma 2.4.6 says that (4) implies (5), and if R is finite, then (5) implies (4) (for some n). O

It is not always true that E' = Ry(z) : take R = Z, g(z) = 1 — 2z, and f(x) = 1. Then
a(z) =1+ 2x + 42% + - - - which is not eventually periodic.

5.2.d When R is a field

Theorem 5.2.6. If R is a field, then R(x) C R((z)) and both of these are fields. (The former
is called the field of rational functions over R; it is a global field). They are the fraction fields of
R[z] and R|[[z]] respectively. The only non-trivial ideals in R[[x]] are the principal ideals (™) for
m > 1.

Proof. The only nontrivial statement in this theorem concerns the ideal structure of R[[z]]. Sup-
pose that I is a nonzero ideal in R[[z]]. Let a(z) be an element of I whose least degree nonzero
term has the smallest possible degree, n. Then we have a(z) = z"b(x) for some b(z) € R][x]],
and the constant term of b(z) is nonzero. By Lemma 5.2.2, b(x) is invertible in R[[z]]. Hence
a™ € I. Moreover, every element of I has least degree > n, so can be written as z"c¢(z) for some
c(x) € R[[z]]. Hence I = (a™). O

5.2.e R][[z]] as an inverse limit

The quotient ring R[z]/(z*) may be (additively, but not multiplicatively) identified with the col-
lection of all polynomials of degree < ¢ — 1. Let

Vi R[2]] — R[z]/(2")

be the homomorphism that associates to each a =Y ;- a;z* the partial sum (that is, the polyno-

mial)

’lbl(a) =ag+ a1+ -+ aiflfliiil.
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These homomorphisms are compatible in the sense that if £ <4 then

Yix(i(a)) = Yr(a)
where .
Gik s Rla/(2") — R[]/ (")

is reduction modulo z*. The next lemma says that every element of R[[z]] can be described in
terms of such a sequence of partial sums.

k

Lemma 5.2.7. Suppose sy, 89, is a sequence with s; € R[z]/(x"). Assume these elements are
compatible in the sense that 1;x(s;) = si for every pair k < i. Then there is a unique element
a € Rl[x]] such that 1;(a) = s; for all i > 1.

Proof. The element a = Y ;2 a;z" is given by a; = (¢iy1(a) — ¢i(a)) /2" O
This lemma implies that R[[z]] = lim {R[z]/(z%)}, is the inverse limit of the system of rings

R[z]/(z"). See Section 2.2.1 to recall the definition of inverse limits. Specifically, the set of rings
{R[x]/(z")} is a directed system indexed by the positive integers, with the reduction functions t; .
Thus there is a homomorphism ¢ from R[[x]] to lim {R[z]/(z")} so that if

pi  lim {R[z]/(a")} — Rlz]/ (")

is the projection function, then ¢; = ¢;or. This is shown in Figure 5.1.

We claim that v is an isomorphism. Lemma 5.2.7 says that ¢ is surjective. If a(z)
Yoo airt € R[z]] is nonzero, then a; # 0 for some 7. Then ¢;(a) # 0, so also ¥(a) #
Thus ¢ is also injective, and thus an isomorphism.

e}

Corollary 5.2.8. Let M be an Abelian group. For i = 1,2,--- let 7; : M — Rlz]/(x") be group
homomorphisms satisfying 7, = ;;°1; whenever i < j. Then there is a unique homomorphism
T : M — Rl[z]] so that 7; = o1 fori=1,2,---. If M is also a module over R (respectively, an
algebra) and the 7; are R-module homomorphisms (resp., ring homomorphisms), then so is T.

5.3 Reciprocal Laurent series

Let K be a field, let g(x) € KJz| be a polynomial of degree d. The reciprocal polynomial is the

polynomial g*(y) = y?g(1/y).
It is straightforward to check that (gh)* = g*h* for any h € K[z], and that (¢*)* = ¢ if and only
if g(0) # 0. If the polynomial g has nonzero constant term, then it is irreducible (resp. primitive)
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! o P30

Figure 5.1: R][[z]] as an inverse limit

if and only if the same is true of g*. If o # 0 is a root of g (possibly in some extension field of K)
then a~! is a root of g*. Let

F=K((z™") = {iaix_i ' k€Z,a EK}

i=k

be the ring of formal Laurent series in z~!. According to Theorem 5.2.6, F is a field. Every
polynomial f(z) € KJz| is in F. Therefore F' also contains every rational function f(x)/g(z)
(where f,g € K[z]). Such a function can therefore be expanded as a Laurent series in 7. Some
of these will be a power series in 27!. It is sometimes helpful, by analogy with the real numbers,
to think of 30, a;z~ as the integer part of ¢ = 3.°° a;z~", and to think of 3.2 a;z " as the
fractional part. The degree of a is —k if a; # 0.

Proposition 5.3.1. Let f,g € K[x] be polynomials. Then deg(f) < deg(g) if and only if the
rational function f(x)/g(x) is actually a power series in x™', that is,

f(@)

o) =ap+axr  Fax “+--- € K[z, (5.3)

and deg(f) < deg(g) if and only if ag = 0. The sequence a = ag,ay,as, -+ satisfies a linear
recurrence with connection polynomial g*. Conversely, any element of K|[[z']] whose coefficients
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satisfy a linear recurrence with connection polynomial g* may be expressed as a rational function
as in equation (5.3). The sequence a is eventually periodic if and only if there exists N so that
g(x)|(x™ = 1) (which always holds if K is a finite field). The sequence a is strictly periodic if and
only if it is eventually periodic and f(0) =0 (meaning that f(x) is divisible by x).

Proof. Let a(x) = ag+aix=t+---, let f(x) = fo+ fix+---+ fra" and g(x) = go + g1+ - - - + gax?.
If equation (5.3) holds then g(z)a(x) = f(z) is a polynomial of degree r = deg(g) + deg(a) < d,
whose degree d term is f; = gqa9, which vanishes when aq = 0. The absence of negative powers of
in f(z) exactly says that the sequence a satisfies a linear recurrence with connection polynomial g*.
Next, suppose the sequence a is eventually periodic. Then there exists N such that ¢*(y)|(y™ — 1),
from which it follows that g(z)|(z" — 1) (and vice versa). Finally, let f(y) = y?f(1/y) = foy? +
Syt + -+ £y so that

fly) _ f(1/y)

g (y)  9(1/y)

= ag+ a1y + agy® + - -

~

The sequence a is strictly periodic when deg(f) < deg(¢g*) = d, i.e., when fy = 0. O

5.4 N-Adic numbers

5.4.a Definitions

The p-adic numbers were discovered by K. Hensel around 1900. He was pursuing the idea that
numbers were like functions — the p-ary expansion of an integer is like a polynomial, so what
number corresponds to a power series? His ideas led to many far-reaching discoveries that have
shaped much of the modern approach to number theory. Fix an integer N > 2.

Definition 5.4.1. An N-adic integer is an infinite expression
a=ag+a N +ayN*+ -, (5.4)

where ag,aq,--- € {0,1,---, N —1}. The set of N-adic integers is denoted by Zy. The least degree
of a nonzero N-adic integer a = ;= a;N" is the least index i such that a; # 0. The least degree
of 0 1s 0.

The a; are called coefficients.When writing N-adic integers we may omit terms whose coeffi-
cients are zero. We may also write the terms in a different order. A series such as equation (5.4)
does not converge in the usual sense. Nevertheless it can be manipulated as a formal object, just
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as with power series, but with slightly different algebraic rules. Addition and multiplication are
defined so as to take into account the “carry” operation. To be precise, the statement

D aN 4+ N =) N (5.5)
i=0 i=0 i=0
with a;, b;,¢; € {0,1,---, N — 1} means that there exist integers to, %, -+ € {0, 1} so that

ag + bo =cCy+ Nto (56)

and for all i > 1,
a; + bz —+ ti—l =c + Ntl (57)

The quantity t; is called the carry and it is 0 or 1 since (by induction) a;+b;+t;,_1 <2(N—-1)+1 <
2N. Also by induction the numbers ¢;, ¢; are determined by the ay, by. In fact,

cn = (ap +b, +1t,-1) (mod N) and t, = |(a, + by +t,_1)/N]|

(with ¢_y = 0). The product ab = ¢ is defined similarly with

n

Z aibn_i + tn—l =c, + Ntn, (58)

1=0

although in this case the carry ¢; may be greater than 1. (Some readers may find it easier to
think in terms of power series in some indeterminate, say, Y, and to use the rule that NY* =
Yi+Yi+...+Y?" =Y But this notation quickly becomes cumbersome. The use of N instead
of Y facilitates many computations.)

It is easy to see that these operations make Zy into a ring (the ring axioms hold in Zy because
they hold modulo N* for every k). As with power series, we refer to the sequence (ag,ay, - --) of
coefficients as seqy(a). It is an N-ary sequence (that is, a sequence over the alphabet {0,1,---, N—
1}). We say that a is periodic (resp. eventually periodic) if the sequence seqy(a) of coefficients
is periodic (resp. eventually periodic).

If a =32, a;N"is an N-adic integer, then the coefficient a is called the reduction of a modulo
N and it is denoted ay = a (mod N). This gives a ring homomorphism Zy — Z/(N). We also
define the integral quotient of a by N to be

a — Qo

=0

Thus a = a (mod N) + N(a (div N)).
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In the ring Zy we have an identity, —1 = (N — 1) + (N — 1)N + (N — 1)N? + - - -, which can
be verified by adding 1 to both sides. Similarly, there is an explicit formula for multiplication by
—1. Ifa= Zfidai]\/i with 1 <aq < N — 1, then

—a=(N —ade+Z —a;—1)N (5.9)

It follows that Zy contains the integers as a subring, and in fact there is a chain of rings, similar
to that of Section 5.2.a,
ZCZNQCZNCQN
N
Q

The following analog to Lemma 5.2.2 characterizes the invertible elements of Zy.

Lemma 5.4.2. Leta =Y ;o a;N* € Zy. Then a is invertible in Zy if and only if aqy is relatively
prime to N.

Proof. The proof is essentially the same as that of Lemma 5.2.2. Recall from Section 2.2.d that
ap € Z is relatively prime to N if and only if ag is invertible in Z/(N). We want to find b =
oo biN' so that ab = 1, and 0 < b; < N — 1. By equation (5.8) this means agby = 1 + Nt
(which has the unique solution by = ay;* (mod N) and t = agby — 1 (div N)) and

Z aibnfi +ith1=cp+ Ntn;
=0

which has the unique solution recursively given by

by = ag’ (cn —tp1 — Zaibn_i> (mod N)

=1
ty = (Zaibni—cn) (div N). 0
=0

5.4.b The ring Qy

The ring Qy of N-adic numbers is the analog of formal Laurent series; it consists of infinite sums

a(@) = @ N 4 @it N g+ N -
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with coefficients 0 < a; < N — 1 and at most finitely many nonzero terms of negative degree.
Addition and multiplication are defined as with N-adic integers. We have Qy = S™'Zy where
S={N,N? N3...}.

It follows from Lemma 5.4.2 that if N = p is a prime number, then Z, is an integral domain
and Q, is its fraction field, that is, Q, = S™'Z, where S = Z, consists of all nonzero elements
(cf. Section 2.2.h). For composite N, the ring Zy has zero divisors and the ring Qy is not a field.
However in Corollary 5.4.9 we show that Qy = S™1Zy is the “full” ring of fractions, meaning that
the set S consists of all nonzero-divisors in Zy. In Theorem 5.4.8 we show that Zy and Quy can
be described in terms of Z, and Q, as p ranges over the prime divisors of N. For these reasons,
the rings Zy and Qu (with N composite) are seldom encountered in the mathematical literature.
However we make use of them when studying sequences generated by an FCSR in Chapter 7.

5.4.c The ring Zy

Definition 5.4.3. The ring Zn consists of the set of all rational numbers a/b € Q (in lowest
terms) such that b is relatively prime to N. That is, Zno = S™'Z, where S is the multiplicative
set {b € Z:ged(b,N) = 1}.

Lemma 5.4.2 says that Zy is naturally contained in the N-adic integers Zy and it is a subring.
The next theorem identifies Zy o as the collection of N-adic integers a € Zy such that seqy(a) is
eventually periodic.

Theorem 5.4.4. Let a = Z?io a;N* € Zy and let n > 1. Then the following statements are
equivalent.

1. a= f/g for some f,g € Z such that g > 0 is relatively prime to N and ordy(N) divides n.
2. a= f/g for some f,g € Z such that g > 0 and g|(N™ — 1).
3. a=h/(N"—1) for some h € Z.

4. seqy(a) is eventually periodic and n is a period of a.

The eventual period is the least n for which (1), (2) or (3) holds. The N-adic integer a is purely
periodic if and only if —(N™ —1) < h <0 in case (3) or —g < f <0 in cases (1) and (2).

Proof. Recall from Section 2.2.d that the integer g is relatively prime to N if and only if there
exists n > 0 so that g[(N™ — 1), and the smallest such is n = ord,(N). (See also Lemma 2.4.6.)
Hence (1) and (2) are equivalent. That (2) and (3) are equivalent is left to the reader.

To see that (4) implies (3) let us first consider the special case when a is strictly periodic with
period n. Set h =ag+ a;N + -+ a,_1N"!. Then 0 < h < N* — 1 and

a=h(l+N"+N*"+...)=h/(1-=N")=—h/(N"—1) (5.10)
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as claimed. (Notice that no carries occur in the above product.) If a is eventually periodic, suppose
it becomes periodic after the mth term. Then we can write a = H + N™b for some integer H > 0,
where b € Zy is strictly periodic. Applying the special case to b and taking a common denominator
gives a = h'/(N™ — 1) for some h' € Z.

To see that (3) implies (4), let us first consider the special case when 1 — N < h < 0. Then
0 < —h < N" —1s0 —h can be uniquely expressed as a sum, —h = ag +a;N + - + a,_ 1 N"*
with 0 < a; < N. Consequently equation (5.10) holds and since there are no carries in the product
that occurs there, the sequence seqy(a) is strictly periodic.

Now we show how to reduce to the case that 1 — N™ < A < 0. If A > 0 then —h < 0 and
according to equation (5.9), multiplication by —1 does not affect the eventual periodicity (nor
the eventual period) of an N-adic number. So we may assume h < 0. If h <1 — N"™ < 0 then
we can write a = H + h'/(N"™ — 1) where H € Z, H < 0, and 1 — N" < k' < 0. Therefore
—a = (—H)+ (=h")/(N™ — 1) is eventually periodic because the addition of the positive integer
— H to the eventually periodic expansion of (—h’) /(N™—1) still leaves an eventually periodic series.
Using equation (5.9) again, it follows that the N-adic expansion of a is also eventually periodic.

It follows immediately that the eventual period is the least n for which (1), (2) or (3) holds. [

Corollary 5.4.5. Let f, g, € Z with gcd(g, N) = 1. If ged(f, g) = 1, then the period of the N -adic
expansion seqy(f/q) is the multiplicative order of N modulo g.

5.4.d Zy as an inverse limit

Let ¢y : Zy — Z/(N") be the homomorphism that associates to each a = >_° ;N the partial
sum

-1
Ye(a) =) aiN'.
i=0
These homomorphisms are compatible in the sense that if £ < ¢ then

W,k(@/)z(a)) = ¢k(a)

where

Ve 1 Z)(N*) — Z/(N¥)

is reduction modulo N*. In the language of Section 2.2.1, the family of rings Z/(N*) is a directed
system indexed by the positive integers with the maps ;. The next lemma says that every N-
adic integer can be described as such a sequence of partial sums. It is an exact parallel of Lemma
5.2.7.
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Lemma 5.4.6. For all N > 1, the mappings 1,y induce an isomorphism of rings,
Zy = lim {Z/(N")}.

In other words, there is a one to one correspondence between Zy and the set of all sequences
(S0, 81, ) with s; € Z/(N") such that for all pairs i < j we have ¥;,(s;) = s;.

Proof. By Theorem 2.2.33 there is a unique induced map ¢ : Zy — lim {Z/(N*)}. It suffices

to construct an inverse for this function. Suppose s = (s, S2,---) € lim {Z/(N")}. That is,

s; € Z/(N") and for all pairs i < j we have ¢;,;(s;) = s;. Let a; be the coefficient of N’ in the
N-adic expansion of s;4;. By the commutativity assumptions, this is also the coefficient of N* in

sj for all j > 4. Define 7(s) = Y = a;N" € Zy. Then ¢(7(s)) = s, so 7 is the desired inverse.
This is illustrated in Figure 5.2. [
elim 2/
¥1 P2 ¥3
voomm— e B a0
V1 Y2 V3

Figure 5.2: Zx as an inverse limit

Corollary 5.4.7. Let M be an Abelian group. For i = 1,2,--- let 7, : M — Z/(N") be group
homomorphisms satisfying 7, = 1;o1; whenever © < j. Then there is a unique homomorphism
T: M — Zy so that 7; = o1 fori=1,2,---. If M is also a ring and the 7; are homomorphisms,
then so is T.
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5.4.e Structure of Zy

In this section we suppose the prime factorization of N is N = p{*py? - - - p*, with distinct primes
pi- The ring Zy can be expressed in terms of the p-adic integers Z,,.

Theorem 5.4.8. With N as above, the ring Zy is tsomorphic to the ring Zy, X Ly, X - X Ly, .
Similarly, Qn = Qp, X -+ x Qp, .

Proof. To simplify the notation slightly set ¢; = p;"*. For each j and ¢, we have a homomorphism
from Z/(N*) to Z/(q¢). This induces a homomorphism from Zy to Z/(q}), and all the appropriate
functions commute. Thus by the universal property of inverse limits, there are homomorphisms

’)/Z‘IZNHZ%

with appropriate commutativity. This gives us a homomorphism

k
v:Zy — ] 2,

=1

which we now show to be an isomorphism by constructing an inverse. For every positive ¢ there

is a reduction homomorphism
k k
Oy : HZ%’ - HZ/(Qf)
i=1 i=1

By the Chinese Remainder Theorem (Theorem 2.2.18), the latter ring is isomorphic to Z/(N*).
Everything commutes appropriately, so there is an induced map

k
R H Zy — L.
i=1
It is straightforward to see that v and § are inverses (it follows, for example, from the uniqueness
of the induced map into the universal object Zy).
This reduces the theorem to the case where N = p” for some prime p. Let

a= Zaipm € Lypn, (5.11)

=0

with 0 < a; < p™. Each coefficient can be uniquely expressed as a; = Z}:& ai,jpj with 0 < a,; <p.
Substituting this into (5.11) gives a p-adic integer. It is straightforward to verify that the resulting
mapping Z,» — 7Zj, is a ring isomorphism.

The ring Qp is obtained from Zy by inverting N, which is equivalent to inverting py, ps, - - -, Pk
simultaneously. It follows that Qy = Hle Qp, - O

128



Corollary 5.4.9. The ring Qn = S~ 'Zx is obtained by inverting the set S consisting of all
non-zero-divisors in Zy. The ring Zy has no zero divisors if and only if N is prime.

Proof. Use the isomorphism Zy = Hle Zy, of Theorem 5.4.8. Then an element a = (ay, as, - - -, ax)
in this product is a zero divisor if and only if at least one of the coordinates a; = 0 (since then, if b
has a 1 in the jth position and zeroes elsewhere, we have ab = 0). So the set S of non-zero-divisors
consists of all such k-tuples where all of the a; are nonzero. Hence, S = S; x Sy x --- x Sy is the

~Y

product of the sets S; = Z; of nonzero elements in Z,,. So inverting this set gives Hle Qp, =

Qn- [l

There are many irrational algebraic numbers in Zy. For example, suppose that u(x) is a
polynomial with integer coefficients that has a root modulo N. Then u(x) has a root in Zy. This
is proved in the next section using Hensel’s Lemma.

5.5 m-Adic numbers

In this section we put the constructions from Subsections 5.2 and 5.4 into a larger context that
enables us to build very general algebraic sequence generators. Let R be an integral domain. Let
T € R.

In the case of power series, we took coefficients from the underlying ring. In the case of N-
adic integers we took coefficients from {0,1,---, N —1}. When we construct m-adic numbers, the
generalizations of power series and N-adic integers, there may be no such natural set to use for
coefficients so we take a slightly different approach.

5.5.a Construction of R,

Definition 5.5.1. A pre-w-adic number over R is an infinite expression
a=ag+aym+agm 4 -,
with ag,ay,--- € R. Let ]?Z,, denote the set of pre-m-adic numbers.

The a; are the coefficients, and the sequence (ag,ay,---) is referred to as seq(a) or seq,(a).
When writing pre-m-adic numbers we may omit terms whose coefficient is zero. We may also write
the terms in a different order. The coefficients are arbitrary and may even be multiples of 7. In
fact a pre-m-adic number is just a power series over R, so R is a commutative ring.

We want to think of certain pre-m-adic numbers as representing the same element. For example,
7-14+0-7+0-72---and 0-1+1-7+0-7%--- should be equal. We accomplish this by taking a

129



quotient by an appropriate ideal. For each positive integer n we have a function @, : R, — R/(m™)
defined by discarding terms of degree > n and mapping the resulting element of R to R/(7"),

00 n—1
@n(z a;m') = Z a;7" (mod 7).
i=0

=0
Let I =(),—, Ker(®,). (This ideal contains many nonzero elements; see Exercise 9.)

Definition 5.5.2. The ring of m-adic integers over R is the quotient ring R, = ﬁﬂ/l.

If the context is clear we may simply refer to a m-adic integer. The homomorphism h : R — R
(given by a — an® + 0+ 0---) is injective if and only if

(") = (0). (5.12)
i=0
because its kernel is the set of a € R such that 7"|a for all n. In studying sequences we often focus
on rings that satisfy equation (5.12) since we can replace R by R/ N2, (7%) without changing R,.

The element 7 generates an ideal in R,, and the homomorphism h : R — R, induces an
isomorphism R/(7") = R,/(7") for all n. (First check that h induces an injection from R/(7")
to R./(n"). But any a = 3.°° a;w* € Ry /(7") is the image of 31" a;7' € R/(7"), so it is also a
surjection.)

A more convenient way of representing m-adic integers is the following. By a complete set of
representatives for R modulo m we mean a set S such that for all a € R there is a unique b € S so
that a = b (mod 7). The set S is not necessarily closed under addition or multiplication, however
it often happens that additively or multiplicatively closed sets S can be found.

Theorem 5.5.3. Let R be an integral domain, let m € R and let S be a complete set of rep-
resentatives for R modulo w. Then every m-adic integer a € R, has a unique m-adic expansion
a = i, bt with all b; € S.

Proof. Let a =Y ;o a;m" € R,. We need to construct a sequence by, by, --- € S so that for all n

™| Z(ai — b7, (5.13)

for then equation (5.12) will imply that a = > b;w’. Let by € S be the unique element so that

ap = by (mod 7). Inductively assume that we have found by, ---,b,_1 so that equation (5.13)
holds. Then
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for some ¢ € R. Let b, be the unique element of S such that = divides a,, — b,, + ¢. There is a
d € R such that a,, + ¢ = b, + md. Then
n n—1
> (ai—b)r = (an— b7+ > (a; — b7’
i=0 i=0
= (ap —by)m" + "
dﬂ'n+1.

This proves the existence part of the theorem.

Suppose cg, c1, -+ € S is a second set of coefficients such that
n—1
" (a; — ;)"
=0
for all n. Then also -
" Z(bz — ¢
i=0

for all n. Then 7|(by — ¢o) which implies by = ¢o. Inductively suppose that b; = ¢; for i < n. Then
(b, — )7
But R is an integral domain, so 7|(b, — ¢,), S0 b, = ¢;. O

For example, the power series ring Al[z]] over a ring A is the ring R, where R = Alz] and
T = x, s0 it is the ring of z-adic integers over A[z|, in the terminology of this section. Also, the ring
Zy of N-adic integers (in the terminology of the preceding section) is the ring R, where R = Z
and m = N, so it is the ring of N-adic integers over Z.

5.5.b Divisibility in R,

Relative to a fixed complete set of representatives S for R modulo 7, there is a well defined notion
of the reduction of an element of R, modulo 7 in R, and of the integral quotient of an element of

R, by m. If
a = Zaﬂri,
i=0

is a m-adic integer with ag, a; - - - € 5, then we write ap = a (mod 7) and refer to it as the reduction
of a modulo w. The integral quotient of a by 7 is

[e.9]

a (divg 7) = Zaiﬂwi = (a—ap)/m.

=0
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If a € R, then a (divg m) € R also. If the set S is understood, we simply write a (div 7). Thus in
general a = a (mod 7) + 7(a (div 7)).

Recall from Section 2.2.e that ¢, m € R are relatively prime if the following equivalent conditions
hold.

. (0)+(m) =R
e The image of ¢ in R/(r) is invertible.
e The image of 7 in R/(q) is invertible.

Proposition 5.5.4. Let R be an integral domain with fraction field F'. Let m € R and assume
equation (5.12) holds. Then an element ¢ € R is invertible in R, if and only if ¢ and © are
coprime. Thus R, N F consists of all fractions u/q such that q, 7 are coprime.

Proof. 1f q is invertible in R, then there exists u € R, so that qu = 1. Reducing this equation
modulo 7 implies that ¢ is invertible in R,/(7w) = R/(m) so ¢ and 7 are coprime. To verify the
converse, let S C R be a complete set of representatives for R/(w) and let ¢ = > "2, ¢;m" with
¢; € S. By hypothesis, o is invertible in R/(m). We seek u = Y_>° ) with u; € S such that qu = 1,
which is to say that goug =1 (mod ) and, for all n > 1,

Goln + Q11 + -+ + ¢uuo = 0 (mod 7).
These equations may be solved recursively for u,, using the fact that gy is invertible in R/(7). O

5.5.c The example of 7% = N

Fix integers N,d > 0 such that the polynomial ¢ — N is irreducible over the rational numbers
Q. This occurs precisely when (1) for any prime number & dividing d, the integer N is not a kth
power of an integer, and (2) if 4 divides d, then N is not of the form —4xz? where x is an integer;
see [119, p. 221]. Let m € C be a fixed root of this polynomial; it can be chosen to be a positive
real number. The ring R = Z[r] consists of all polynomials in 7, with integer coefficients. It is an
integral domain in which every prime ideal is maximal.

We claim that the set S = {0,1,---, N — 1} C R = Z[r] is a complete set of representatives
for the quotient R/(m). The mapping Z[r] — Z[r]/(7) throws away all the terms of degree > 1
in any polynomial u € Z[r]. Consequently the composition Z — R = Z[r] — R/(m) is surjective.
So it suffices to show that R/(7) contains N elements. In fact the ring Z[r| is an order (but not
necessarily the maximal order) in its fraction field F' = Q(7) so Lemma 3.4.8 gives:

|R/(m)| = [Ng ()

I

which we now compute.
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The field F'is a degree d extension of the rational numbers Q and it is the smallest field extension
of @ containing 7. Having fixed 7 € C, we obtain an embedding F' C C. However it actually
admits d different embeddings into the complex numbers, o; : F' — C which are determined by
setting o;(m) = ¢'m (for 0 < < d — 1) where ¢ € C is a primitive d-th root of unity. The norm
N(u) of an element u € F is the product of the images of u under these embeddings. (These facts
use the irreducibility of the polynomial 2% — N.) Hence, N(7) = 7%¢44=1)/2 = £ N which proves
the claim. (We remark in passing that 1/7 = 7%~!1/N so the field F = Q(7) = Q|[n] consists of
polynomials in 7 with rational coefficients.)

Having found a complete set of representatives for R/(m) we can now describe the completion
R,. Each a € R, can be uniquely represented as a power series a = ag+ a;m+ - - - with coefficients
a; € S =1{0,1,2,---, N — 1}, however we must remember that N = 7¢. Consequently, addition
of m-adic integers may be described as termwise addition with a “delayed carry”: each carried
quantity is delayed d steps before adding it back in. In other words, if b = by + byw + - - - then

(o]
a+b= Z e,
i=0
with 0 < e; < N — 1, means that there exist cq, cg1,- -+ € {0,1} with

al-—l—bi—l—cl-:eﬁ—NcHd.

That is, ¢; is the carry to the ith position. Similarly the difference a — b= Y"°, f;n" is obtained
by subtracting the coefficients symbol by symbol, using a “borrow” operation which is delayed
d steps. The “borrow” operation is actually the same as the “carry” operation, but the carried
quantity is negative. That is,

)

ai—bi—i-ci:ei—i-NcHd

from which it also follows immediately that the amount ¢; to be carried to the ith place is either
0 or —1. In this case it is possible to improve on Proposition 5.5.4.

Proposition 5.5.5. As a subset of F, the intersection R, N F consists of all elements u/q such
that u,q € F and q,m are coprime. As a subset of R, the intersection R, N F consists of all
elements a = ag + a1 + - - - whose coefficient sequence seq, (a) = ag, ay,- -+ is eventually periodic.

Proof. The first statement is Proposition 5.5.4. If a € R, is an element whose coefficient sequence is
eventually periodic with period m, then using the geometric series, it follows that a = h/(1—7™) €
F (for some h € R). On the other hand, suppose that u/q € F' (and g is relatively prime to 7).
The ring Z[r]/(q) is finite by Lemma 3.4.8. Therefore the elements {1, N, N2 ---} are not all
distinct (mod ¢) which implies that N” =1 (mod ¢) for some r > 1. Hence there exists a € Z[r]
such that ag = 1 — N" so u/q = ua/(1 — N"). Set ua = vo + v;7 + -+ - + vg_17¢ ! with v; € Z.
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Each v;/(1 — N") € Zy is an N-adic integer whose coefficient sequence is eventually periodic, of
period (a divisor of) 7. These series exactly interleave in the sum

IS
—_

vi(1+ 77 + 727 .. )nt € R,

Il
=)

i
giving a m-adic number whose coefficient sequence is eventually periodic of period rd. O
Even if the coefficient sequences of a,b € R, are strictly periodic of the same period, say T,

the same is not necessarily true for the coefficient sequences of a +b. Since the carries are delayed
for d steps, the periodic part of a + b might begin only after d symbols have passed.

Lemma 5.5.6. Let - -
a= Z amt and b= Z bt
i=0 i=0

be m-adic integers whose coefficient sequences are eventually periodic with period (a divisor of ) n.
Then the coefficient sequence of a £ b is eventually periodic with period (a divisor of ) n.

Proof. (We consider the case of a — b; the case of the sum is similar.) It suffices to show that
the sequence of carries c¢q, ¢y, ... is eventually periodic with period dividing n. Suppose a carry
occurs in the ith place, i.e. ¢; = —1. This occurs if and only if for some positive k < i/d we have
@i—jqg = bi—jq for 1 < j <k —1, a;_xq = 0, and b;_pq = 1. But if this occurs then the same is true
with ¢ replaced by i 4+ rn for every positive integer 7.

Thus there are two possibilities for any ¢. Either for all r there is no carry to position 7 + rn,
or for r large enough there is a carry to position ¢ 4 sn for every s > r. Therefore the sequence of
carries has eventual period dividing n, and the lemma follows. O]

5.6 Other constructions

In this section we describe other ways to define the m-adic integers over an integral domain R. We
include this material for completeness but the results in this section will not be used in the sequel.

5.6.a R, as an inverse limit

The collection of rings {R" = R/(7") : 1 < i < oo} forms a directed system with (the reduction
moduli ") homomorphisms v;; : R7 — R’ for i < j. So the limit lim { R’} exists (see Section 2.2.1),
and there are projections ¢; : lim {R'} — R’ such that ¢; = 1;;0¢; whenever ¢ < j. Similarly, the

ring R, comes with (reduction modulo 7*) homomorphisms ; : R, — R’ such that ¢; = ;; 0 ;.
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lim R/(7")

—

©1 P2 ©3
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—
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0 R/(m) ’ R/(H).L R/(x%) -
|
N

R

Figure 5.3: R, as an inverse limit

Consequently there exists a homomorphism ¢ : R, — lim {R;} such that ¢; = @; o 9, see Figure
5.3.

Proposition 5.6.1. The function v : R, — lim {R/(7")} is an isomorphism of rings.

Proof. If a = Z?io a;,m™ € R, is nonzero, then 7" does not divide Z;:Ol a;m" for some n. Thus
¥, (a) # 0, and therefore ¥(a) # 0. This implies ¢ is injective. Let b = (b, by, ---) € lim {R/(7")}.
For each i let ¢; € R reduce to b; modulo 7°. Thus 7'|(¢; — ¢;_1). Let a; = (¢; — ¢;_1)/7". Then

a =Y ,a;m reduces to b; modulo 7™ for every i. That is, ¢)(a) = b and ¥ is a surjection and
thus an isomorphism. O

Corollary 5.6.2. Let M be an Abelian group. For i = 1,2,--- let 7, : M — R/(n") be group
homomorphisms satisfying 7, = 1;o1; whenever i < j. Then there is a unique homomorphism
T: M — Ry so that 7, = et fori=1,2,---. If M is also a module over R (respectively, a ring)
and the 7; are R-module homomorphisms (resp., ring homomorphisms), then so is T.

Corollary 5.6.3. Let R and S be commutative rings with nonunits 1 € R and p € S. Suppose
that i : R — S is a ring homomorphism such that p(m) is divisible by p. Then p extends to a
homomorphism (v : Ry — S,.

Proof. By hypothesis, for each ¢ there is a series of homomorhisms

Rr — R./(n") = R/(") — S/(p")

135



so that all the usual diagrams commute. Thus the universal property of S, implies that u extends
top: Ry — S, m

5.6.b Valuations

In many cases the ring R, may be described as a completion with respect to a discrete valuation.
This important notion is central in much of modern number theory and algebraic geometry.

Definition 5.6.4. Let A be a ring. A valuation on A (sometimes called a “discrete exponential
valuation”) is a function v: A — Z U {oc} such that for all a,b e A

1. v(a+b) > min(v(a),v(b)).
2. v(ab) = v(a) + v(b).
3. v(a) = oo if and only if a = 0.

It follows that v(1) = 0 so v(a™') = —v(a) if a € A is invertible. The valuation is nontrivial if
there exists a nonzero a € A such that v(a) > 0. Let (A,r) be a ring with a nontrivial valuation.
Then A is an integral domain (for if ab = 0 then oo = v(0) = v(ab) = v(a) + v(b) so at least one
of v(a),v(b) is 00). If K is the field of fractions of A, then the valuation extends to a valuation on
K by v(a/b) = v(a) — v(b).

Conversely, if (F,v) is a field with a (nontrivial discrete exponential) valuation v then the
following statements can be checked.

1. The set Fsg = {a € F' : v(a) > 0} is a ring with valuation, called the valuation ring of the
field. For every a € F, at least one of a € F5 or a™! € Fs,.

2. If S7'Fy denotes the fraction field of Fsy then the mapping h : S7'F.y — F given by
h(a/b) = ab™! is an isomorphism of fields (with valuation).

3. There is exactly one maximal ideal in F5¢ and it is the set I = Fyy = {a : v(a) > 0}.
Consequently Fs is a local ring, and an element a € Fs is invertible if and only if v(a) = 0.
Moreover, N2, I" = {0}, cf. equation (5.12).

4. The quotient Fs(/Fs is a field, called the residue field,.

Examples:

1. Let K be a field and F' = K((z)) its field of formal Laurent series. If
CL($) = apx™ + Clm+1£L'm+1 + am+2;pm+2 +...€e F

is a series with leading term a,, # 0, set v(a(z)) = m (which can be positive, zero, or negative).
Then v is a discrete valuation on F' and its valuation ring is the ring of formal power series F'[[x]],
with maximal ideal (x). The residue field is K.
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2. Let p be a prime integer. If a € Z is an integer then we have a = p"b for some nonnegative
integer n and some integer b that is relatively prime to p. Define v,(a) = n. Then v, is a valuation
on Z. This valuation extends to the fraction field Q and its valuation ring is Q>¢ = Z, 0, the set
of fractions a/b (in lowest terms) such that b is not divisible by p, cf. Section 5.4.c. The maximal
ideal in Z, is (p) and the residue field is F, = Z/(p). We remark that this procedure does not
give a valuation if p is replaced by a composite integer, say, N = ab with a,b € Z. For then
vn(a) = vn(b) = 0 (since N does not divide a or b), but v(N) = 1.

3. Let p € Z be a prime integer and let Q, be the field of p-adic numbers. If a = a,,p™ +
am+1p™ T + -+ with leading term a,, # 0, set v,(a) = m. Then v, is a valuation on Q,; its
restriction to Q C Q, agrees with the valuation v, described in item (2) above. The valuation ring
is Z,, the p-adic integers, and the residue field is F, = Z/(p).

4. More generally, let R be a UFD with fraction field F', and let 7 € R be prime. If a € R, then
a = 7"b for some nonnegative integer n and some b € R not divisible by 7. If we define v, (a) = n,
then v, is a valuation on R. It extends to a valuation on F' by v(c/d) = v(c) — v(d). Similarly, it
extends to valuations on R, and Fy. Moreover, R, = (Fy)>o.

5. Let (F,v) be a discretely valued field with valuation ring R, = F5o and maximal ideal I, = FL,.
Let m € I, be an element whose valuation is minimal, say v(7w) = ¢. Then 7 is prime in R,, and
every element y € F is of the form y = 7% with v(z) = 0, and v(y) = ac. In other words, the
construction in example (4) is completely general. To see this, first suppose that v(y) = ac + d
with 0 < d < ¢. Then v(y/n®*) = d which contradicts the minimality of ¢, hence d = 0. Therefore
b = y/m® is a unit, and y = bn® as claimed. Similarly, if 7 = wv is a nontrivial product (with
u,v € R, neither of which is a unit) then v(7) = v(u) + v(v) > 2¢ which is false, so 7 is prime in
R,.

5.6.c Completions

A metric space is a set X with a metric or “distance function” ¢ : X x X — R such that
d(a,b) = 6(b,a); 6(a,b) =0 if and only if a = b; and §(a,b) < é(a,c) + (¢, b) (triangle inequality)
for all a,b,c € X. The metric topology on X is the topology generated by the open “balls”
B(r) = {ye X :6(x,y) <€} for all x € X and all € > 0. The metric § is continuous with
respect to this topology. A mapping f : (X,0x) — (Y, dy) between metric spaces is isometric if
Sy (f(x1), f(x2)) = dx (1, 22) for all x1, 29 € X. Such a mapping is continuous with respect to the
metric topologies on X and Y. An isometry f : (X,0x) — (Y,dy) is an isometric mapping that
has an isometric inverse. (In particular, it is one to one and onto.)

A sequence of points x1, 9, -+ in a metric space X is a Cauchy sequence if for every ¢ > 0
there exists a k so that §(x;,z;) < e if 4,7 > k. A metric space is complete if every Cauchy
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sequence converges. A completion ()? ,;5\) of a metric space (X, ) is a complete metric space that
contains X as a dense subset, such that the restriction of 5 to X equals §. Every metric space
has a completion (constructed below). If (Xi,d;) and (X5, ds) are two completions of a metric
space_ (X 9) then the identity mapping X — X extends in a unique way, to a continuous mapping
f (Xl, 61) (XQ, 52) and moreover, the mapping f is an isometry.

Thus, the completion of (X, d) is unique up to isometry. It may be constructed as follows. The
points in X are equivalence classes of Cauchy sequences in X, two sequences x = xq,xg, - - - and
Y = Y1, Y2, - - being equivalent if

Zhrgo 3z, y;) = 0.
If z = 2, 2o, - - - is another point in X then the extended metric is defined by 6(x, z) = lim §(z;, ;)
(which exists because x,z are Cauchy sequences). The space X is contained in X as the set of
constant sequences.

Two metrics d1, 05 on a set X are equivalent if the set of Cauchy sequences for §; coincides with
the set of Cauchy sequences for d,. In this case, the identity mapping / : X — X has a unique
continuous extension to the completions, 7 : (X 51) (X 52) and I is a homeomorphism.

Lemma 5.6.5. Let v be a discrete valuation on a field F' and let ¢ > 1 be a positive real number.
Then d(a,b) = ¢ defines a metric on F. A different choice of ¢ > 1 determines an equivalent
metric. Moreover, for any Cauchy sequence xy,xs,- -+ the limit limv(x;) € Z U oo exists, and if
the limit is not oo then it is attained after finitely many terms.

Proof. 1f 6(a,b) = 0 then v(a — b) = o0 so a =b. If a,b,c € F then
(5(@,[)) — qfu(achrcfb) < max(qfu(afc),qfu(cfb)) < qfu(afc) + qu/(cfb) — (S(CL,C) + (5(6, b)

so 0 is a metric. Now let x1, z9, - - - be a Cauchy sequence. This means that for any 7" > 1 there is
a k > 1 such that
v(x; —xj) > T whenever i,j > k. (5.14)

(So the particular choice of ¢ does not matter.) There are now two possibilities. The first is that
for infinitely many values of i, the values of v(z;) grow without bound. This in fact implies that
v(x;) — oo (so x; — 0) because, for all 7, j,

v(z;) =v(x; + (z; — ;) > min{v(z;), v(r; — )} (5.15)

Since v(z;) can be chosen to be arbitrarily large, and since v(z; — x;) grows without bound, it
follows that v(z;) grows without bound.

The second possibility, therefore, is that the values of v(z;) remain bounded for all i. Con-
sequently there exists 0 < M < oo so that v(z;) < M for all j sufficiently large, and so that
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v(x;) = M for infinitely many values of i. So there is an index iy with the property that v(z;,) = M
and if 4, j > 4y then v(x; — z;) > M. Hence, by equation (5.15), v(x;) = M whenever j > iy, that
is, the sequence v(z;) converges to M and it equals M after finitely many terms have passed. [

If the discretely valued field (F,v) is complete with respect to the metric defined by v, then
we say that (F,v) is a complete discretely valued field or local field.

Theorem 5.6.6. Let (F,v) be a field with a discrete valuation, with associated metric 6 as in
Lemma 5.6.5, and with valuation ring R = Fso. Then the valuation v extends to a valuation v on
the completion F. Moreover, Fis agazn a field (so it is a local field) and its valuation ring F>0
naturally identifies with the completion R. In particular, F is the fraction field ofR We say that
F is the completion of F' with respect to v.

Proof. Let x = x1, 9, -+ be a Cauchy sequence. By Lemma 5.6.5 the sequence v(x1),v(xg), - -
converges so we may define 7(x) = lim; o, v(x;). If y = y1, 92, - - - is an equivalent Cauchy sequence
then V(y) = V(x) so v is a well defined valuation on the completion F.

Let T be the set of all Cauchy sequences in F'. Then 7' is a subring of the product of infinitely
many copies of F, that is, addition and multiplication of two sequences is defined termwise. We
need to check that these arithmetic operations are preserved by the equivalence relation on Cauchy
sequences. The set of Cauchy sequences with limit 0 is an ideal I in 7. Observe that two Cauchy
sequences X = ry,To, -+ and y = yq,ys, - - - are equivalent if and only if

0= lim 6y, y;) = ¢ V@9

1—00

which holds if and only if v(x; — y;) — oo, that is, x; — y; € I. Thus, the completion Fis exactly
T /I, which is a ring. To see that it is a field we need to show that every nonzero element has an
inverse. Let x = x1, 9, - - - be a Cauchy sequence that does not converge to 0. By Lemma 5.6.5 the
sequence v(x;) converges to some number M and it equals M after some finite point. Therefore if
1,7 are sufficiently large,

v (1 - i) —v (ﬂ> = v(w; — x;) — v(@:) — viz;) = vz — 1;) — 2M — o

xZ; X T

This shows that the sequence 27 ', x, " - - - is a Cauchy sequence, and it therefore represents x~! € .

In a similar way we obtain the completion R C F of the valuation ring R = F>( and Lemma
5.6.5 implies that RcC ﬁ>0 Conversely, if x € F and if v(x) > 0 then, again by Lemma 5.6.5,
this implies that v(z;) > 0 for all sufﬁ(:lently large 1, say, © > 1g. Therefore, if we replace X by the
equivalent Cauchy sequence x' = x;,, T 41, - - - then x’ € R which proves that F>0 R. O
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Remarks. Completeness is not a “purely topological” invariant: it depends on a choice of metric
as well. The real numbers R is complete (with the usual metric) but the open interval (0, 1), which is
homeomorphic to R, is not complete. Its completion is the closed interval. The set of real numbers
is the completion of the rational numbers with respect to the Euclidean metric d(x,y) = |z — y|,
however this metric does not arise from a discrete valuation. The following theorem says that the
m-adic numbers as constructed in Section 5.5 is an example of a completion.

Theorem 5.6.7. Let R be a UFD with field of fractions F. Let 1 € R be prime and let v, be the
corresponding discrete valuation as in example 4 of Section 5.6.b. Then (R, v,) is isomorphic to
its completion (ﬁ, Uy), and Fy is isomorphic to its completion (ﬁ, Ur).

Proof. Let x = x1,x9,--- € R be a Cauchy sequence. For each fixed n the sequence of reductions
x; (mod 7") € R/(m") eventually stabilizes, giving a collection of compatible homomorphism
R — R/(x"). By Corollary 5.6.2 this gives a homomorphism R — R,. The inverse homomorphism

associates to each power series » .~ a;m" its sequence of partial sums ag, ag + a;m, - - - which is a
Cauchy sequence. Thus # is an isomorphism of complete valued rings, so its canonical extension
v F — F is an isomorphism of the corresponding fraction fields. ]

A basic property of local fields is expressed in Hensel’s Lemma which allows us to factor a
polynomial over the residue field, and to lift the factorization to the local field. Let F' be a
complete discretely valued field with discrete valuation v, valuation ring R = F5, maximal ideal
I = F.y and residue field K = F5y/F.¢ (all depending on v) as in Section 5.6.b. If f(z) is a
polynomial over R, we denote by f(x) the reduction of f(x) modulo the ideal I. The proof of the
following may be found, for example, in [35, pp. 573-4].

Theorem 5.6.8. (Hensel’s Lemma) Suppose f(x) € R[x] is a monic polynomial and f(z) =
go(x)ho(x) in Klx|, where go(x) and ho(x) are monic and relatively prime. Then there exist monic

polynomials g(x) and h(z) in R[z] such that f(x) = g(x)h(z), g(x) = go(z), and h(x) = ho(z).

Corollary 5.6.9. With the same hypotheses, if f(x) has a simple root ag, then f(x) has a simple
root a such that a (mod I) = ay.

5.6.d Adic topology

The construction of R, using valuations only works when R is a UFD and 7 is prime. But a similar
construction works for more general ideals in more general rings. Let R be an integral domain and
let I C R be an ideal. Suppose that R is separable with respect to I, that is, N0, 1" = {0} . If
x € [ define V(z) =sup{n: x € I"} € ZUoo. If x,y € I then V(z +y) > min{V(z),V(y)} and
V(zy) > V() + V(y) (compare with Section 5.6.4). Fix ¢ > 1 and define

V) if gy e ]
- q I r—ye
0(z,y) = { 00 otherwise.
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Then V is almost a valuation, although it is not defined on all of R. However, the same method
as in Lemma 5.6.5 and Theorem 5.6.6 shows that ¢ is a metric on R. It determines a topology on
R, a basis of which is given by the open sets of the form B,(x) =x + I" for z € R and n > 1. If
I = (m) is principal we refer to ¢ as a m-adic metric, and to the resulting topology as the m-adic
topology.

Theorem 5.6.10. Let R be an integral domain and let m € R. Suppose R is separable with respect
to the ideal (7). Then the ring R, of m-adic integers may be naturally identified with the completion
of R in the m-adic metric.

Proof. The proof is the same as that of Theorem 5.6.7. [

5.7 Continued fractions

Continued fraction expansion provides an alternate way to represent certain algebraic objects.
Every real number x has a continued fraction expansion. The continued fraction expansion of
a rational number a/b is equivalent to Euclid’s algorithm (300 BC) for (a,b). Specific examples
of continued fractions were known to Bombelli and Cataldi around 1600. The first systematic
treatment of continued fractions was by John Wallis in Opera Mathematica (1695). The subject
was intensively studied in the nineteenth century. Like the Euclidean algorithm, the continued
fraction expansion is optimal in two ways: (a) the successive terms, or “convergents” in this
expansion give best-possible rational approximations to x, see Theorem 5.7.4; and (b) the terms
in the expansion can be computed with very little effort. There are many wonderful applications
of continued fractions to problems in mathematics, science, and engineering. For example, in [10]
a constant is estimated, using a hand calculator, to be 2.1176470588. The CF expansion for this
number is [2, 8,2, 147058823], suggesting that the actual number is [2,8,2] = 36/17, which turns
out to be correct. In [43], continued fractions are used to describe the efficacy of the twelve-tone
equal tempered musical scale, with the next best equal tempered scale having 19 tones.

Standard references for continued fractions include [75], [90] and [153]. We shall not explore this
topic in detail, but we develop enough of the theory to understand the relation between continued
fractions and the Berlekamp-Massey algorithm for linear feedback shift register synthesis (see
Section 18.2.d).

5.7.a Continued fractions for rational numbers

The continued fraction representation for a rational number a/b (with a,b positive integers) is
defined by the iterative procedure in Figure 5.4. Let ag = a, ay, as,--- and by = b, by, bs, - - - be the
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RATCONTFRAC(a,b)
begin
n=>0
while b # 0 do
/

a a
Let — =c¢,+ — withe,,d €Zand 0<d <b

b b
a=1"
b=d
n=n++1
od
return (cy,cy, -, Cp_1)
end

Figure 5.4: Rational Continued Fraction Expansion.

sequences of as and bs generated by the algorithm, then we have successively

a N a N by N 1 N 1 N 1
—:CO —:cO —:CO a_:CO :CO B — e R ]
b b ai b_ll 01+Z_§ Cl—i—@
. . 10 3 1 )
which we denote [cg, ¢1,¢2--+]. If a/b = 10/7, this gives = = 1+ - = 1+ 5715 the continued
3

fraction expansion of 10/7 is [1, 2, 3].
Proposition 5.7.1. The procedure in algorithm RATCONTFRAC halts after finitely many steps.

Proof. We always have b > d/, so after the first iteration a’ < a. Therefore, for every i we have
max (a0, bi12) < max(a;, b;). It follows that eventually b = 0 and the algorithm halts. O

The sequence of non-negative integers [cg, ¢1, - - -, ¢, 1] is called the continued fraction expansion
of a/b. It is uniquely defined and gives an exact representation of a/b. Similarly, we can generate
continued fraction expansions of real numbers. If z > 0 is real, let {z} denote the fractional part
of z and let [z] denote the integer part or floor of z. Thus z = [z] + {z}. Then the continued
fraction expansion of z is the sequence generated by the recursive definition

co=12], ro={z}=2—-0o

and for n > 1,

Zp = y Cn =2z, ra={z}, soz,=c,+r, (5.16)
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where we continue only as long as r, # 0. If z is irrational, then this recursion does not halt, but
outputs an infinite sequence of integers [co, ¢1, - - -] which is called the continued fraction expansion
of z. For example, the continued fraction expansion of zy = v/7 is:

—_

J
|

—_

2w = 2+ (WV7-2) T =1+
3 V7 -1 2 VT -2

29 = =1+ 23 = =1+
’ Vil 2 P VT 3
24 = \/7_2:4—1-(\/7—2) 25 = 2.
Thus the expansion repeats from here on, and the continued fraction is [2,1,1,1,4,1,1,1,4,---].
The nth convergent of the continued fraction [co, ¢y, -] is the rational number f,, /¢, that is
obtained from the finite continued fraction [cy, ¢y, -+, ¢,]. The convergents f,,/q, form a sequence
of rational approximations to z. The following proposition, when combined with the algorithm of

equation (5.16) or Figure 5.4 provides an efficient way to compute the convergents.

Proposition 5.7.2. Let z > 0 be a real number with continued fraction expansion z = [cy,cq,- - -|.
Let 1, be the remainder as in equation (5.16). Then the convergents may be obtained from the
following recursive rule: if r, # 0 then

fn+1 - Cn+1fn + fn—l and dn+1 = Cn+14n + dn—1- (517)

The wnitial conditions are: fo=cy, =1, f_1 =1, and q_1 = 0. Moreover, for any n,

2= ¢ (5.18)
Qn + qn—1Tn
Proof. At the nth stage of the recursion we have a representation
z=co+ (c1+ (co+ -+ (coy+(cn+ry) )t ) Hh
The dependence on the innermost quantity, (¢, + r,), is fractional linear:
Up(Cp + Tn) + Wy
z= ( ) , (5.19)
xn(cn + Tn) + Un
where u,, Wy, T, y, are multilinear expressions in ¢, -, c,_1. Then f,/q, is obtained by setting

r, = 0 in equation (5.19), so
fn _ UnpCp + wy,

Gn TnCn + Yn
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That is, f, = upc, + w, and ¢, = ¢, + y,. Now consider equation (5.19) with n replaced by
n+ 1. This gives the same result as equation (5.19) with 7, # 0 replaced by (cp41+7ns1) " . Thus

Unt1(Cng1 + Tn1) + Wnta U (Cr + (Cng1 + Tpg1) 1) + wy
Tni1 (Cn—i-l + Tn+1) + Yn+1 xn(cn + (Can+1 + Tn—‘rl)_l) + Yn
un(cn(cn+1 + 7"n+1) + 1) + wn(cn+1 + Tn+1)
xn(cn(cn-i-l + rn—i—l) + 1) + yn(cn-i-l + Tn-‘rl)

(uncn + wn)(cn—i-l + Tn+1) + Up
(xncn + yn)(cn—H + Tn—l—l) + Tp

This being an equality of rational functions, we may conclude that u,.; = u,c, + w, and that
Wpy1 = Up. But u,e, +w, = f, hence u,; = f, (and therefore uw, = f,_1). Similarly z,.; =
TnCn + Yn = Gn, and Yp11 = T, = ¢n—1. Equation (5.17) follows immediately and equation (5.19)

becomes (5.18). O
Lemma 5.7.3. If n >0 and r, # 0 then fri1qn — Guirfn = (=1)" so f,, and g, are relatively
prime.

Proof. The proof is by induction on n. The initial conditions give foq1 — qof-1 = 1. If n > 1,
then using equations (5.17) we have

ann—H - ann—l—l - fn(cn—i-lqn + Qn—l) - Qn(cn—i-lfn + fn—l) - _(fn—IQn - Qn—lfn) - _(_1)n [l
Theorem 5.7.4. Let f,/q, denote the nth convergent (n >1) of z € R (z >0). Then
Ja 1

Z— — .
dn GnQn+1

<

(5.20)

If ry # 0, then g1 > qn. If f,q are positive integers and if |z — f/q] < 1/qnqns1, then ¢ > q,
unless f/q = fu/qn-

Proof. 1f r,, = 0, then z = f,,/qn, so we may assume r,, # 0. By equation (5.18) we have

2_& _ fn"i_fn—lrn _&

Gn Gn + qn—-1Tn qn
(fanQn - anlfn)'rn

Qn(Qn + anlrn)

(=D)"ry
Qn(Qn + Qn—lrn)
(=1)"

Gn((1/70)qn + Gn—1) '
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For i > 1 we have ¢; > 0. Thus by equation (5.17), ¢; > 0 for all i. Therefore

1

T_Qn + o1 2 Cn+1Gn + Gn-1 = Qn+1

which proves equation (5.20). If 0 # r, < 1 then 2,7 > 1 s0 ¢,41 > 1. Since ¢,_; > 0, equation
(5.17) gives @, > gn—1. Although it is not difficult, the proof of the last statement is tedious, and
may be found in [75], [90], or [153]. O

5.7.b Continued fractions for (reciprocal) Laurent Series

A theory of continued fractions can be developed whenever we have a subset R (the analog of
the “integers”) of a field F' and a subset U C F' (of “fractions”) so that every element of F' can
be uniquely written in the form a +y with a € R and y € U. Let z — {z} be a function from
F to U so that for every z we have z — {z} € R. The sequences of elements ¢y, ¢y, -+ € R and
r0,71,- -+ € U are defined exactly as in equation (5.16). This point of view is developed in [191],
following work of [117] and [127]. In many cases (but not always: see the example in Section 5.7.c)
the resulting “rational” approximations converge and they are often the “best” possible. In this
section we describe the approach of [191].

Let K be a field. We wish to develop continued fraction expansions for rational functions
f(z)/g(x) where f,g € R = K|[x] are polynomials. Unfortunately there is no apparent analog
to the “integer part” of such a function, which we would like to be a polynomial in x. However
a formal Laurent series h(x) € K((x)) is the sum of two pieces: the (finitely many) terms with
negative powers of x, plus the infinite series of terms with positive powers of x. We are thus led
to consider continued fractions for the field

F=K((z™") = {iaix_i:kez,ai EK},

of “reciprocal Laurent series”, or formal Laurent series in 27!, because the “integer part” will now
be a polynomial in z (with positive powers). As in Section 5.3, the field F' contains all quotients
of polynomials f(x)/g(x). Thus we define

[i aix‘i] = Z a;x”" € R = K[z]
i=k <0

and

{Z aix_’} = Zaix_i cr 'Kz 7).

i=k 1>1
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That is, the polynomial part of this Laurent series is the sum of the monomials with nonnegative
exponents. The fractional part is the sum of the monomials with negative exponents. It is an
element in the unique maximal ideal (z7') in K[[z7!]]. With these definitions we can carry out
continued fraction expansions just as for the real numbers in equation (5.16). That is,

1

2 = v =z, ra={z}, soz,=c,+m,
T'n—1

with ¢ = [z] and 7o = {z}. (See exercises 16 and 17.) The associated convergent f, /g, is obtained
by stopping at stage n and replacing r,, with 0.

Proposition 5.7.5. Let z € K((z7')), let n > 1 and let f,/q, be its nth convergent. Then

fn+1 = Cn+1fn + fnfl and gn+1 = Cn+14n + Qn—1. (521>

The initial conditions are fo = co = [z]; o = 1; and f_y = 1; g1 = 0. Moreover,

fn—lQn - Qn—lfn - (_1)n (522)

so fn and q, are relatively prime. If z = u/v with u,v € K[z] then the continued fraction expansion
of z is finite and its length is at most the degree of v.

Proof. The proof of the first two statements is exactly the same as that of Proposition 5.7.2 and
Lemma 5.7.3. For n > 1, the element r, can be expressed as a quotient of polynomials with
the degree of the numerator less than the degree of the denominator. The numerator at the nth
stage is the denominator at the (n + 1)st stage. Thus the degrees of the denominators are strictly
decreasing. This implies the length of the expansion is no more than deg(v). O

Recall from Section 5.6.b that the field K((z~!)) of formal Laurent series admits a metric,
§(z,w) = 27w

for z,w € K((z™')), where v is the discrete valuation

v (io: aim_i> = min{i: a; # 0}.
i=k

If uw € K[z] is a polynomial then v(u) = — deg(u).

Now fix z € K((x™1)). Let f,./q. be its nth convergent and set e, = deg(g,). The following
theorem says that the continued fraction expansion converges, and that the convergents provide
the best rational approximation to z.
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Theorem 5.7.6. For any n > 1, the power series expansion of z equals that of f,/q, in all terms
involving x* for k > —(en + €ny1). That s, fu/q, = 2z (mod x=¢"~¢n+1) or equivalently,

n

(2 22) <o (523)

If 1, # 0 then eny1 > e,. If foq € Klz] are relatively prime and if 5(z, f/q) < 272 then
deg(q) > deg(gn) unless f/q= fn/n-

Proof. 1f r,, = 0 then z = f,,/q, so to prove (5.23), we may assume that r, # 0. As in the proof
of Theorem 5.7.4,
fa _ (=1)" _ (=1)"

e G((Ur) e + @) @n(Gust + Toiin)”

We will use the fact that v(z + y) > min(v(z),v(y)) and that equality holds if v(x) # v(y). By
construction, if n > 0 we have v(r,) > 1 so v(1/r,) < —1 so for n > 1 we have:

vicy) =v((1/rn_1) — 1) =v(1/rp_1) < —1.
Assuming 7, # 0 gives ¢,11 # 0. By equation (5.21) and induction,

—En41 = V(QnJrl) = V(Cn+1Qn + anl) < V(Qn) = —€n. (524)

It follows that v(qui1 + nt1Gn) = V(@ur1) = —€ny1. Thus v(z — fi./qn) = €n + €ny1 as claimed.

Now suppose that f,q € KJz| are relatively prime and that v(z — f/q) > 2e,. Assume that
e = deg(q) < e, = deg(g,). We must show that f/q = f,./¢,. Assume for the moment that
deg(f) < deg(q) and deg(f,) < deg(g,). (We will remove these assumptions below.) Let

A

f=2"f G=a"°¢ fo=a"f, and ¢, =z

—en

Gn-

Then f,§, fn, G, € K[z~!] are polynomials with

fof fo  fa

- — a’nd - — X

q q dn Gn
Thus . .

iA = & (mod z 26"_1)

q Gn

in the ring K[[z~!]]. Tt follows that
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However, by assumption, the left and right sides of this congruence have degrees < 2e, in x7!,

so they are in fact equal. It follows then that fq, = f.q. Now we can take this as an equation
in K[z]. Since f and ¢ are relatively prime, f divides f, and ¢ divides ¢,. Since f, and ¢, are
relatively prime, f,, divides f and ¢, divides ¢. It follows that f/q = f./qn.

Now suppose that deg(f) > deg(q) (or that deg(f,) > deg(gs)). Since d(z, f/q) < 1 this
implies that [z] = [f/q] = [fu/q] = co- So we may subtract off this integral part, and apply
the previous case to the fractional part. In other words, let 2/ = 2 — ¢o, f' = f — coq, and
fr, = fo — coqn. Then deg(f’) < deg(q) and deg(f;,) < deg(g,), while (2", f'/q) = d(z, f/q) and
(2, fl/an) = 6(z, fu/qn). We conclude that deg(q) > deg(q,) unless f'/q = f!/qn, in which case,
by adding back the integral part ¢y, we have f/q = f./qn. O

5.7.c Continued fractions for Laurent series and p-adic numbers

Continued fractions can be developed almost identically for the field F' of Laurent series in z,
F=K() = {2, aix" : a; € K}. In this case the “integer part” is a polynomial in ™'
Every statement in Section 5.7.b now holds with z~! replaced by z. The terms ¢, = [z,] will
be polynomials in 7! and the convergents f, /g, will be quotients of polynomials in z~!. By
multiplying numerator and denominator by an appropriate power of x, we can convert these into
approximations by ordinary rational functions, and the series of approximations will generally
differ from that in Section 5.7.b because the metrics on K ((z)) and K((z7!)) are different.

A similar situation exists with the p-adic numbers. We can define continued fraction expansions
for z = >"°, a;2" with a; € {0,1,---,p—1} (and k possibly negative) by taking the “integer part”,
2], to be the part involving non-positive powers,

0

[2] = Z a;2" and {z} = Zaﬂi

i=k

to be the fractional part. The appropriate metric comes from the usual p-adic valuation. However,
the set of “integral parts”, (polynomials in 271) is not closed under addition or multiplication. This
leads to continued fraction expansions that do not converge. For example, consider the 2-adic CF
expansion for —1/2 = 271420421 ... Since [-1/2] =27'+2%and {-1/2} = 2"+ 22 +... = —
we obtain the infinite expansion

1
204 2-1 4

1
—5220+2‘1+ -

In Section 19.3.a we find the best rational approximation to a p-adic number using the theory of
approzimation lattices.
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5.8 Exercises

1. Let F' = Q be the rational numbers and ¢(z) = = — % Show that the power series expansion of
1/q(z) is not eventually periodic.

2. Let F be a field and suppose that k is a positive integer that is invertible in F. Let a(z) =
Yoo it € F[[x]] be a power series such that ag is a kth power in F. Show that a is a kth power

)

in F[[z]].

3. Let F be a field that is not algebraically closed. Show that F'[[x]] does not contain the algebraic
closure of F'.

4. If a,b € Zx, make the definition of ab precise and show that Zy is a ring.

5. Show that Zj3 does not contain v/—1. Show that Zs contains two elements whose squares are
—1, and compute the first 6 terms of each.

6. Use Theorem 5.4.8 to give an alternate proof that there is an injective homomorphism

{f/g:f,g€Z,gcd(g,N) =1} — Zy.

7. Complete the details of the proof of Theorem 5.4.8, showing that all the appropriate homomor-
phisms commute.

8. Generalize Theorem 5.4.8 to m-adic integers. What properties of the ring R are needed to make
this work?

9. Take R = Z and 7 = 5. Show that the element 570 + 47! 4+ 472 + ... € R, is in the kernel of
oy, for all n.

10. Prove that the ring R in Theorem 5.6.6 is an integral domain.
11. Finish the proof of Theorem 5.6.10.

12. Let R be a finite ring and let I be an ideal of R. Prove that the completion of R at [ is a
quotient ring of R.

13. Prove that if the continued fraction expansion of z € R is eventually periodic, then z is a root
of a quadratic polynomial with rational coefficients.

14. Use Hensel’s lemma to determine which integers m € Z have a square root in Z,,.
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15. (Reciprocal Laurent series) Let K be a field and let
3

2 —1

o0
z = :x+x_1+x_3+~--zg 2,
i=0

Show that the continued fraction expansion of z is [z, z, —x]. That is,

1
x—i—l'

—x

s+ 4+ =2+

16. (Reciprocal Laurent series) Let K be a field whose characteristic is not equal to 2. Let 2% =
(1 — 2~ 1). Show that this equation has two solutions z in the ring K|[[z~!]] of power series in x~*.

Hint: set z = ag + a1z~ + - - -, solve for ay = £1. For ag = +1 solve recursively for a,, to find

2 f .
0 = 2apa, + 2010p—1 + -+ { /2 1 n ?S even
2a(n—1)/20(n+1y/2 i 1 is odd.

Do the same for ag = —1.

17. (continued) Show that the continued fraction expansion for the above z is

1
(1—a Y2 =1+

—2x+1/2+
8r —4 +

—2r+1+

1

8¢ — 44— —
TR -

150



Part 11

Algebraically Defined Sequences
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Chapter 6 Linear Feedback Shift Registers and Linear
Recurrences

Besides being interesting fundamental mathematical objects in their own right, linearly recurrent
sequences have proved to be useful in many applications, including pseudorandom number genera-
tion, error correcting codes, private key cryptosystems, radar ranging, code division multiple access
communications, and many other areas. They provide a fast and simple method of generating sta-
tistically random sequences. Moreover, many of their properties can be analyzed using various
algebraic structures. The primary algebraic tools used to analyze linearly recurrent sequences are
polynomials, power series, and trace functions on finite fields. The results in this section are all
classical, many of them having been known for over a hundred years. However we have organized
this section in a slightly unusual way (from the modern perspective) in order to better illustrate
how they are parallel to the FCSR and AFSR theory which will be described in later chapters.

There are many ways to describe the output sequence of an LFSR, each of which has its merits.
In this chapter we discuss the matrix presentation (Section 6.2), the generating function presen-
tation (Theorem 6.4.1), the algebraic presentation (Proposition 6.6.1), the trace representation
(Theorem 6.6.4) and the sums of powers representation (Theorem 6.6.8).

6.1 Definitions

In this section we give the definitions and describe the basic properties of linear feedback shift regis-
ters and linearly recurrent sequences. Throughout this chapter we assume that R is a commutative
ring (with identity denoted by 1).

Definition 6.1.1. A (Fibonacci mode) linear feedback shift register of length m over R, with
coefficients q1, qa2, -+, gm € R is a sequence generator (cf. Definition 5.1.2) whose state is an
element

s = (ap,as, -, am_1) € R =X,

whose output is out(s) = ag, and whose state change operation T is given by

m
(GO, Ay, - -, am—l) — (@17 ag, -+, Am-1, Z%‘am—i)-
=1
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out

D

Figure 6.1: A Linear Feedback Shift Register of Length m.

(See also Section 10.1.) It is convenient to think of a linear feedback shift register (or LFSR) as a
physical circuit, as pictured in Figure 6.1.

Note that, because we like to think of bits as flowing out to the right, the order of the com-
ponents a; in the diagram is the reverse of the order when we write the state as a vector. When
thinking of LFSRs as physical devices as in the figure, we sometimes list the components of the
state in descending order of their indices. We write ’ A1 | App—o | e |a1 | ap ‘ for the machine state
to distinguish the two notations.

A LFSR defines a sequence generator (R™, R, T,out) in the sense of Section 5.1.c. As usual for
a sequence generator, from any given initial state (or “initial loading”) (ag, - -, @m_1), the LESR
generates an infinite output sequence

a=ap,a1," ", Am—1,0m, * **

This sequence may also be described as a linearly recurrent sequence (see Section 5.2.b).

Definition 6.1.2. A sequence a = ag,ay,--- of elements of R is linearly recurrent if there exists
a finite collection qq,- -, qm of elements of R such that for all n > m we have
Up = Q10p-1 + ** + Gnlp_m. (61)

Equation (6.1) is called the recurrence relation. The integer m is called the degree of the
recurrence. The elements ¢, - - -, ¢, are called the coefficients of the recurrence, to which we may
associate the connection polynomial

q(z) = -1+ Z ¢ir' € Rx]. (6.2)
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For simplicity we let ¢go = —1, so that ¢(z) = >, ¢;z". A sequence a = ag, ay, - - - satisfies a linear
recurrence with coefficients ¢y, - - -, ¢, if and only if it may be realized as the output sequence of a
LFSR with connection polynomial ¢(z) = Y./ ¢;z". In particular, LESR sequences are eventually
periodic.

The phrase “the LFSR with connection polynomial ¢(z)” is ambiguous because we can add
initial cells (with no feedback taps) to an LFSR to obtain a new LFSR with the same connection
polynomial g(z) but of length m > deg(q). In this case the output sequence will consist of an
initial “transient” ag,---,a,,_q_1 followed by the periodic part of the sequence. The LFSR will
output strictly periodic sequences if and only if its length m equals the degree of its connection
polynomial, that is, if ¢,, # 0. In order to be explicit, we will sometimes refer to “the LFSR with
connection polynomial ¢(x) whose length is the degree of ¢(z)”.

Every periodic sequence a (of elements in a ring R) can be realized as the output of a LFSR
(with entries in R): just take a LFSR whose length is a single period of a, and feed the last cell
back to the first cell. The number of cells in the shortest LFSR that can generate a is called the
linear complexity or equivalent linear span of a.

W

Example 6.1.3. As a first example, take R = Fy and consider the recurrence
a4 = a1 + Qg.

This recurrence corresponds to the connection polynomial q(x) = z* + x + 1 and to the LFSR
pictured in Figure 6.2.

out
as as aq ay ——

Figure 6.2: A Linear Feedback Shift Register of Length 4 over Fs.

Note that we can construct an LFSR over Fy by simply including just the taps corresponding to
coefficients ¢; = 1 and omitting those corresponding to ¢; = 0. The first 16 states and outputs
from this LFSR are shown in Table 6.1 (where we write the machine states [a,, 1, - -, agl), starting

in state |1]1[1]1]. After this point the states repeat.

Example 6.1.4. Now let R = [F3 and consider the recurrence

as — 2&2 + ag.
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state | out state | out state | out state | out
1| 1111 1 5 | 1000 0 9 | 1100 0 13 | 1010 0
2| 0111 1 6 | 0100 0 10 | 0110 0 14 | 1101 1
3| 0011 1 7| 0010 0 11 | 1011 1 15| 1110 0
3 | 0001 1 8 | 1001 1 12 | 0101 1 16 | 1111 1

Table 6.1: States of the LFSR over Fy with q(x) = 2 + 2% + 1.

This recurrence corresponds to the connection polynomial q(x) = z® + 2z — 1 and to the LFSR
pictured in Figure 6.3.

out
a9 aq ay ———

Figure 6.3: A Linear Feedback Shift Register of Length 3 over Fs.

The first 14 states and output from this LFSR are shown in Table 6.2, starting in state [1][1][1].
After this point the states repeat.

state | out state | out state | out state | out
1| 111 1 5| 001 1 9 | 012 2 13| 112
2| 011 1 6| 100 0 10 | 201 1 14 ] 111 1
3| 101 1 71 210 0 11| 220 0 15
31 010 0 8| 121 1 12| 122 2 16

Table 6.2: States of the LFSR over Fywith ¢(z) = 2® + 2z — 1.
More generally, let g(z) = >"1", ¢;z" € R[x] be any polynomial. We say the sequence a satisfies
the linear recurrence defined by ¢(x) if go is invertible in R and if

Qoln + Q1Qpn—1 + *** + @mlm—n = 0
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for all n > m. The linear recurrence defined by ¢(z) is the same as the linear recurrence defined
by vgq(x), for any invertible element v € R.

As in Definition 5.3, if ¢(x) = g0 + 1z + - - - + g™ € R|x] is a polynomial of degree m, then
its reciprocal polynomial is

¢ (x) = qgoz™ + qlxm_l + -+ o1+ ¢ = x™q(1/x). (6.3)

Lemma 6.1.5. The polynomials q and g* have the same degree and the same order. The polynomial
q is wrreducible if and only if ¢* is irreducible. If R is a field or a finite local ring (Section 4.1)
then q is primitive if and only if ¢* is primitive.

Proof. The degrees are the same because ¢y and ¢, are nonzero. If there exists g € R[z]| such that
q(x)g(z) = 2™ — 1, then ¢*(z)g*(z) = 1 — 2. If q(x) = g(x)h(z), then ¢*(z) = g*(x)h*(z). If
a € S is a root of ¢ in some extension field, then o~ € S is a root of ¢*(x). n

If g(z) is the connection polynomial of a LFSR, then its reciprocal ¢*(z) is sometimes referred
to as the characteristic polynomial of the LFSR. For some applications (such as Lemma 6.2.1) the
polynomial ¢ is better suited while for other applications (such as Theorem 6.4.1) the polynomial
q* is better suited. But we see later that in the setting of FCSRs and more generally AFSRs there
is a meaningful analog of the connection polynomial but not of its reciprocal.

Suppose that u € R is invertible and that it is a root of the polynomial ¢(z). Let a € R.
Multiplying the equation Y ;" g;u’ = 0 by au™ gives > " g(au™"*") = 0 so we conclude the
following fact, which is the basis for much of the analysis of linear recurrent sequences.

Basic fact 6.1.6. Let q(z) € R[x] be a polynomial with coefficients in a commutative ring R. If
u € R is a root of q(x) and if u is invertible in R then for any a € R, the sequence

satisfies the linear recurrence defined by q(x).

6.2 Matrix description

6.2.a Companion matrix

Consider a linear feedback shift register of length m with connection polynomial ¢(z) = >"1" gz €
RJz] of degree m, with gy = —1. If we consider each state s = (ag, a1, -+, am,_1) to be a (column)
vector in R™ then the state change (which shifts up) is given by matrix multiplication, s’ = As
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where A is the companion matrix

0 1 0 0

A= 0 o --- 1 0 |- (6.4)
0 o -+ 0 1
m Gm-1 - 42 @1

The characteristic polynomial of A is (—1)™*¢*(z) (see below). Recall that the order of a matrix

A is the smallest positive integer 7" such that AT = I. If such a T does not exist then we say that
A does not have an order, or that its order is infinite. If ¢ € R[z] is a polynomial with ¢y = —1,
the impulse response sequence for ¢ is the linearly recurring sequence with initial values ag = 1
and a; = 0 for 1 <i < deg(q) — 1.

Theorem 6.2.1. Let g(z) = > qia' € Rlx| with go = —1. Let A be its companion matriz (6.4)
and let g* be its reciprocal polynomial (6.3). Then the following statements hold.

1. det(xA —I) = (=1)"q(z) and det(A — xI) = (=1)""¢*(x). The matriz A is invertible if

and only if q,, is invertible in R. If the ring R is a field then the eigenvalues of A are the

roots of q*, which are the inverses of the roots of q.

¢ (A) =0, that is, —A™ + A"+ -+ + ¢, ] = 0.

If h € R[z], h(A) =0, and deg(h) < deg(q) then h = 0.

4. The set of polynomials h € Rlx| such that h(A) = 0 forms a principal ideal; it is the ideal
(q¢*) generated by q*.

5. The order of q* (= the order of q) is equal to the order of the companion matriz A, and in
particular one has a finite order if and only if the other does. If this order is finite then A is
invertible. If the ring R is finite and if A is invertible then q,q*, and A have finite order.

Proof. Part (1). The determinants det(xA — I) and det(A — xI) are found by expanding by
minors along the first column, and using induction. Since det(A) = (—1)"'¢,,, Cramer’s rule
gives a formula for A~! provided g,, is invertible. The characteristic polynomial of A is ¢*, so the
eigenvalues of A are the roots of ¢*, if R is a field. The roots of ¢* are the reciprocals of the roots
of q.

Lo o

Part (2). To show that ¢*(A) : R™ — R™ is the zero mapping, consider the action of ¢*(A) on a

(column) vector s = (ag, a1, +,am_1). It iS @S + 148 + @n_2A4%s + -+ - + goA™s or
Qo a1 A
ay a2 A1
Gm : + Gm-1 : + 4 qo
Ay—1 Am A2m—1
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where gy = —1 and ag, aq, - - - is the ¢g-linearly recurrent sequence with initial values ag, a1, - -+, @mym_1.
Each row sums to 0 because the sequence is linearly recurrent with connection polynomial q.

Part (3). Suppose there exists a polynomial h(z) = Y ;_, h;z’ with r < m such that h(A) = 0.

We may assume that h, # 0. Let s be the machine state s = [1]0]---[0]. Then the equation
h(A)(s) = 0 gives

-0 1
0 0 : 0
: : 0
holo|+M | o |+ -+h | 1] =
1 *
1 * : 0
_*_

This implies that h, = 0 which is a contradiction.

Part (4). Let h(z) = >_;_, hyz' be a polynomial such that h(A) = 0. We have already seen that
if h is nonzero then r = deg(h) > m = deg(q*). By the Division Theorem (Theorem 2.4.2); we
have h(x) = g(z)q¢*(x) + r(z) with deg(r) < m. It follows that r(A) = 0, so r(z) = 0. Therefore h
is a multiple of ¢*. This proves that the ideal in part (4) is principal and is generated by ¢*.

Part (5). To compare the orders of ¢* and of A consider the mapping R[x] — Hom(R™, R™)
which associates to any polynomial h(z) = Y _;_, h;z' the homomorphism h(A) = >"7_, h;A’ (where
A% = I). This homomorphism takes sums to sums and it takes products to the composition of
homomorphisms. Moreover a polynomial h € R[x| is mapped to 0 if and only if it lies in the ideal
(¢*) by part (4). Therefore this mapping passes to an injective homomorphism

¢ : R[z]/(¢") — Hom(R™, R™),

and ¢(x) = A. Therefore ¢(z*) = A* for all k < 0o so the order of x in R[z]/(g*) coincides with
the order of A. But the order of x in R[z]/(q*) is the order of ¢*. O

6.2.b The period

Let .
q(x) = Z%‘l’i € Rlz]
i=0

be a polynomial of degree m and suppose that ¢y is invertible in R. Let ¢* be the reciprocal
polynomial. Let T be the order of ¢ (which equals the order of ¢*).
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Corollary 6.2.2. Let a be a periodic sequence of elements in R that satisfies the linear recurrence
defined by q. Then the (minimal) period of a divides T'. If q,, is invertible in R then the period of the
impulse response sequence is exactly equal to T'. If R is finite then T divides the order |R[z]/(q*)*|
of the set of invertible elements in R[x]/(q*). If R is a finite field and if ¢* is irreducible then T
divides |R|%°) — 1. If R is a finite field then ¢* is primitive if and only if T = |R|4°&(@") — 1.

Proof. Let A be the companion matrix (6.4) of g. Then AT = I by Theorem 6.2.1 Part (5). Let
sp € R™ be the vector (ag, a1, -, a,_1) representing the initial segment of the sequence a. Then
ATsy = sy which implies that the sequence a has T as a period. But for any periodic sequence,
every period is some multiple of the minimal period. Hence the minimal period of a divides T'.

Next, suppose ¢,, is invertible and let r be the period of the impulse response sequence. Consider
the first m states sg,sq,--,S,_1 of the shift register, corresponding to the impulse response
sequence. Expressed as column vectors, they are

1 0 0 0
0 0 . A,
Sg = . , 81 = . , S2 = ' y "y Sm—1 = .
: G
0 A, Am+1 Ao2m—2

and a,, = ¢,,. Since ¢, is invertible, these vectors form a basis of R™. Now suppose the impulse
response sequence has period r < T'. Then A"sg = sy. So A"s; = A" Asqg = Asy = s; and similarly
A"s;, = s, for each k. Since A is linear it follows that A"v = v for all v € R™. That is, A" = I.
Therefore the order of A divides r, which is a contradiction.

From the proof of Theorem 6.2.1 the mapping ¢ : R[z]|/(¢*) — Hom(R™, R™) is one to one,
and it maps the polynomial x to the companion matrix A. If the order T of A is finite then A is
invertible (with inverse AT~1) hence x € R[z]/(q*)* is invertible. So the order of z (in R[z]/(q*)*)
divides the order of the group R[z|/(¢*)*. Finally, if R is a finite field and if ¢* is irreducible then
R[x]/(q*) is a field, whose multiplicative group contains |R|48(") — 1 elements. O

6.3 Initial loading

Let ¢(x) € R[z] be the connection polynomial as in equation (6.2) and set g = —1. Define a

mapping
p:Y=R"— Rx]

from states of the shift register to polynomials by

(ag,ay, -+, am_1) — fx) = Z_ (Z qian_i) " (6.5)

n=0
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The importance of this polynomial is explained in Theorem 6.4.1 and Theorem 6.6.2.

Lemma 6.3.1. The association j1: ¥ = R™ — R[] is a one to one correspondence between states
of the shift register and polynomials of degree < m — 1. If s = (ag,a1, "+, am_1) s a state and
if 8" = (ay,ay,---,al,_,) is the succeeding state, with corresponding polynomials f(x) and f'(x)
respectively, then

f(@) —xf'(x) = aoq(). (6.6)

Proof. For the first statement, it suffices to show that the numerator f(z) determines a unique
initial state s of the shift register (such that u(s) = f). Suppose f(z) = fo+ fiz+- -+ frn12™ L.
Then equation (6.5) gives fo = goag = —ap which determines ag uniquely. Then f; = qoa; + q1ao,
which, together with the knowledge of agy, determines a; uniquely. Continuing in this way by
induction we uniquely determine as, as, -+, Gy,_1.

The second statement is a calculation. The leading term (corresponding to n = m — 1) of the
polynomial

m—1 n
!/ _ / n
fi(z) = qiQp ;T
n=0 i=0
is
m—1 m—1 m
m—1 1 1
Qi1 ;T - qiQm—i T + do QJa’m—]':C
=0 1=0 ]:1
m—1
= —(dmQor
Therefore
m—2 n
/ . n+1 m
xf (x) = E qiGn—i+1T — GrQoT
n=0 =0
m—1 j—1
j m
= i7" — qmao
j=1 i=0
m—1 7 m—1
— . ) _ § . Jjo_ m
- qiQj—; qoaopTo q; Qo dmaox
=0 i=0 j=1
= r) — apq(v) u
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6.4 Generating functions

Let R[[x]] denote the ring of formal power series with coefficients in R (see Section 5.2). Recall
that a polynomial (or even a formal power series)

h(z) = Z hix'

1>0

is invertible in R[[x]] if and only if hy € R is invertible in R, and in this case the inverse h~!(z) €
R][[z]] is uniquely defined. If a = ag,ay,--- is an infinite sequence of elements of R we define its
generating function to be the formal power series

a(z) = Z a;xt € R|[z]]. (6.7)

Conversely, to any formal power series a(x) as in equation (6.7) we associate its coefficient sequence
seq(a) = ag,ay,---. The following theorem describes the relation beween the shift register, its
initial loading, and the generating function associated to its output sequence.

Theorem 6.4.1. Let R be a commutative ring. Suppose a LFSR (over R) of length m with
connection polynomial q(x) of degree m has initial loading (ag, a1, -+, am—1). Let f(x) be the
polynomial in equation (6.5) that is determined by this initial loading. Then the output sequence a
is the coefficient sequence of the power series expansion (Section 5.2.0) of the function f(z)/q(x),
that s,
@:CLO—FGLT—FGQ.TQ—'—"‘ (6.8)
q(x)
or a = seq(f/q). The output sequence a is eventually periodic if q(x) divides x* — 1 for some
T > 1. In this case, the (eventual) period of a divides T'. The output sequence a is strictly periodic
if and only if deg(f) < deg(q). If the ring R is finite and if q,, # 0 then every output sequence is
strictly periodic.

Conversely, given any infinite eventually periodic sequence b = by, by, - - - its generating function
b(x) =Y o2, bix’ may be uniquely expressed as the quotient of two polynomials f(x)/q(x) such that
go = —1. In this case the sequence b may be generated by a LFSR of length max{deg(f)+1,deg(q)}.
The denominator q(x) is the connection polynomial of the LFSR and the numerator f(x) uniquely
determines the initial loading by equation (6.5).

Proof. For any n > m we have

m
Z qiln—; = 0.
=0
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So

k=0 i=0
m—1 n

- (Z q;iQn— z) " + Z (Z q;CQp— z>
n=0 =m \ =0

= f(x)+0,

which verifies (6.8). The remaining statements follow from Theorem 5.2.5 and Corollary 6.2.2.
Conversely, suppose we are given an eventually periodic sequence b. By Theorem 5.2.5 its
generatmg function is a rational function, say, b(z) = f(z)/q(x), and the denominator ¢(z) divides
— 1 (where T is the period of the periodic part). Hence the constant term g is invertible in R.
Multiplying numerator and denominator by —¢; ' we may assume that gy = —1. The preceding
calculation shows that the sequence b satisfies the linear recurrence defined by ¢(x). The remaining
statements follow from Theorem 5.2.5 and Corollary 6.2.2. O]

Corollary 6.4.2. Suppose a(x) = f(x)/q(x) is the generating function of an eventually periodic
sequence a of elements of a field R, with qo = —1. If the fraction f(x)/q(z) is in lowest terms,
then the smallest shift register which can generate this sequence has size equal to max{deg(f) +
1,deg(q)}. If the sequence a is strictly periodic then this number is deg(q). If a = ;b1 + cabg
is the termwise linear combination of two eventually periodic sequences (with ¢y,co € R) then the
generating functions are likewise: a(x) = c1by(x) + cabo(x).

Thus, if by(z) = fi(z)/g1(z) and by(x) = fo(x)/g2(x) then

c192() f1(x) + cagi () fo(x)
91()g2(x)
If this fraction is in lowest terms then the linear recurrence satisfied by a has degree deg(g;) +

deg(g2) but if the fraction can be further reduced then the degree of the linear recurrence satisfied
by a will be smaller.

a(x) =

6.5 When the connection polynomial factors

Let R be a commutative ring and suppose that ¢(z) = qo + q1x + -+ + gmz™, gm # 0, is the
connection polynomial of a LFSR U of length m, with ¢y = —1. Suppose also that the leading
coefficient q,, is invertible in R and that the polynomial ¢ factors

q(z) = cori(z)ra(x) - - (), (6.9)
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where ¢g € R, the constant term of each r; is —1, and the polynomials r;(z) are pairwise relatively
prime in R[z]. (It follows that ¢y is (—1)*.) Consider the linear feedback shift registers U; of length
m; = deg(r;) with connection polynomial r; for 1 <1i < k.

Proposition 6.5.1. For any initial loading of the shift register U, there are unique initial loadings
of the shift registers U; such that the output sequence of U is the term-wise sum of the output
sequences of the shift registers U;. Conversely, for any initial loadings of the shift registers U;, the
term-wise sum of the resulting sequences is the output sequence of U with some initial loading.

Proof. Note that since ¢,, # 0, every initial loading of U produces strictly periodic output.

It suffices to consider the case of k = 2 factors, since the general case follows immediately by
induction. The initial loading of U determines a polynomial f(x) such that the generating function
of the output sequence is the rational function f(x)/q(x) and so that deg(f) < deg(g). In the next
paragraph we show that there is a unique “partial fraction” decomposition

LI he (6.10)

qg T2
with deg(h;) < deg(r;). Viewing these rational functions as formal power series over R, this
equation shows that the output of the shift register U is the sum of the outputs of the shift
registers U; and U, with initial loadings determined by hq(x) and ho(z) respectively.
Since (r1) + (r2) = R[z] (cf. Section 2.2.e) there exist polynomials uy (), uz(z) so that

f(z) = ui(z)ri(x) + ug(z)re(x). (6.11)

The leading coefficient of q is the product of the leading coefficients of | and 5 which are therefore
both invertible in R. So we may use the division theorem for u; /ry (Theorem 2.4.2) to write uy (x) =
go(2)ro(x) + ho(x) for some (uniquely determined) polynomials go, hy € R[z] with deg(hy) <
deg(ry). Similarly, uy = gy71 + hy with deg(h;) < deg(ry). Then

f="(g91+ g2)rim2 + hory + hy7a.

The degrees of f, of hory, and of hyry are all less than deg(q) = deg(ry) + deg(rs). It follows that
g1 + g2 = 0. This proves equation (6.10).

Conversely, suppose the outputs from U;, i = 1,2 have generating functions f;(x)/r;(x). Then
the term-wise sum of these sequences has generating function

f(@) _ file)ra(z) + fo(x)r(2)
q() ri(2)ra(2) '

Since deg(f) < deg(q), this power series is an output sequence from U. ]
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It has been shown that the computational complexity of computing such partial fraction decom-
positions, even of multiple factors simultaneously, is quadratic in the degree of ¢ [50, pp. 126-128].
It is not always the case that a polynomial ¢ over a ring R can be factored as in equation (6.9),
but see Theorem 2.2.14.

Repeated factors. In many cases (for example, if R is simultaneously a factorization domain
and a GCD domain) Proposition 6.5.1 reduces the analysis of an LFSR with arbitrary connec-
tion polynomial to that of an LESR with connection polynomial ¢(z) = f(z)* where f(x) is an
irreducible polynomial. We have seen in Section 4.1.a that the structure of the group of units
in the ring R[x]/(f") can be quite complicated. Fortunately, we do not need to fully understand
the structure of this group of units in order to understand the behavior of a shift register with
connection polynomial ¢(x) = f(z)".
If f=>"_,aix" € R[z] and if n > 0 is an integer, then define

r

i (z) = Z alx’.

1=0

If R is a field with ¢ elements, and if n is a power of ¢ then f{"} = f. If R is a ring of characteristic
p, where p is prime, and if n is a power of p then (a + b)" = a™ + b (because each binomial
coefficient (Z) will be divisible by p), and hence

fla)" = fian). (6.12)

Proposition 6.5.2. Suppose R is a ring of characteristic p where p is prime. Let f € R|x] be an
irreducible polynomial with f(0) = —1. Let q(z) = (=1)"*1f(x)!, so that ¢(0) = —1. Let n = p* be
the smallest power of p such that n > t. Then the output of the LFSR with connection polynomial
q(x) whose length is the degree of q(x) is the interleaving of n LESR sequences, each of which has
connection polynomial fi™(z).

Note that if a polynomial ¢(x) with ¢(0) = —1 is a unit times a power of an irreducible
polynomial f(x), then f(0) is a unit. Thus ¢(z) is also a unit times a power of —f(0)~!f(z),
whose constant term is —1.

Proof. First we remark that if h(z) and wu(z) are polynomials with deg(h) < deg(u) then the
coefficient sequence of the power series g(x) = h(x™)/u(x™) is obtained from the coefficient sequence
for h(z)/u(x) by inserting n — 1 zeroes between every pair of symbols.

Now let g(z) be the generating function of the output sequence of the LFSR, so that

o) = @) @i )
D@ CDF ) o
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where h(z) = (—1)"v(x) f(x)""* is a polynomial of degree m < ndeg(f) = deg(f{™). Suppose
h(z) = Y., hia'. By collecting every nth term together we may write

h(x) = Ho(2™) + xHy(2™) + -+ + xnlen_1<xn)’

where Hy(y) = hi, + hpsxy + honyxy® + -+ - Then deg(Hy) < deg(f) and by equation (6.12) the
generating function for the output sequence is

Hy(x™) Hy(x™)

. " Hn_l(.%’n)
9) = Forgmy T F )

fird(zn)

This is an interleaving of n sequences, each of which has connection polynomial (—1)*1f(y). O

+ __+xn—1

Proposition 6.5.2 is most useful when R is finite and its characteristic is small relative to the
power t. In Section 6.6 we also consider repeated factors when the characteristic of R is greater
than ¢, making use of the following proposition.

Proposition 6.5.3. Let R be a commutative ring, let
d
fl@)=7_ fi' € Rla]
i=0

and let u € R be a root of f(x). Assume u is invertible in R. Fiz integers 0 < s < t. Then the

sequence
115 25072 o omiu ™, (6.13)

satisfies the linear recurrence defined by q(x) = f(x)*.

Proof. Let g(x) be the generating function for the sequence (6.13). We need to show that the
power series

fx)'g(x) = f(x)' Y mou"a™ (6.14)

is a polynomial of degree less than dt where d is the degree of f. That is, that all the terms of
degree dt and greater vanish. We prove this by induction on t. Let us first compute f(x)g(x):

o d oo
f(x) . Z miu""r" = Z fimsu—mxi-‘rm
m=0 1=0 m=0
oo d
= h(z)+ Z Z fi(n —i)su=" g™,
n=d 1=0
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where n = 7 + m and where
d—1 n

h(z) = Z Z fi(n —d)5u~"Ta"

n=0 =0
is a polynomial of degree < d — 1. We can use the binomial theorem to obtain

f@g@) = h +ZZZ()T ot i

n=d =0 r=0

00 d
= h(x)+ Z niu """ - (Z fiui>
n= =0

The middle term vanishes. Thus if ¢ = 1, and hence s = 0, then we are done. Otherwise we are
left with

r=0 i= n=d
s—1 00
=h(z)+ ) A, E n"u """
r=0 n=d

where A, € R. By induction on t,
_1'j£:TfU_n$n
n=0
is a polynomial of degree less than d(t — 1) provided r <t — 1. Thus
f(x)g(x) = f(z)" " h(z +ZAf ) 1Znu "
is a polynomial of degree at most max(d(t —1)+d—1,d(t —1) —1) =dt — 1 < dt. O

6.6 Algebraic models and the ring R|x|/(q)

Throughout this section we fix a commutative ring R with identity and we consider a LFSR over
R of length m with connection polynomial

¢(r) = =1+ qa + @2° + - + gua"™
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with gg = —1. We also assume the leading coefficient ¢,, is nonzero and is invertible in R. Let
3} = R™ denote the set of all possible states. We describe three different ways to represent the
output of this LFSR using successive powers of an element (or elements) in some extension ring of
R. In the language of Section 5.1.c, we are describing algebraic models for the sequence generator
defined by an LFSR. The first theorem, Theorem 6.6.2 is the most general: it gives a complete
mathematical model of the action of a LFSR over any ring R. However it is also the most abstract.
The second, Theorem 6.6.4 (the familiar “Trace” description), and the third, Theorem 6.6.8 (the
familiar sum of roots description) require some mild assumptions on the ring R. Let R[z] be the
ring of polynomials with coefficients in R.

6.6.a Abstract representation

The polynomial ¢(z) determines an ideal (¢) in the polynomial ring R[z] and we consider the
quotient ring R[x]/(q). In this ring, x is invertible with inverse

= ¢+ r+ -+ qum’l (6.15)

as may be seen by multiplying both sides by . Moreover,

" = qi(l — T — = Q™) (6.16)
because ¢ = 0 in R[z]/(¢). It follows that any element h € R[x]/(q) may be uniquely represented
as a polynomial h(x) of degree less than m. If hy, hy are two polynomials of degree < m and if
a € R then h; + ahy also has degree < m, so the sum of polynomials and scalar multiplication
by elements of R agrees with the sum and scalar multiplication in the ring R[z]/(q). However
if deghy + deghy > m then the product hihs of polynomials will look very different from their
product in R[x]/(q).

If h € R[x] is a polynomial, then define

T(h) =h (mod q) (mod z) € R

to be the following element: first, project h into the quotient R[x]/(¢) (by subtracting off the
appropriate multiple of ¢), represent it by a polynomial h of degree < m — 1, then take the
constant term, h(0). In the same way, if h € R[z]/(q) we may refer to h (mod ¢) (mod z) € R.

Proposition 6.6.1. Let ¢ = —1 + 1z + -+ + gnz™ € R[z] and assume that q,, is invertible.
Then q is invertible in the ring R[[z]] of power series. Let h € R[z]/(q) be a polynomial of degree
<m—1 and let
_h(ﬁ) _ 2
—— = Qg +t 1T + ax” + - -
q()
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be the power series expansion of —h(z)/q(x). Then for all i > 1,

a; =2 "h (mod ¢) (mod x)

where x° is interpreted using equation (6.15).

Proof. The polynomial ¢(z) is invertible in R[[z]| because ¢y = —1 is invertible in R. Therefore
the quotient —h(x)/q(x) can be uniquely expressed as a power series ag + a1 + ax? + - - - with
strictly periodic coefficients which, for n > m satisfy the linear recurrence

n = q10p—1 + *** + Gmbn—m-
Equating ¢(z)(ap + a1z + - -+) = —h(x) gives
ap — ho =h (mod I) (617)

The power series a; +asx+asz?+- - - is also strictly periodic and satisfies the same linear recurrence
so by Theorem 6.4.1 it is the power series expansion of a unique fraction —h'(x)/q(x) where
deg(h') < m. Then

o1, h
—— =—(———ag) € R[x
L (-2 —a) € Rl
or zh'(z) = h(x) 4 apg(x). But this is an equation among polynomials, so reducing modulo ¢ gives
h' = x7'h (mod ¢). Proceeding by induction we conclude that the power series a, + an417 +
2

Api2x” + -+ (obtained by “shifting” the original power series by n steps) is the unique power
series expansion of a fraction h™ /q where h(™ is the polynomial representative of the element
x7"h (mod q) € R[z]/(q). Consequently, as in equation (6.17), the leading coefficient of this
power series is

an = h{" =A™ (mod z) = 2 "h (mod ¢) (mod z) .

Returning to the shift register, define the mapping ¢ : R[z]/(¢) — ¥ which associates to any
h € R[x]/(q) the state
¢(h) = (a07 Ay, 7am—1)

of the shift register, where a; = 27'h (mod ¢) (mod z). That is, the corresponding machine state
is

p(h) = |27 h (g)(z) a r~'h (q)(x) h (q)(x)

where (q)(z) denotes (mod ¢) (mod z). Recall the mapping p : 3 — R[x] of equation (6.5). The
following is a concise statement of the discussion found in [159] Section 7.
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Theorem 6.6.2. The mappings 1 : Rlx]|/(q) — X and —p : ¥ — R[z]/(q) are inverses of each
other. In the language of Section 5.1.c, ¥ : (S,R,k,T) — (X, R, T,0ut) is a complete injective
model and —p : (3, R, 7,out) — (S, R, k,T) is a complete projective model. That is, the following
diagram commutes.

Y '
Rlel/ (@) —— >
R\ out
R

Here, 7 : 3 — X is the state change and « : R[z]/(q) — R[x]/(q) is multiplication by z—'. That
is, k(h) = x7'h. As above, the mapping T : R[z|/(¢) — R is given by T'(h) = h (mod ¢) (mod z).
Then T is a homomorphism of R modules. That is, T'(hy + ahs) = T'(hy) + aT'(hy) for any a € R
and any hy,hy € S. However T is not a ring homomorphism. That is, T'(hihs) does not equal
T'(h1)T(hy) in general.

Proof. First we check that 1 commutes with the state change. That is, that 7(1)(h)) = ¥ (x 7 h).
To do so let h € S and compute the successor to the state 1(h) which was described in the
preceding diagram. The contents of each cell are shifted to the right and the contents of the
leftmost cell is given by the linear recursion (6.1). That is,

= Z ¢z""™h (mod ¢) (mod z)
= 2 "(¢(x) +1)h (mod ¢q) (mod z)
= 2 ™h (mod ¢) (mod x).

In other words, the successor state is ¢)(x~1h) as claimed. We have that 1) commutes with the
output functions since out(¢)(h)) = h (mod ¢) (mod z). Now consider the mapping —p : ¥ — S.
It follows from equation (6.6) that for any state s € 3 we have,

p(s) = zpu(s’) (mod g)

where 8’ = 7(s) is the succeeding state. This shows that p is compatible with the state change,
and the same holds for —u. To see that —u commutes with the output functions, let s =
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(ag,ay,--+,am-1) € L. Then out(s) = ag. On the other hand, u(s) is given by the polyno-
mial f(z) of equation (6.5), which has degree < m — 1. So f(x) (mod ¢) is given by this same
polynomial, and its constant term is f(z) (mod ¢) (mod z) = goag = —ap = —pu(s).

Finally we verify that ¢ and —u are inverses. A state s € X is determined by the m outputs
out(s),out(rs),--,out(7"'s) since these are just the initial cell contents of the shift register.
However, for any state s we have shown that for any n > 1,

out(ip(—pu(7"s))) = T(k"(=u(s)))

= out(7"s)
from which it follows that ¢ (—pu(s)) = s. O

Corollary 6.6.3. The output sequence of the LESR with the above initial loading ¥ (h) is given
by ag,ay, - - - where
a; =2~ 'h (mod ¢q) (mod z).

6.6.b Trace representation

In the next representation, we suppose that R is a commutative ring, that S is an extension ring
(i.e. a ring which contains R) and that the connection polynomial ¢(x) has a root a € S which is
invertible in S. We also suppose there exists an R-linear surjective mapping 7' : S — R (which in
many cases will be a “Trace” mapping).

Theorem 6.6.4. Fix a surjective R-linear mapping T : S — R. Then, for any A € S, the
sequence

T(A),T(atA), T(a2A)--- (6.18)

satisfies the linear recurrence defined by q(x), with initial values depending on the choice of A.
Proof. Set a,, = T(Aa™") and let ¢(x) = qo + q1x + - - - + gmax™. Then
Aa (g0 + o+ @0 + -+ 4 gra™) =0

for any n > 0 and any A € R. Applying T to both sides gives

Zm: ¢T(Aa™"") = i ¢in—i =0 O
=0 i=0

Hence the diagram

170



R out

commutes, where X = R" is the set of states, 7 : X — ¥ is the state change, the output sequence
is given by equation (6.18), and ¢ : S — X is given by ¢(A) = (T(A), T(atA), -+, T(a'"™A)).
That is, the corresponding machine state is

W(A) = | T(a""™A) . T(a'A) T(A)

Thus ¢ : (S, R,-a" ', T) — (X, R, 7,0out) is an injective algebraic model for the shift register. The
unit a1 generates a cyclic subgroup of the group of units in S. So the deeper analysis of such an
LFSR sequence relies on an understanding of the structure of the group of units in S. Perhaps
the first question is to determine when such a model is complete.

Proposition 6.6.5. Let R be a ring, let S D R be an extension ring, let T : S — R be a surjective
R-linear mapping, and let q(x) € R[z] be a polynomial of degree d. Suppose either

1. R is a finite local ring, q(x) is a monic basic irreducible polynomial, and S = GR(R,d) is
the degree d Galois extension of R, so that by Theorem 4.4.1 q splits completely in S, or

2. R is a field, q(x) is irreducible, and S is the splitting field of q(x) (that is, S is a degree d
extension of R and q(x) splits into linear factors over S).

Let o be a root of q(x) in S. Then the above mapping ¢ : S — X is a bijection (one to one and
onto). Consequently every output sequence ag,aq,--- of the LFSR is given by a, = T(a™™A) for
some choice of A € S.

Proof. First consider the case (1) that S is a Galois extension of R. By Corollary 4.4.2 « is
invertible in S and the collection {1, a,a?, - ,adil} forms a basis for S over R. It follows that
the collection {1,a™',a™2,---, !~} also forms a basis for S over R. The ring S and the state
space ¥ contain the same number, |R|¢ of elements, so we need only show that the mapping v
is one to one. Since 1 is R-linear, this amounts to showing that the kernel of v consists of {0}.
By Theorem 4.4.6 the mapping T is nonsingular. However, if ¢(a) = 0 then T'(a ‘a) = 0 for
0 <i < d— 1 which implies that T'(ba) = 0 for every b € S. By Theorem 4.4.6 this implies that
a = 0. The same argument also works in case (2), when R and S are fields. O]
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Repeated factors. The following theorem describes a “trace representation” for the output of
a LFSR whose connection polynomial is a power of an irreducible polynomial. Suppose R C S are
rings and f(z) € Rx] is a polynomial with a root o € S which is invertible in S. Let T: S — R
be a surjective R-linear mapping.

Theorem 6.6.6. Fiz an integer m > 1 and set g(x) = f(x)™. Then for any polynomial P(y) =
Zl;ol Puy* € Sly| of degree deg(P) < m — 1, the sequence

m—1
an, =T(P(n)a™) = Z nT(Pa™"),n=0,1,---, (6.19)
r=0
satisfies the linear recurrence defined by g(x).

Proof. In Proposition 6.5.3 it was shown that for any power k& < m—1 the sequence ¢, = nfa™ € S
satisfies the linear recurrence defined by g(x). Hence the same is true for any linear combination

—_

P(n)a™" = Pnfa™.
0

3

B
Il

Since the coefficients of the recursion g(z) are in R, the sequence T'(P(n)a™") also satisfies the
linear recurrence defined by g(z). [

According to this theorem, we may construct the following mathematical “model” for the action
of a shift register (of length md) with connection polynomial g(x) = af(x)™. (In order that g(z)
be a connection polynomial we must have g(0) = —1, hence f(0) must be invertible in R and then
we can take a = — f(0)™™.) Let S,,_1[y] be the collection of all polynomials P(y) € S[y] of degree
less than m. Define a state change operation  : Sy, 1[y] — Sm_1[y] by &(P)(y) = a 1 P(y + 1).
(Note that x does not change the degree of the polynomial P.) Let E : S,,_1[y] — R be the
composition

Spmoily] —— S —— R

where ((P) = P(0). Let us define a mapping ¢ : S,,_1[y] — X to the set of states by ¥(P) =
(T(P(0)), T(P(1)a™t), -, T(P(s)a"*)). That is, the corresponding machine state is

(P)=| T(P(s)a™) T(P()a~h) | T(P(0))

where s = md — 1. If 7 : ¥ — ¥ denotes the state change mapping for the shift register with
connection polynomial g(z) and length md, then the following diagram commutes,
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Theorem 6.6.7. Suppose that R is a finite field of characteristic p > m, that f € R|x] is irre-
ducible of degree d, and that S s the degree d extension of R. Then the above model is complete.
Hence, for any initial loading (as, as_1,- -+, a1, a9) of the shift register, there is a unique polynomial
P(y) € Sim-1ly] so that equation (6.19) holds for all n > 0.

Proof. The mapping v is R-linear, so it suffices to show that Ker(y)) = 0. Let P(y) € S[y] be a
polynomial of some degree < m—1 < p. If (P) =0 then T(P(n)a™™) =0forall0 <n <md—1
from which it follows that T'(P(n)a™") = 0 for all n > 0. Since deg(P) < p there exists an integer
t with 0 <t < p such that P(t) # 0. Let a = P(t)a™" € S and let § = a”. Then for all k > 0 we
have

T(aB™%) = T(P(t)a """ = T(P(t + pk)a~""P*) = 0.

The mapping b +— D is a field automorphism of S which preserves R, from which it follows that
B = aP is also a root of an irreducible polynomial f'(x) € R[z] of degree d and therefore the
collection {1,371, 372, ..., =41} forms a basis of S over R. Since S is a field, the element a # 0
is invertible. Therefore T'(s) = 0 for all s € S, which is a contradiction. O

Remarks. If char(R) = 0 and if f splits into distinct linear factors over a degree d Galois
extension S of R, then the same result holds for arbitrary m. The proof in [148], chapt. 13 works.
When char(R) is arbitrary, Theorem 6.6.7 fails, but a general solution to the linear recurrence is
described in [17] and [113]. These results are recalled in the next section, Section 6.6.c. Theorem
6.6.7 fails when R is a finite local ring because the element A constructed in the proof may be a
zero divisor.

6.6.c Sums of powers representation

Consider a LFSR over a ring R with connection polynomial ¢(z) € R[x| whose degree is the length
of the LFSR. Suppose S is a ring which contains R and suppose ¢ factors into distinct linear factors
over S. That is, there exist aq, g, -+, a,, € S such that

() = gm(x — 1) (z —ag) -+ (x — ).

In this case we have the following result.
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Theorem 6.6.8. Suppose each root o; € S is invertible and also that the product

[ —ah

i<j
is invertible in S. Then for any given initial loading (ag, a1, -+, am_1) of the shift register, there
exist unique constants Ag, A1, -+, Am—1 € S so that the output sequence is given by
m
an:ZAioz;”, n=0,1---. (6.20)
i=1
Proof. Taking n =0,1,---,m — 1 in equation (6.20) gives a system of m linear (inhomogeneous)
equations in the r unknowns Ag, Ay, -+, A,,_1 of Vandermonde type, meaning that the coefficient
matrix is the following:
1 1 - 1
g ar e A
N ¢
0T Al el

According to the theorem of Vandermonde, the determinant of this matrix is

H(a;l — Oéj_l).

1<J

By assumption this determinant is invertible and hence the above system of equations has a unique
solution. This gives elements Ay, - - -, A, so that equation (6.20) is satisfied forn = 0,1,---,m—1.

It follows from Section 6.1.6 that the sequence 1, a; ! o 2 ... satisfies a linear recurrence with
connection polynomial g(z). Since the same recurrence is satisfied by the sequence of a;s, by
induction on n equation (6.20) holds for all n > 0.

]

Repeated factors. Suppose R is a finite field of characteristic p, suppose f € R[z] is irreducible
of degree d and let S be the degree d extension of R. Consider a LFSR over R having connection
polynomial q(x) = f(z)™ where m < p. Let ay,---,aq € S be the roots of f. By taking T = T3
in Theorem 6.6.7, we conclude the following. For any given initial loading of the shift register
there exists polynomials P (y), Py(y), - - -, Pa(y) € Sly] such that the output sequence of the LFSR
is:



The general solution of a linear recurrence with characteristic polynomial g(z) = f(z)™ is due
to [17]. Fix a field F' of characteristic p (possibly p = 0). For each h > 0 define the sequence

5u(n) = (” Z k) (mod p).

The sequences 9, makes sense in any field of characteristic p, and it satisfies the linear recurrence
defined by (1 — )™ whenever k < m — 1.

Theorem 6.6.9. Let f(z) € Flx] be a polynomial with distinct roots in some algebraic closure
F of F. Fiz m > 1 and suppose ag, a1, - - is a sequence of elements in k which satisfy the linear
recurrence defined by g(x) = f(x)™. Then there exist m unique sequences b®) bP ... pm=1)
each of which satisfies the linear recurrence defined by f(x), such that, for alln > 0,

—_

an = 6;(n)bD.

%

3

Il
=)

6.7 Families of recurring sequences and ideals

Until now, we have been studying individual sequences generated by a given LFSR, (or, equivalently,
individual sequences that satisfy a given linear recurrence). In this section we consider, for a fixed
periodic sequence a (or for a given finite set A of periodic sequences) the set of linear recurrences
that are satisfied by a (resp. by every a € A). This is the approach taken by Zierler [190].

6.7.a Families of recurring sequences over a finite field

Throughout this section, F' denotes a finite field. Most of the results in this section may be found
in Zierler’s paper [196]. From Theorems 2.2.14 and 2.4.8 we have that the ring F'[x] of polynomials
is a principal ideal domain and a Euclidean domain. Also, any polynomials fi, fo € F[z]| have a
greatest common divisor ged(f1, f2) and a least common multiple lem( fi, fo) which are uniquely
determined up to multiplication by an element of F', as described in Theorem 2.4.9.

In this section, we denote by & C F* the collection of all (infinite) periodic sequences of
elements of F'. We identify the ring F[[z]] of formal power series with F**° by associating to each
series a(z) = ap + a1z + - - - its coefficient sequence seq(a) = (ag, ay, - - ).

Let g(z) = Y.",¢g;z* € F|z] be a polynomial of degree m. Consider the linear recurrence
(Definition 6.1.2)

qoln + Q1ap_1+ -+ @ntp_m =0 (6.21)

where m = deg(q). We refer to this as the linear recurrence defined by q. We say that a satisfies
the recurrence for n if equation (6.21) holds. We say that a satisfies the recurrence defined by
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q if it holds for every n > m. We say that a eventually satisfies the recurrence, or satisfies the
recurrence almost everywhere (or a.e.) if it satisfies the equation for all n greater than or equal to
some k.

Recall from Lemma 5.2.2 that ¢ is invertible in F'[[z]] if and only if and if ¢y is nonzero. In this
case if u(x) € F|x] is another polynomial, then the power series expansion

L a(z) = >
q 1=0

is well defined. The sequence a = seq(u/q) = (ao, a1, - - -) of its coefficients satisfies the recurrence
(6.21) for all n > max(m,deg(u) + 1). The sequence (ag, ay,---) is (strictly) periodic if and only
if deg(u) < m. More generally, if a is a sequence of elements of F' and ¢ is possibly zero, then
a eventually satisfies the linear recurrence defined by ¢ if and only if the formal power series
q(z)a(x) € F[[z]] is in fact a polynomial. The sequence satisfies the linear recurrence defined by ¢
if and only if this polynomial has degree less than m, and this holds if and only if a is (strictly)
periodic.

Definition 6.7.1. Ifa € F™°, denote by I(a) the set of all ¢ = q(z) € F[z]| such that a eventually
satisfies the linear recurrence defined by q. If A C F* is a set of sequences, denote by I(A) the
intersection of the I(a) over alla € A. If g € F[z], then denote by G(q) the set of all sequences a
that eventually satisfy the linear recurrence (6.21) defined by q. Set Go(q) = G(q) NS, the set of
sequences that satisfy the recurrence defined by q.

Thus ¢ € I(a) if and only if a € G(q).

Suppose ¢g is nonzero. Then G(q) is identified with the set of all fractions u/q € F[[z]] and
Go(q) is identified with those fractions such that deg(u) < deg(q). The sets G(q) and Gy(q) are
vector spaces (with Gy(g) finite dimensional) which are closed under the shift operation, for if a
satisfies the linear recurrence defined by ¢ then so does every left shift of a.

Lemma 6.7.2. Suppose that qq is nonzero. Then q(x) divides some xT — 1. It follows that every
element of G(q) is eventually periodic.

Proof. We have 1 — z(—¢qy " S0, qiz'™1) = 5 'q(z), so that z is a unit in F[z]/(qg(x)). Since F is
finite, the group of units in Flz|/(¢(z)) is a finite group, so every unit has finite order. Thus for
some T > 0, ¢(z) divides 27 — 1.

To see the second statement, let 27 — 1 = ¢(x)s(z). If a € G(q), then

_u(x)_u(x)S(ZE)_uxsx LT 2T
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The latter product is periodic for indices greater than deg(u) + deg(s) since it is a sum of the
sequences corresponding to certain x’ Y ooco 2T, each of which is periodic for indices greater than
deg(u) + deg(s). O

Suppose a is periodic and ¢ € I(a). We can write q(z) = z*¢/(x) with ¢/(0) # 0. Let ¢'(x)
divide 7 — 1, say 7 — 1 = s(x)¢'(z). We may assume that T is a multiple of the period of a.
Thus

¢(x) ot -1

for some polynomial v. Since the period is less than T, we must have deg(sv) < T, so also
deg(v) < deg(q’). Thus ¢(x)a(z) is a polynomial of degree less than the degree of g(z). That is,
a satisfies the linear recurrence defined by ¢ (everywhere, not just almost everywhere). If a is not
eventually periodic, then by Lemma 6.7.2 I(a) = {0}. That is, a satisfies no recurrence, even a.e.

For any a, we claim that the set /(a) is an ideal in F'[z]. To see this, suppose that ¢(z)a(z) and
r(z)a(z) are polynomials and u(z) is any polynomial. Then (q(z)+r(x))a(z) = q(x)a(z)+r(x)a(zx)
and (u(x)q(z))a(x) = u(x)(q(z)a(z)) are polynomials, so I(a) is indeed an ideal.

Theorem 6.7.3. For every eventually periodic sequence a there is a nonzero polynomial q(z) of
minimal degree, called the minimal polynomial, such that a € G(q). It is uniquely determined up
to multiplication by a monzero element of F and its constant term is nonzero. Conwversely, for
any polynomial q € Fx] of degree greater than 1 whose constant term is nonzero, there exists a
periodic sequence a whose minimal polynomial is q. For any finite collection A of sequences there
exists a unique shift register of shortest length that generates every sequence in the set A.

Proof. Since, given a, the set I(a) is an ideal in F[z|, and F[z] is a principal ideal domain, there
exists a polynomial ¢ € F[z] of minimal degree, uniquely determined up to a scalar multiple, such
that I(a) = (¢). The polynomial ¢ has a nonzero constant term, for if it were divisible by = then
a would also satisfy the linear recurrence defined by ¢(x)/x. This has a smaller degree, which is a
contradiction.

For the converse statement, let ¢ € F[z]| and let a be the impulse response sequence, that is,
the unique sequence (ag,ay,---) in G(q) with initial values a; = 0 for 0 < i < deg(q) — 2 and
Adeg(q)—1 = 1. Then a does not satisfy any linear recurrence of degree less than deg(q) (otherwise
it would be the zero sequence), so ¢ is its minimal polynomial. O

If a is a sequence, then we let a” be its left shift by r steps.

Lemma 6.7.4. If a € F*> is a sequence, then I(a) = I(a” + b) for every integer r > 0 and
every sequence b with only finitely many nonzero terms. Suppose that a is eventually periodic and
let d be the degree of the minimal polynomial of a. The vector space Go(I(a)) is closed under
left shift. It has a basis consisting of {a” : 0 < r < d}. The vector space G(I(a)) is closed
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under left shift and under arbitrary changes to finitely many positions. It has a basis consisting of
{a" : 0 <r <d}U{b:b has one nonzero term}.

Proof. 1f a is not eventually periodic, then I(a”+Db) is the zero ideal so the first statement is trivial.
Now suppose a is eventually periodic. Then a differs from a periodic sequence by a b with only
finitely many nonzero terms, so we may assume that a is periodic. Let a™(z) be the generating
function of a”. If a(z) = a@(x) = Y%, a;2, then aV(x) = (a(x) — ag)/z. If f € I(a) then
f(x)a(x) is a polynomial. Therefore f(z)(a(x)—ag) is a polynomial and so also f(z)(a(z) —ag)/x.
Thus f € I(aV). By inducton I(a) C I(a®) c I(a®) C ---. But a is periodic so a® = a
where N is its period, hence these containments are all equalities. Moreover, if b has only finitely
many nonzero terms, then its generating function b(z) is a polynomial. The generating function
of a” + b is a(z) + b(z), and f(x)a')(x) is a polynomial if and only if f(z)(a (x) + b(z)) is a
polynomial. Thus I(a™ +b) = I(a") = I(a).

To prove the second statement, we first show that the sequences a,a, .- al
independent. Suppose there is a relation of linear dependence, say,

4=1) are linearly

(for some choice of constants ¢; € F'). This equation says that the polynomial Z?;()l c;z'isin I(a).
But this polynomial has degree at most d — 1 < d which is a contradiction. Finally, the vector
space Go(q) has dimension equal to d because the sequences in Gy(q) are uniquely determined by
the d initial values ag,ay, - -,aq4_1. Therefore the elements a,alV), .- al®=Y must be a basis for
Go(q)-

Similarly, the sequences {a™ : 0 < r < d} U {b : b has one nonzero term} are linearly inde-
pendent since no nontrivial linear combination of the a™ has only finitely many nonzero terms.
They span G(I(a)) since every eventually periodic sequence differs from some periodic sequence
in finitely many terms. O]

If I = (f) is an ideal in F[z] then we denote by G(I) the set of all sequences that satisfy
the linear recurrences associated with every element of I. Then by Theorem 6.7.3, G(I) = G(f).
Similarly for Gy. Recall (from Theorem 2.4.9) that if (f1) and (fs) are ideals in F[z] then (f;) +
(f2) = (ged(fi, f2)) is the smallest ideal containing both (fi) and (f2), and that (fi) N (f2) =
(lem(f1, f2)) is the largest ideal contained in both (f;) and (f2).

Theorem 6.7.5. ([190]) Let f, f1, fo € Flz| be polynomials with nonzero constant terms and let
A, Ay, Ay C S be sets of eventually periodic sequences. Then the following statements hold.

1. G(f1) C G(fs) if and only if Go(f1) C Go(f2) if and only if fi divides fo.
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If a € G(f) then the minimum polynomial of a divides f.

3. G(f1) NG(f2) = Glged(f1, f2)) = G((f1) + (f2)) and Go(f1) N Go(f2) = Golged(f1, f2)) =
Go((f1) + (f2))-

4. G(f1) + G(f2) = G(lem(f1, f2)) = G((f1) N (f2)) and Go(f1) + Go(f2) = Go(lem(f1, f2)) =
Go((f1) N (f2))-

R

1G(F) = I(Go(£)) = ().

7. Suppose every sequence in A is periodic. Then A C Go(I(A)). If A is finite, then A =
Go(I(A)) if and only if also A is a finite dimensional vector space that is closed under left
shift.

8. In general A C G(I(A)). Let B be the set of sequences with finitely many nonzero terms.
A = G(I(A)) if and only if A is a vector space and contains a finite subspace Ao which is
closed under left shift such that A = Ag+ B.

9. If Ay, Ay C S are vector spaces over F then I(Ay + Ag) = I(A;) N I(A3).

10. Suppose Ay, Ay C S are vector spaces over F', and each A; can be written as A; = A; o+ C
with A; o a finite vector space closed under left shift and C' an arbitrary vector space (this
holds, for example, if both Ay and As are finite). Then 1(A; N Ag) = I(Ay) + I(As).

Proof. For part (1), If fo(z) = u(x) fi(x) for some polynomial u(z) and if a € Go(f;) then fi(x)a(x)
is a polynomial of degree less than deg(fi), so u(z)fi(z)a(z) is a polynomial of degree less than
deg(f1) + deg(u) = deg(f2). Conversely, suppose Go(f1) C Go(f2). Thus seq(1/f1) € Go(f1) C
Go(f2), so that fo/fi = u is a polynomial. Thus fo = uf; so fi|fe. A similar argument works in
the non-periodic case by omitting the degree constraints.

For part (2), let ¢ denote the minimum polynomial of a. Then a € G(f) implies that f €
I(a) = (¢q). This says that ¢ divides f.

For part (3), if ¢ = ged(f1, f2) then Go(g) C Go(f:) (i = 1,2) by part (1), so Go(g) C
Go(f1) N Go(f2). To verify the other inclusion, let a € Go(f1) N Go(f2). There exist polynomials
Uy, ug o that g = uy fi + uo fo from which it follows that

g(w)a(z) = wi () fr(z)a(r) + uz(r) fo(x)a(z)

is again a polynomial. Thus a € G(g). But a is periodic, so a € Gy(g). A similar argument works
in the non-periodic case.
For part (4), we know from part (1) that

Go(f1> C Go(lCIﬂ(fl, fg)) and Go(fz) C Go(lcm(fl, fg))

But Go(lem(f1, f2)) is a vector space so it contains the sum Go(f1) + Go(f2). Therefore it will
suffice to prove that they have the same dimension. Now

dim(Go(lem(f1, f2))) = deg(f1) + deg(f2) — deg(ged(f1, f2))

R
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since lem( f1, fo) = fi1f2/ ged(f1, f2). On the other hand,

dim(Go(f1) + Go(f2)) = deg(f1) + deg(f2) — dim(Go(f1) N Go(f2))-

By part (3),
dim(Go(f1) N Go(f2)) = deg(ged(f1, f2)).

This argument does not work in the non-periodic case since the Gs are infinite dimensional.
However, for any f € F[x] the set

Gr(f) ={a € G(f) : deg(f(z)a(r)) < deg(f) + k}

is a finite dimensional vector space and

G(f) = UGil)).

It is possible to generalize the proofs of parts (4) and (3) to G}, (some care is required in obtaining
the degree bound in part (3)). We leave the details to the reader. This completes the proof of
Part (4)

For part (5) we have f € I(Go(f)) C I(G(f)) so (f) C I(Go(f)). On the other hand, the
sequence seq(1/f) is in G(f). Thus if g € I(G(f)), then g(z)/f(z) = u(x) is a polynomial, so
g=uf € (f). Part (6) is straightforward.

Suppose every sequence in A is periodic. For any a € A we have

a e Go(I(a)) C Go(I(A)),

from which the first statement in part (7) follows. If A = Gy(I(A)) then A is a vector space, closed
under the shift operation because this is true of every Go(f). On the other hand, suppose that A
is a vector space that is closed under the shift operation. We must show that Go(I(A)) C A. For
any a € A the set Go(I(a)) has a basis consisting of certain shifts of a, by Lemma 6.7.4. Since A
is a vector space and it contains all the shifts of a we conclude that Gy(I(a)) C A. But a was an
arbitrary element of A. By Part (4),

Go(I(A)) = Go(( ) I(a)) = ) Go(I(a) C A

acA acA

This completes the proof of part (7).
For any a € A we have
ae€G(I(a)) C G(I(A)),

from which the first statement in Part (8) follows. Suppose A = G(I(A)) and let Ay = Go(I(A)).
Then A is a vector space and Ay is a subspace is closed under left shift. Every eventually periodic
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sequence differs from a periodic sequence in finitely many terms, so A = Ay + B. On the other
hand, suppose that A = Ay + B is a vector space with Ag a subspace closed under left shift. Then
by part (7),

G(I(A)) = G (Ao + B)) = G(I(A))
= GolI(Ay)+ B =Ay+ B = A.

This completes the proof of part (8).
To verify part (9) first note that by Part (6), [(A; + As) C I(A;) for j = 1,2 hence

It remains to verify the reverse inclusion. There exist polynomials fi, fo such that (A1) = (f1)
and I(As) = (f2). Then

I(Ay) N 1(Az) = (f1) N (f2) = (h)
where h = lem(f1, f2). So it suffices to prove that h € I(A; + Ag). That is, we must show:
if a € Ay + Ay, then h(x)a(z) is a polynomial. Such an element a can be written as a sum
a = a; + ap where a; € A;. Since h is a multiple of f; we know that h(z)ai(z) is a polynomial.
Similarly h(x)as(x) is a polynomial. Therefore

h(z)a(z) = h(z)ai(z) + h(x)as(z)

is also a polynomial, as claimed.
For part (10), let I(A;) = (f;) for 7 = 1,2 and let g = ged(f1, f2) so that (fi) + (f2) = (9)-
Then if C is finite so each A; is finite,

I(A1) + 1(A2) = (9) = I(Go(g)) by Part (5)
= 1(Go((f1) + (f2)))
= I(Go(f1) N Go(f2)) by Part (3)
= 1(Go(I(A1)) N Go(I(A2)))
=1(A1NAy) by Part (7).

If B is infinite, then an identical proof with G replaced by Gy works. This completes the proof of
Theorem 6.7.5. O

Most of the applications of this theorem appear in Chapters 13 and 15.

There is another point of view for the material in this section that is often useful. Note that F'*°
is a module over F' using componentwise addition and scalar multiplication. Define £ : F'*° — F'*°
to be the shift operator, F(ag, a1, ) = (a1, as, ). Then E commutes with addition and scalar
multiplication, so we can multiply an element of F*° by an arbitrary polynomial in F[E]. This
makes F'*° into a module over F[E]. If a € F*°, then we say that a polynomial g(E) annihilates
a if g(E)a = 0, the all zero sequence.

181



Theorem 6.7.6. Suppose a(x) = f(x)/q(x) is the generating function of an eventually periodic
sequence a = seq(a) of elements of a field F. Let E be the shift operator on sequences over F'.
Then

g(E) — Emax(deg(f)fdeg(q)Jrl,O)q*(E) (622)

is an annihilator of a (where ¢* is the reversal of q). Conversely, if g(FE) = E'q*(E) is an
annihilator of a for some natural number t and polynomial q(E), then q(x)a(z) is a polynomial of
degree at most t + deg(q) + 1.

Proof. Let d = deg(f) and m = deg(q). We have ¢(x)a(z) = f(z). Equating the coefficients of
terms on either side of this equation, it follows that for all n > max(d + 1, m),

Goln + q10p—1 + *** + Gmln—m = 0.
This equals the term with index n — m in ¢*(E£)a. Thus

prax(des(f) ~des()+10) g (F)a — 0. -

6.7.b Families of Linearly Recurring Sequences over a Ring

In this subsection we consider the generalization to the case when the field F' is replaced by an
arbitrary finite ring R. Let S € R be the collection of all (infinite) periodic sequences of elements
of R. As usual we identify the ring R[[z]] of formal power series with R> by associating to each
series a(z) = ag + a1 + - - - its coefficient sequence seq(a(zx)) = (ag, a, - -).
If g(x) = Yi", ;" is any nonzero polynomial in R[z] we may again consider the linear recur-
rence (Definition 6.1.2)
Goln + Q1ap_1+ -+ @nap_m = 0. (6.23)

If a = seq(a(x)) is a sequence, then a satisfies the recurrence (6.23) (for all n > m) if and only
if g(x)a(zx) is a polynomial f(x) of degree less than m = deg(q). Note that we can only conclude
that a(z) = f(x)/q(z) for some polynomial f(z), if go is a unit in R. Also, if go is not a unit, then
the recurrence (6.23) may not uniquely determine a from the initial values ag, aq, -, Gym_1-

The definitions of G(¢q), Go(q), and I(a) are unchanged from Section 6.7. The set (a) is still
an ideal, however it may not be a principal ideal: there may not be a unique minimal degree
polynomial in I(a). For example, if b is a common annihilator of all terms of a, then the degree
zero polynomial ¢(z) = b is in I(a). But there are many cases when a is also annihilated by
polynomials some of whose coefficients are units. For a specific example, let R = Flu,v]/(u,v)?,
where F' is a finite field. Thus R is a finite local ring with maximal ideal m = (u,v) and quotient
field F'. The sequence a = (u,u,u,---) is annihilated by the degree zero polynomials u and v
and by the polynomial x — 1. These three polynomials are pairwise relatively prime. In fact a
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polynomial g(x) = ", ¢;z" annihilates a if and only if u(go + ¢1 + - -+ + ¢m) = 0. This holds if

and only if
Z q; € m.
=0
For any such ¢(z), we have
gx) =) g = i+ Y a
i=1 i=1 =0
The polynomial
2wt =) 4
i=1 i=1

is a multiple of z — 1, so
g(z) em- R[z] + (x — 1) = (u,v,x — 1).

In particular, there is no reasonable notion of minimal polynomial for a since /(a) = (u, v,z — 1)
is not principle and has no distinguished generator.

For a given nonzero polynomial ¢ we may consider G(q) and Go(q). We may ask, for example,
whether they contain nonzero sequences and whether they are finite. They are modules over R,
although they may not be finitely generated. They are closed under left shift.

The easiest case is when ¢ is a unit in R. Then any sequence a = (ao, a1, - - -) that satisfies the
recurrence (6.23) for all but finitely many n is eventually periodic — each term is determined by
the previous m terms and there are finitely many such m-tuples since R is finite. The sequence a is
strictly periodic if and only if it satisfies the recurrence for all n > m = deg(q). This is equivalent
to saying that deg(q(x)a(x)) < deg(q(x)).

When ¢g is not a unit, the picture is more complicated for a general ring. However, if R is
a finite local ring we can say something about G(q). To do so, we generalize G(q). Let M be a
module over R and let a = (ag,ay,--+) € M be an infinite sequence of elements of M. Then
we say that a satisfies the recurrence defined by ¢ if equation (6.23) holds for all n > m. We let
G(q, M) be the set of sequences in M that satisfy the recurrence defined by ¢g. Note that it is
not necessary that m be the degree of ¢. That is, we may allow ¢,, = 0. In general G(q, M) is a
module over R, and may not be finitely generated. However, if R is a field, ¢ is nonzero, and M is
a finite dimensional vector space over R, then G(q, M) is a finite dimensional vector space over R.
Indeed, if we choose a basis for M so that we can write M = R' for some ¢, then G(q, M) = G(q)".

Theorem 6.7.7. Let R be a finite local ring with mazimal ideal m and quotient field F. Let q(x)
be a nonzero polynomial with coefficients in R. If every coefficient of q is in m, then G(q) is
uncountably infinite. In particular, it contains sequences that are not eventually periodic. If at
least one coefficient of q is a unit, then G(q) is finite.
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Proof. Suppose that m* = (0) but that m*=! = (0). If every coefficient of ¢(x) is in m, then G(q)
contains every sequence all of whose entries are in m*~! (and possibly other sequences). Since there
are at least two possibilities for each position, G(¢) is uncountable. Since the set of eventually
periodic sequences is countable, G(g) contains sequences that are not eventually periodic.

Now suppose that at least one coefficient of ¢ is a unit. Let u; be the reduction map from m®
to m’/m*1. We use the same name for the induced map on various types of objects defined over
m’ (polynomial or sequences, for example). Thus po(q) # 0. Each m’/m*! is a finite dimensional
vector space over F, so G(uo(q), m*/m**1) is finite.

Note that if a € G(q), then po(a) € G(uo(q)). Since pg(q) is nonzero, G(po(q), m'/m1) is
finite for each 7. For each ¢ we can choose elements

bi,j S G(qvmz)aj = 17 e ati

for some t;, with
1i(G(g,m)) = {pi(biy) : j =1,--- ti},

and the y;(b; ;) distinct. Then an induction argument shows that we have

o

-1

b; ;. (6.24)

Y
I

I

()

for some jo, - - -, jg—1. Every such sum is in G(q), so G(q) has H ' t; elements and thus is finite. [

Let a € S be a periodic sequence and let a” be its shift by r steps. As is the case when R is a
field, I(a) = I(a") for every shift r and the module G(I(a)) is closed under the shift operation.

Theorem 6.7.8. Let J,Ji,Jo € Rx] be ideals and let A, Ay, Ay C S be finite sets of periodic
sequences. Then the following statements hold.

[f J2 C Jl, then G(Jl) C G(JQ)
G(J1) NG(Jy) = G(J1 + Jo).

G(J1) + G(J2) € G(J1 N Jy) (but equality does not hold in general).

J CI(G(J)) (but equality does not hold in general).

If Ay C As then 1(Ag) C I(Ay).

A C G(I(A)) (but equality fails in general even if A is a module closed under shift).

If Ay, Ay C S are modules over R then I(Ay + Ag) = 1(A1) N I(A,).

If Ay, Ay C S are modules, then I(A; N Ay) C I(Ay) + I(As) (but equality does not hold in

general, even if Ay and As are closed under translation).

SIS N
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Proof. The proof of part (1) is similar to the proof of part (1) of Theorem 6.7.5.

For part (2), if a € G(J1) N G(J3), then a satisfies the recurrence defined by every element
of J; or Jy. Since recurrences can be added, a also satisfies the recurrence defined by every
element of J; + J;. Conversely, by part (1) G(J; + Jo) € G(J;) and G(J; + Jo) € G(J;), so
G(J1+ J2) CG(J) NG(Ja).

For part (3), we know from part (1) that G(J;) C G(J; N Jy) and G(J3) € G(J; N J2). Thus

(J1) + G(JQ) C G(Jl N J2>

Part (4) holds since f € I(G(f)) C I(G(J)) if f € J.

Part (5) is elementary.

Part (6) holds since, for any a € A we have a € G(I(a)) C G(I(A)).

To verify part (7) first note that by part (5), I(A;+As) C I(A;) for j = 1,2, hence I(A;+A4,) C
I(A;) N I(Ay). It remains to verify the reverse inclusion. Suppose that ¢ € I(A;) N I(Ay). Then
every a; € A; and every a, € A, satisfies the recurrence defined by ¢. It follows that every
a; +ag € Ay + A, satisfies the recurrence defined by g. Thus I(A;) N I1(As) C I(A; + Ay), which
proves part (7)

Part (8) follows from part (5) This completes the proof of Theorem 6.7.8. O

Counterexamples to equality in parts (3), (4), (6), and (8) can be found in the finite local
ring R = Flu,v|/(u,v)? with maximal ideal m = (u,v). For part (3), take I = (u) = uR[x] and
]2 = (U) = UR[.T] Then G(Il) = G(IQ) = moo, SO G(Il) + G(]Q) = m*™. But Il N [2 = (O), SO
G(I;N1y) = R>™.

For part (4), take I = (u). Thus I(G(I)) = I(m*>) = (u,v).

For part (6), let A= R-(u,u,---). Then A is a module closed under shift. We have G(/(A)) =
Gm-R[z]+ (1 —2)) ={a>®:a €m}.

For part (8),let Ay = R-(u,u,---) and Ay = R-(v,v,--+). Then A; and Ay are modules closed
under shift. We have [(A;) = I(Ay) = I(A;) + 1(As) = m- Rlz] + (1 —z). But I(A; N Ay) =
I1(0>) = R[x].

We also mention that the approach using the shift operator E is valid for sequences over rings.
Theorem 6.7.6 holds with F' replaced by any ring.

6.8 Examples

6.8.a Shift registers over a field

Shift register sequences over a field F' have been extensively utilized by the electrical engineering
community, (particularly when F' = Fy). First let us consider the case of a LESR whose connection
polynomial f(x) € F[x] is irreducible. Let d = deg(f) and let K be the unique degree d extension
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of F. Then f(z) splits into linear factors over K. If o € K is a root of f(x) then for any initial
loading of the shift register there exists a unique A € K such that the sequence

ay, = Tr?(Aa_”)

is the output sequence of the shift register.
Suppose that ' = F, is the finite field with ¢ elements. Then

a_
ol t=1

so the period of this sequence is a divisor of ¢¢ — 1. If a € K is a primitive element (in which case
f is a primitive polynomial) then this sequence has maximal period T = ¢? — 1, and it is called
an m-sequence over IF,.

Returning to the general case, let us assume that F' is a field. Because F[z] is a unique
factorization domain, it is possible to completely describe the output of a shift register over F
with arbitrary connection polynomial. Let g(z) € F[z] be the connection polynomial of a shift
register U where g(0) = —1. We assume that the length of the register is equal to deg(g). Then,
for any initial loading, the output will be strictly periodic. The polynomial g factors uniquely (up
to permutation of the factors),

9(x) = afi(x)™ fo(x)™ - filx)™,

where the f; are distinct irreducible polynomials and a € F'is chosen so that each f; is a connection
polynomial (f;(0) = —1). The output of the shift register U is then the term-by-term sum of the
outputs of the t shift registers U; having connection polynomial f/"* (where 1 <14 < t) with initial
loadings which are uniquely determined by the initial loading of U.

This reduces the analysis to that of a single shift register with connection polynomial af(z)™.
If deg(f) = d then the polynomial f splits into linear factors over its splitting field K O F. (If
F = F, then K = F,a where d = deg(f).) Let o € K be a root of f. If char(F) = 0 or if
m < char(F') then there exists a unique polynomial P(y) € KJy] (which is determined by the
initial loading ag, a1, - -+, Gma—1) such that the output sequence is given by

an = Tri(P(n)a™)

for all n > 0. If m > p = char(F’) then the output sequence is obtained as the interleaving of the
outputs of n shift registers with connection polynomial f(x), where n = p® is the smallest power
of p such that p* > m.
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6.8.b Fibonacci numbers

The Fibonacci sequence 1,1, 2,3,5,8, - - - satisfies the linear recurrence
Ay, = Ap_1 + Ap_2 (6.25)
over the ring R = Z of integers. The connection polynomial is ¢(z) = —1 + x + 2% and indeed,
-1

—— =1+4+2+22"+32° + 52" + 82" + - -
142+ a2
as predicted by Theorem 6.4.1. We consider the three exponential representations for this sequence.
According to Corollary 6.6.3, sequences satisfying this linear recurrence may be expressed as
hx™™ (mod ¢) (mod x) where h,x~" € Z[z]/(q). In the ring Z[z]/(q) we have x7' = 1 + x (since
r(l+z) =2+22=1+¢q=1 (mod ¢)). Tt turns out that, in order to obtain the Fibonacci
sequence, we must take h = z. That is, a,, = 27! (mod ¢) (mod z). This follows immediately
from the formula ™" = a,, 1 + a,x which is verified by induction.
The roots of the connection polynomial are:

—1++5
2 b

the golden mean and its Galois conjugate. One may consider these roots to lie in the real numbers
R, or in the smaller extension field Q[v/5] or even the extension ring Z[v/5,1/2]. In any case,
according to Theorem 6.6.8 there are unique constants A, B such that

a, = g(—l +V5) "+ g(—l +V5)™,
and in fact we may take A = 1/\/5 and B = —1//5.

Choose any Q-linear mapping 7 : Q(v/5) — Q, for example, the trace Tr assigns to A € Q(v/5)
the trace of the action of A on Q(v/5) when it is considered as a 2- dimensional vector space over
Q, (a basis of which may be taken to be {1, \/5}) Then, as in Theorem 6.6.4, if & = (1 +/5)/2,
then T'(Aa™™) will satisfy the linear recurrence (6.25), the choice of A being determined by the
initial conditions. Taking A = 1/4/5 will give the Fibonacci sequence: a,, = Tr(a~"/v/5).

6.9 Exercises

1. Phase taps: Consider an LFSR with primitive connection polynomial ¢(x) = —1 4+ q1x +
<o 4+ gnx™. Let a be a root of this polynomial, so that the output from the rightmost cell is
a, = Tr(Aa™") where A € F, corresponds to the initial loading.
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Rather than take the output from the rightmost cell, suppose we tap several cells, add the results,
and output the sum. For example, we could tap the cell counting ¢ from the right and also the
cell counting j from the right (where j > i), thus outputting

bn = Qpti T An+j5

as in Figure 6.4.

t
@ ou

Figure 6.4: Phase taps: b, = ap12 + apas

D

Show that the new sequence by, by, - - - is simply a shift (or “phase shift”) of the sequence a by ¢
steps (so b, = an¢) where the shift ¢ is determined by the equation

ol =1+a",

2. If p, q are fixed integers, the linearly recurring sequence
Qp = PQp—1 + qQp—2

is called a generalized Lucas sequence. The recurrence is called a second order linear homogeneous
recurrence. Starting with ag = 0 and a; = 1 express the n-th element of this sequence as a sum of
powers of roots of the characteristic polynomial. What happens if p? + 4¢q = 07

3. A perfect matching of a finite graph G is a subset S of the edges so that every vertex lies on
exactly one element of S. Let G,, denote the box-graph made out of n consecutive vertical struts,
as in Figure 6.5. Prove that the number of perfect matchings of the graph G,, is the Fibonacci
number F, 1 (so that the above graph G5 has 8 perfect matchings).
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Figure 6.5: The graph G5.

4. The squares of the Fibonacci numbers satisfy a linear recursion of degree 3. Find this recursion
and express its generating function as a rational function.

5. Let R be aring and let ¢(z) = >"1", ;2" — 1 be a polynomial over R. Let A be the companion
matrix of ¢(z), as defined in equation (6.4). Prove that det(zA —I) = (—1)"¢(z). If the ring R is
a field then prove that each root of the connection polynomial ¢(z) is the inverse of an eigenvalue
of A.

6. A sequence ag,ay,--- of elements in a ring R satisfies an mth order inhomogeneous linear re-
currence if there exist q1,q2, -+, ¢n € R and 0 # ¢ € R so that for all n > m, the following
holds:

ap = q10p—1 + -+ gmAn—m +c. (626)

Suppose that Y _" | ¢; — 1 divides ¢ in R. Show that there is a b € R so that the sequence ag, a, - - -
with a!, = a,, — b satisfies the associated (homogeneous) linear recursion (6.26) with ¢ replaced by
0.

7. If the sequence ag, ay, - - - satisfies the inhomogeneous linear recursion (6.26) of degree m, show
that it also satisfies the (homogeneous) linear recursion with the following connection polynomial

of degree m + 1,
m—+1

Qz) = -1+ (g —gi1)2’
i=1
where go = —1 and ¢,,.1 = 0.

8. Let N be a large fixed integer, possibly a power of 2. Fix A, B with 0 < A, B < N — 1. The
linear congruence method for generating (pseudo) random numbers modulo N uses a seed integer
o and the recurrence

z, = Azp,_1 + B (mod N). (6.27)

Prove: If N is prime and A is a primitive root modulo N then there is a single value of xy for which
the output sequence is constant; for any other seed value the sequence will visit all the remaining
N — 1 possible values before repeating.
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9. Suppose N = p° (e > 2) is a power of a prime p, and the sequence xg, x1,- - - is periodic and is
generated by the linear congruence method (6.27). Show: if A — 1 is not divisible by p then the
period of this sequence cannot exceed N — N/p. (In fact it is possible to achieve the full period,
N = p®, cf. [I11], by taking B # 0,1, taking A — 1 to be divisible by p and, if p = 2 then A — 1
should be divisible by 4.)

10. Let R be a finite local ring with maximal ideal m with m* = (0) and quotient field F' = R/m.
Let g(z) € R[z] be a polynomial with exactly one coefficient that is a unit, say g;.

a. Prove that if ¢; = 0 when i # j, then G(q) = {0}.

b. Suppose j > 0. Let a € G(q). Prove that for every [ > 0 we have a; € m! if i > jl.
c. Conclude that a; = 0 if ¢+ > jk, and that a= 0 if ¢; = 0 for all 7 < j.

d. Show that if some ¢; # with ¢ < j, then there is a nonzero sequence in G(q).
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Chapter 7 Feedback with Carry Shift Registers and
Multiply with Carry Sequences

A feedback with carry shift register is a feedback shift register with a small amount of auxiliary
memory. In its simplest form, the cells of the register consist of bits (0 or 1) while the memory
contains a nonnegative integer. The contents (0 or 1) of the tapped cells of the shift register
are added as integers to the current contents of the memory to form a sum o. The parity bit,
o (mod 2) of o is fed back into the first cell, and the higher order bits, |o/2] are retained for the
new value of the memory. See Figure 7.1. There are many parallels between LFSR sequences and
FCSR sequences, some of which we list in Table 7.1.

LFSR over Z/(2) FCSR over Z/(2)
taps QIa"'>Qm€{071} taps Q17"'7Qm€{071}
connection polynomial connection integer
) = =1+ qr+@r?+ -+ gna™ | = —1+ @2+ @2° + - + gn2™
output sequence ag, ay, - - - output sequence ag, ay, - - -
linearly recurring sequence multiply with carry sequence
generating function 2-adic number
a(z) = ap + a1z + agx? + - - - a=ay+ a2+ a2’ +---
rational function: a(x) = h(x)/q(z) | rational number: o = h/q
sum of two LFSR sequences sum-with-carry of two FCSR sequences
exponential represesentation exponential representation
a; = Tr(Aat) a; = A27" (mod ¢) (mod 2)
maximal length m-sequence maximal length ¢-sequence
Berlekamp-Massey algorithm rational approximation algorithm

Table 7.1: Comparison of LFSRs and FSRs.

The output sequences generated by an FCSR are examples of multiply with carry sequences.
They enjoy many of the useful statistical properties of linearly recurrent sequences. As with
linearly recurrent sequences, several algebraic structures are available for the analysis of multiply
with carry sequences, including ordinary integer arithmetic, N-adic numbers, and an analog of the
trace function. Multiply with carry sequences have been applied in such areas as pseudorandom
number generation, cryptanalysis, and arithmetic codes.
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Feedback-with-carry shift registers were first described in [102], [58] and [106] (whose publica-
tion was delayed for years by an unscrupulous editor). These devices were suggested as a method
for high speed hardware generation of binary sequences with enormous periods, as might be used
in a stream cipher or digital communication system. Around the same time the add-with-carry
(AWC) generator was described [130], [132] as a method for the generation of (large) pseudo-
random numbers for use in simulations and Monte Carlo integration. The AWC generator may
be considered to be a single stage feedback-with-carry generator. It is a remarkable coincidence
that the same basic idea occurred at roughly the same time to these two different research groups.
In [131], [L10], [29] the multistage generalization of the AWC generator was developed, where it
was called the multiply-with-carry generator. Both lines of research continued to develop indepen-
dently as their goals were somewhat different, but the article [62] places both points of view into
a common setting.

7.1 Definitions

In this section we give the definitions and describe the basic properties of feedback with carry shift
registers over the integers modulo N. Elements of Z/(N) will always be represented as integers
between 0 and N — 1. If w is an integer then v (mod N) is the remainder after dividing u by NV;
the whole number quotient is denoted u (div N) = |u/N].

Definition 7.1.1. Fiz an integer N > 1. Let S = {0,1,---,N —1}. Let ¢1,G2, ", qm € S. An
N-ary feedback with carry shift register of length m with multipliers or taps ¢, - - -, ¢ s a discrete
state machine whose state is a collection

(ag, ++,am_1;2) wherea; €S and z € Z

and whose state change operation is described as follows:

7.1.1.a Compute the integer sum

m
o= E qiQm—i + 2.
i=1

7.1.1.b Replace (ag,ay, -, am_1;2) by (a1,as, -+, am_1,0 (mod N);o (div N)).

Writing a;; and 2" for the new values of a; and z, the change of state may thus be expressed by the
equations a; = a;+1 for 0 <1 <m —2 and

a1+ NZ'=0=qam1+ @an—2+-+ gnao + 2.
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It is convenient to think of a feedback with carry shift register (or FCSR) as a physical circuit,
as pictured in Figure 7.1. Note the similarity to Figure 6.1. The contents of the tapped cells of the
shift register are added as integers to the current contents of the memory to form a sum, . The
residue, o (mod N) of o is fed back into the first cell, and the higher order bits o (div N) = |o/N |
are retained for the new value of the memory.

div N mod N|

Figure 7.1: A Feedback with Carry Shift Register of Length m.

As with LFSRs, we like to think of bits as flowing out to the right, so the order of the com-
ponents a; in the diagram is the reverse of the order when we write the state as a vector. When
thinking of FCSRs as physical devices as in the figure, we sometimes list the components of the
state in descending order of their indices. We write ’ Cm—1 Iam,g | . | ay |a0‘ for the machine
state to distinguish the two notations.

The output sequence from an FCSR can also be described in more mathematical language
using linear recurrences that incorporate a carry.

Definition 7.1.2. Let N > 1 be an integer. A sequence a = ag,ay,--- of elements in S =
{0,1,---, N — 1} is linearly recurrent with carry mod N or is a multiply with carry sequence
if there exists a finite collection qy,---,qn € S and an infinite sequence zm_1, Zm, Zms1, - Of
integers, or “memory values” such that for all n > m we have

an + Nz, = q10p—1 + -+ @mOp—m + Zn—1. (71)
FEquation (7.1) is called a recurrence relation with carry and the integer m is called the length
or span or degree of the recurrence. The integers qi,---,qn are called the coefficients of the
recurrence. Set qo = —1. The connection integer of the recurrence is the integer

q:—l—l—ZqiNi:ZqiNi. (7.2)
i=1 =0
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At first glance it may appear that the sequence z; of memory values might grow without bound.
But (cf. Proposition 7.6.1) if the sequence a is eventually periodic and satisfies the recurrence (7.1),
then the memory values z; will eventually enter the range 0 < z; < w where w = 3" ¢;, and will
remain within this range thereafter, eventually becoming periodic as well.

Thus, for any initial set of values ag, -, a1 € {0,---, N — 1} and z = z,,_; € Z, the FCSR
in Figure 7.1 generates a unique multiply with carry sequence mod N. In Section 7.7 we consider
a slightly more general situation in which the multipliers ¢; (0 < ¢ < m) are allowed to take on
arbitrary positive or negative integer values.

7.2 Analysis of FCSRs

In this section we establish the relationship between N-adic numbers and the structure of an FCSR.
Suppose we fix an m-stage FCSR whose connection integer is ¢ = —1 4+ ¢ N + ¢ N? +-- -+ ¢, N™,

and whose initial state is (ag, a1, -+, @m_1; 2m—1). (See Figure 7.1.) The register will generate an
infinite, eventually periodic sequence a = ag, a1, as, - - - of integers modulo N, to which we associate
the N-adic integer a € Zy such that a = seqy(a) :
a=ay+aN+aN*+agN* +--- € Zy (7.3)
which we call the N-adic value of the FCSR (with given initial state). Define
m—1 4
f = Z Z C]jai,]’Ni — mele, (74)
i=0 j=0

where we have set ¢go = —1 so that ¢ = > 1" ¢; N".

Theorem 7.2.1. [106] The output, a, of an FCSR with connection integer q¢ > 0, initial memory
Zm—1, and initial loading ag, ay,- -, am_1, 1S the coefficient sequence of the N-adic representation
of the rational number a = f/q. In other words, a = seqy(f/q) or

a=>)» aN' = 5 € Zn. (7.5)
=0

Theorems 7.2.1 and 5.4.4 and Proposition 7.6.1 give the following:

Corollary 7.2.2. Ifa = ag, aq, as, - - - is an eventually periodic N -ary sequence then the associated
N-adic number a = > a;N® is a quotient of two integers, a = f/q and the denominator q is the
connection integer of a FCSR which generates the sequence a. The sequence a is strictly periodic
if and only if —q < f < 0. In this case the values of the memory may be taken to lie in the range

m
i=1
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Proof of Theorem 7.2.1. The computations in this proof parallel those in Theorem 6.4.1. Let us
consider the transition from one state of the shift register to the next. Suppose that the state of

the register is (an—m, Gn_m+1,"**,an_1; Zn—1). The next state is determined by calculating
m
Op = Zp—1+ Z qiQn—i, (76)
i=1

writing the new memory contents as z, = |0,/N | = 0,, (div N), and writing the new contents of
the leftmost cell as a,, = 0,, (mod N). These equations may be combined into the expression
o, =Nz, +a,.
It follows that .
an = Z Gin—i + (2n-1 — Nzg), (7.7)
i=1
provided that n > m. Suppose the initial loading of the register consists of memory z,, 1 and with

register bit values ag, ay, -, a2, ay,_1. Now substitute equation (7.7) into the expression (7.5)
for a to obtain

a = a0+a1N+-~-+am_1Nm_1+ZanN”

= s+ Z (Z qian_Z) N" + Z(zn_l — Nz,)N", (7.8)
n=m =1 n=m

where
s=ay+a N+ - +a, N !

is the integer represented by the initial loading of the register. The second summation in equation
(7.8) cancels except for the first term, z,,_1, leaving

a = s+zpaN"+ i i ¢@N'a, ;N""

n=m i=1
= 5+ 2,1 N" + Z aN'( Z ap—iN"™)
i—1 n=m

= S+ 2na N+ GN(a— (aN" + N+ + ay i N™)
=1

m—1m—i—1

= 5+Zm1Nm+aiQiNi_Z Z qZNZa]N]
=1

i=1  j=0
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(where the inner sum is empty, hence zero, when ¢ = m in the third line). These equations give

S + Zm_le — Z:i_ll Z;n:_oi_l QiNiCLij

=300 N
NI S G N — 2 N o
. :
since gy = —1. The double summation is over all pairs of integers 0 < 4,5 < m—1 withi+j < m—1.
Setting k =i + j gives
m—1 k k m
" qiap— ;N — 2, 1N
a = k=0 Zz:o qiQk—; Zm—1 _ i (710)
q q
This completes the proof of Theorem 7.2.1. n
Corollary 7.2.3. [106] Changing the initial memory by b changes the value of a by —bN™/q. If

a = f/q <0 then the initial memory z,_1 > 0 is nonnegative.

Remarks. There are three easy initial loadings which guarantee a strictly periodic output:

1. let 2,1 =1 and all the a; =0 (so f = —N™);
2. let 1 < 21 < G, ap = 1, and all the other a; =0, (so f = ¢ — (gm + 2m-1)N™);
3. let 2,1 =0,a; =0if 0 < j <m —2, and a,,_; be arbitrary (so f = —a,,_1N™1).

More generally, the sequence is strictly periodic if and only if

m—1 k m—1 k
b0 im0 Giag—iN* <z < g+ ko Do giay—iN*
Nm — “m—=1 — Nm I

a condition that is readily checked for a given initial state (ag, a1, -, Gm_1;2Zm—1)-

If —g < f < 0 and f is relatively prime to ¢, then by Corollary 5.4.5, the period of the sequence
is T' = ord,(N). If f and g have a common factor, then the period is a divisor of ord,(N). If f >0
or f < —q then the sequence has a transient prefix before it drops into a periodic state.

Let w =", ¢;. In the sequel we will use the following estimates.

Lemma 7.2.4. Suppose ¢ = =1+ ¢ N + -+ + ¢ N™ with q,, # 0. Let z € Z be an integer. Let
a; €{0,1} for 0 <i<m —1 and set s = 3.  a;N*. As in equations (7.4) and (7.9) define

m—1m—i—1

f= Z Z qia;jN't7 — s — zN™, (7.11)

i=1  §=0
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Then the double sum is bounded:

Furthermore,

1. if f >0 then z <w—¢q, — 1 and
(—z—1)N" < f<(w—2—@gn)N™; (7.12)
2. 4f f <0 then z > 0 and
max (0, (z —w+ ¢»)N™) < |f| < (z+ 1)N™. (7.13)

Proof. The proof is a direct calculation:

m—1 m—i—1 m—1 m—1
Z%’Ni Z aij < Z%’Ni(Nm_i - 1) < Z%’Nm = (w - Qm)Nm
i=1 j=0 i=1 =1

since ¢,, does not appear in the sum. The other estimates follow from this and the fact that
0<s< N™, ]

7.3 Initial loading

In this section we answer the reverse question: Suppose we are given a fraction a = f/q (with ¢
an odd positive integer), how do we determine a FCSR and initial loading whose output sequence
coincides with the N-adic expansion of a? Set m = [logy(¢+1)]. Write ¢ = >7" ¢;N* with
go = —1 and ¢; € {0,1} for i > 0. Consider an FCSR with m stages and with connection integer
¢. The initial memory z,,_; and initial loading ag, ay, ..., a,,_1 are related to f and ¢ by equation
(7.10) which may be solved using the following procedure:

Procedure 7.3.1.

7.3.1.a Compute ag+ a1N + -+ + a1 N™ 1 = f/q (mod N™). (These are the first m symbols
in the N-adic expansion for f/q.)

7.3.1.b Compute

m—1 1

y= Z gja;_jN".

i=0 ;=0
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7.3.1.c Compute z = (y — p)/N™.

Use ag, - - -, a,n—1 as the initial loading and z as the initial memory in a FCSR with connection
integer ¢. This FCSR will output the N-adic expansion of f/q.

Step 7.3.1.a can be carried out in time O(m?). We do so by iteratively finding the a;. Assume
integers are represented in base N. We must find ag, ay, - -, a,_1 so that

—_

¢y a;N' (mod N™),

i

3

f

Il
=)

since ¢ is relatively prime to N. At the jth stage we consider this congruence modulo N’*!. For
ap, the Oth stage gives f = qoag = —ag (mod N), which uniquely determines ag. More generally,
assume that we have computed ag,---,a;_1 and v = ¢ Zi;& a;N*. Then we want a; so that

J
aniNi (mod N7T1)
i=0
v+ qoa; (mod N’*t1)
= v—a;N,

f

which again uniquely determines a; = (v — f)/N? (mod N). We then add ga; N7 to . Addition,
subtraction, and the multiplication ga; can be carried out in time complexity O(m), so the overall
time complexity of step 7.3.1.a is O(m?).

Step 7.3.1.b can be carried out by multiplying the polynomials

m—1 m—1
q(z) = Z ¢z’ and a(z) = Z a;x’,
=0 1=0

and evaluating the m lowest degree terms at x = N. Step 7.3.1.c can be carried out in time O(m).

Degenerate initial loadings.

An initial loading is degenerate if the N-adic number a = f/q corresponding to the output sequence
is an ordinary integer. In this case, after a transient prefix, the FCSR outputs all Os (if a > 0)
or all (N —1)s (if a < 0). There are only two possible degenerate final states: (a) z = 0 and all
a; =0and (b) z=3"",¢ — 1 and all a; = N — 1. How long can the prefix be?

Theorem 7.3.2. Consider an m-stage FCSR with q,, # 0. Suppose the initial loading is degener-
ate. If the initial memory z > 0 is positive then the output will stabilize to all (N — 1)s after no
more than

[logy (1 + 2)]

198



steps . If the initial memory z < 0 and the register has at least two nonzero q;s, then the output
will stabilize to all Os within

[log (|2] +w = gm)]

steps, where w =Y ", q;. If the initial memory z < 0 and g¢; = 0 for 1 < j < m — 1, then the
output will stabilize to all 0’s within

[logn ([2[N™/(N™ = 1))]

steps. If the initial memory z = 0 then the only degenerate initial loading is the trivial one
consisting of all 0’s.

Proof. Suppose the value a = f/q of the FCSR is an integer. If a = 0, then we must have z = 0
and all a; = 0, so assume a # 0. First we consider the case that the initial memory is 2 > 0. Let
us consider the possibilities ¢ > 0 and a < 0 separately.

If a > 0 is an integer, eventually the FCSR will output all 0s. However, this is not possible:
there must be a last state s; after which the memory remains zero (otherwise, once the register
has become all zero, the memory would eventually feed a nonzero value back into the register),
and there must be a last state sy in which some a; # 0. Then j = 0. If s; precedes sy or s; = s
then the next state after s, has a,,_; # 0, a contradiction. If s, precedes s;, and z = N*b with
N Jb, then after k steps a,, 1 will equal b (mod N) # 0, also a contradiction.

If a < 0 is an integer, then eventually the FCSR will output all (N — 1)s. Since z > 0 and
f < 0 we have by equation (7.9),

If| <s+2N"<(1+42)N™,

where s = ag + a;N + ...+ a1 N™ ! as in equation (7.8). If ¢ # N™ — 1 then ¢ > N™ and we
conclude that |a| < 1 + z. The output, which is the N-adic expansion of the integer a becomes
all 1’s within [logy (1 + 2)] steps by equation (5.9). A special argument, which we omit, must be
made when ¢ = N™ — 1.

Now consider the case of initial memory 2z < 0. We claim that the output string cannot
degenerate to all (N — 1)s: if so, then a < 0 so f < 0. However, by equation (7.9) the only
negative contribution to f is from s, and s < ¢. So if f < 0 then |a|] < f/q < 1 which therefore
cannot be an integer (other than 0).

Finally, if the initial memory z < 0 and if the output stream degenerates to all 0’s then a > 0
and f > 0. By. Lemma 7.2.4

[ < (2] +w - gu)N™. (7.14)

If g # N™ — 1, then we have ¢ > N™, so a < |z| + w — ¢,,. So in this case, the output sequence is
the N-ary expansion of a, which takes [logy(|z| +w — ¢»,)] bits, after which we have all 0’s. In
the case of a single tap ¢ = N — 1, s0 a = [2|[N"/(N™ — 1). O
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7.4 Representation of FCSR sequences

One of the most powerful techniques for the analysis of shift register sequences is its exponential
representation. Suppose N is prime and a = (ag, ay, as, - - +) is a periodic sequence of elements of
Fy ={0,1,---, N — 1} obtained from a linear feedback shift register of length m, with connection
polynomial ¢(X). If ¢(X) is irreducible and if v € Fym is a root of ¢(X) in the finite field with
N™ elements, then as in Section 6.6.bfor all + =0,1,2,--- we have,

a; = T(AY')

for some A € Fym (which corresponds to the choice of initial loading of the shift register). Here,
T : Fym — Fy denotes any nontrivial Fy linear function such as the trace function. In this
section we derive a similar representation for periodic sequences of bits obtained from feedback
shift registers with memory.

Now let N be any integer greater than 2. Let 0 < N < ¢ with N and ¢ relatively prime. If
z € Zorz€Z/(q), then we use the notation z (mod ¢) (mod N) to mean that first the number z
should be reduced modulo ¢ to give an integer between 0 and ¢ — 1, and then that number should
be reduced modulo N to give an element of Z/(N). (Notice that there is no group homomorphism
Z/(q) — Z/(N) if ¢ is odd, so the notation z (mod ¢) (mod N) needs a precise definition.) Since
N and q are relatively prime there is an element v € Z/(q) so that YN = 1 (mod ¢) and we write
v = N7 (mod ¢). Similarly if h € Z, we write N~°h (mod ¢) (mod N) to mean that first h
is reduced modulo ¢, then it is multiplied by v (mod q); the result is represented as an integer
between 0 and ¢ — 1 and then that integer is reduced modulo N.

We will need the following fact which is an analog of Proposition 6.6.1

Proposition 7.4.1. [106] Fix N > 2. Let g = —14+ ¢ N + -+ ¢ N™ where 0 < ¢; < N. Then
q s invertible in the ring Zy. Let h be an integer with 0 < h < q. Let

h
—E:b0+b1N+b2N2+--- (7.15)
be the N-adic expansion of the fraction —h/q. Then for all i > 1,
bi = N~'h (mod ¢) (mod N).

Proof. First observe that, given h, ¢ satisfying equation (7.15) we have

1. bp = h (mod N) and
2. h 4+ qbg is divisible by N as an integer.
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To see this, write h = hg + N + -+ + hy, 1 N™ ! and cross multiply in equation (7.15) to get
—(hg + N4+ hp  N™ ) = (=1 4+ @N + -+ ¢uN)(bg + byN +--+)
so hg = by which proves (1). For (2), multiply equation (7.15) by ¢ to obtain
h+ qbo = —Nq(by + byN + b3N? + - --). (7.16)

So h + qby is divisible by N in the N-adic numbers, which implies that it is divisible by N in the
integers.
It follows from equation (7.16) that the N-adic number b; + by N + - - - is equal to the fraction
—h'/q where
h' = (h+ gbo)/N. (7.17)

So applying item (1) again we conclude that by = A’ (mod N).

Now reduce equation (7.17) modulo ¢ to conclude that /' = N7'h (mod ¢). In summary,
by = N7'h (mod ¢) (mod N). Moreover, we may continue in this way by induction, replacing h
with A/ to obtain b, = h™ (mod N) where (™ = N~"h (mod q). O

Together with Theorem 7.2.1, this proposition immediately gives an “exponential” representa-
tion for the output sequence of an FCSR, as follows.

Theorem 7.4.2. [106] Let a = (ag,a1,az,---) be the output sequence of an FCSR with entries
in Z/(N) and with connection integer q. Then a is eventually periodic and it coincides with
the coefficient sequence seqy(—h/q) of the N-adic expansion of the fraction —h/q, where h is
determined by the initial loading via equation (7.4). If a is strictly periodic then for all 1,

a; = N~'h (mod ¢) (mod N).

Although Peterson and Weldon [159] consider only the case where ¢ is prime and N is a
primitive element modulo ¢, their proof of Theorem 15.5 (p. 458) may be used in this situation to

give another proof of Theorem 7.4.2. The proof presented here is useful because, as we see later,
it extends to AFSRs.

Corollary 7.4.3. [106] An FCSR sequence with connection integer q is eventually periodic with
period dividing the multiplicative order of N modulo q. If q is the least connection integer, then
the period equals the multiplicative order of N modulo q.

Proof. Suppose a = ag, aq,- - - is eventually periodic, and

a= iaiNi = i
i=0 q
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Then a is periodic from some point m, and a = ¢+ N™g/q for some integers ¢ and g with the
coefficient sequence of ¢g/q periodic. The period of g/q equals the eventual period of a, so it suffices
to consider the case when a is strictly periodic. Then by Theorem 7.4.2 the period of a is a divisor
of the order of N modulo ¢q. The equality in the second case follows from Theorem 5.4.4. O

7.5 Example: ¢ =37

Let us consider the 2-adic FCSR with connection integer ¢ = 37 = 32+ 4+ 2 — 1. Then we have a
5 stage shift register with feedback connections on the first, second, and fifth cells, counting from
the left. The element v = 271 € Z/(37) is v = 19. In Table 7.2 we consider the initial state

@ [1]0]0][1]1] so that the output sequence is given by

a, =" (mod 37) (mod 2)

forn=20,1,2,---, i.e. with the constant A = 1, in the notation of the preceding section. The index
mem | register | ap | f| n mem | register | ap | f| n
0 10011 1 1] 0 2 01100 |0 |36 |18
1 01001 1 119 1 1 10110 [0 | 18|19
1 10100 [0 | 28] 2 1 01011 1 9120
1 01010 |0 |14 | 3 1 10101 1 123121
1 00101 1 7| 4 1 11010 [0 |30 |22
1 00010 |0 | 22| 5 1 11101 1 115123
0 10001 1 [11] 6 2 01110 |0 |26 | 24
1 01000 |0 24| 7 1 10111 1 113125
1 00100 |0 |12 | 8 1 11011 1 125126
0 10010 |0 6] 9 2 01101 1 13127
0 11001 1 3110 2 00110 |0 |34 |28
1 11100 [0 |20 |11 1 00011 1 117129
1 11110 [0 |10 |12 1 00001 1 127130
1 11111 1 5113 1 00000 |0 | 32|31
2 01111 1 12114 0 10000 [0 |16 | 32
2 00111 1 12915 0 11000 |0 8133
1 10011 1 13316 1 01100 |0 4134
1 11001 1 13517 1 00110 |0 2135

Table 7.2: The states of a 2-adic FCSR with ¢ = 37.

n is recorded as the last column of Table 7.2. The column “mem” indicates the integer value of
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the memory, and ag represents the output bit (i.e. the rightmost bit in the register). Each state
S of the shift register corresponds to a rational number r(S) = —f/37 and the numerator f is
recorded also in the table. The table therefore lists all the strictly periodic states of the FCSR.

7.6 Memory requirements

Unlike LFSRs, it is not immediately apparent that an FCSR is a finite state device. It is a priori
possible that the memory grows unboundedly through an infinite execution of the FCSR (and
we shall see exactly this phenomenon for a more general class of sequence generators in Theorem
8.3.1). In this section we show the memory of an FCSR remains bounded.

Let us consider an m-stage FCSR with positive connection integer ¢ = —14+q¢ N +...+¢,N™.
Let w =>"", ¢ A state (ag, a1, -, am_1; 2m) is periodic if, left to run, the FCSR will eventually
return to that same state.

Assume that the state of the FCSR after n — m iterations is (an—m, Gnm+1, " An_1; 2n). Let

Opn = Q10p—1 + Q0pn_—2 + ** + @nln_m + 2n.

Proposition 7.6.1. [106] If an FCSR is in a periodic state then the memory is in the range
0 < z < w (which may therefore be accomplished by using no more than |logy(w — 1)] + 1 bits
of memory). If the initial memory z, > w, then it will monotonically decrease and will arrive in
the range 0 < z < w within [logy(z, —w)| + m steps. If the initial memory z, < 0, then it will
monotonically increase and will arrive in the range 0 < z < w within [logy |z,|] +m steps.

Proof. First, observe that if the initial memory value z, lies in the range 0 < 2, < w then the
same will be true for all later values of the memory, since in this case 0, < (N — 1)w + 2, < Nw.

By the same argument, if the initial memory value is 2, = w, then later values of memory
will be no greater than w, but in this case within m steps the memory will drop below w (and
will remain so thereafter) for the following reason. If the memory does not decrease (i.e. if
Zn41 = w), then this means that an N — 1 appeared in all the tapped cells, that o, = Nw and
that a,, = 0, (mod N) = 0 was fed into the register. The value of o will fall below Nw when this
0 reaches the first tapped cell (if not before), at which time we will have z = |0/N]| < w.

Moreover, if we initialize a FCSR with a larger memory value, z, > w, then with each step,
the excess e, = z, — w will become reduced by a factor of 1/N. That is,

€n—1
€n+1§LNJ‘

So after |logy(zy —w)]| + 1 steps, the memory will be no more than w.
Now we consider the case of negative initial memory, z, < 0. It is possible that o, > 0, in
which case the next memory value will be 2,7 > 0 (where it will remain thereafter). So let us
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suppose that o, < 0. Then |z,41| < (|on| + N —1)/N < (|z,| + N — 1)/N. Iterating this formula,
we find that after k = [logy |z,|] steps, either the memory z has become nonnegative, or else

PP Zn n 1 N 1 P 1 - N
Z —_— —_— —_— ... —
- Nk NE  Nk-1 N N-1
in which case the memory must be z = —1. There is a single situation in which the memory can
remain at —1 forever: if there are no feedback taps on the shift register (so ¢ = —1). In this case

the memory will feed (N — 1)’s into the shift register forever. However, we assumed ¢ > 0 to rule
out this possibility. If ¢ > 0, then as soon as a nonzero feedback occurs, the memory will become
nonnegative, where it will remain thereafter. O

7.7 Random number generation using MWC

A pseudo random number generator (RNG) for high speed simulation and Monte Carlo integration
should have several properties: (1) it should have enormous period, (2) it should exhibit uniform
distribution of d-tuples (for a large range of d), (3) it should exhibit a good structure (usually a
lattice structure) in high dimensions, and (4) it should be efficiently computable (preferably with a
base b which is a power of 2). Generators with these properties are surprisingly rare. In the words
of R. Coveyou, “The generation of random numbers is much too important to be left to chance.”

Marsaglia and Zaman [132] showed that their add-with-carry (AWC) generators satisfy condi-
tion (1). An AWC amounts to an FCSR for which all coefficients ¢; are 0 or 1, and exactly two of
them are 1. By giving up on (4) and using an appropriate base b, they achieve good distribution
properties of d-tuples for values d which are less than the “lag.” Tezuka et al [183] showed that
these generators fail the spectral test([30], [111]) for large d; cf. [29]. The MWC generator was
proposed as a modification of the AWC generator which satisfies both conditions (1) and (4). They
are essentially FCSR generators for which IV is a power of 2 and the ¢; are allowed to be negative.
However the distributional properties (2) of MWC sequences are not optimal, and in fact they are
rather difficult to determine. See [29], where estimates on the distribution of d-tuples are derived
(using some sophisticated techniques from number theory).

In this section we summarize results from [62] in which the MWC and FCSR generators are
modified slightly so as to allow a coefficient gy other than —1 and to allow for the possibility of
negative multipliers ¢;. In this way it is possible to construct pseudo-random number generators
that exhibit properties (1), (2), and (4). It is expected that for large d the distribution of d-tuples
will suffer from the same shortcomings as those described in [183] and [29].
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7.7.a MWC generators

Throughout the rest of this section we fix an integer N > 2; the output of the generator will be
a sequence of elements in Z/(N) which we also identify with the set S = {0,1,---, N —1}. Fix
integer multipliers qo, q1,- -, gm such that qo is relatively prime to N. (In many applications N
will be a power of 2 in which case this condition simply means that ¢y is odd. The ¢; are allowed
to be negative.) A state of the generator consists of cell values ag,ay, -, a,_1 € Z/(N) and a
memory integer z € Z.

The change of state proceeds as with the FCSR: compute the integer sum o = > """ | ¢i@y,—i+ 2.

/

The new state (ay,ay, -, a,,_;7") is defined by a = a;41 for 0 <7 < m — 2 while @], ; € S and

Z' € 7Z are the unique numbers such that

—qoa,, 1+ 2N =0= Z Gim—i + 2. (7.18)

i=1

These values are found as follows. Calculate, once and for all,
A=—¢"' (mod N)

and realize this as an integer between 1 and N — 1. Then

a, (Ag) (mod N) and 2’ =o (div N) = |[o/N].

m—1 —

This amounts to inserting the multiplier A in the “mod N” feedback line of Figure 7.1. Since
Z — ZJ(N) is a ring homomorphism, we may also write a,, ; = A(c (mod N)).

The connection integer ¢ = > " ¢;N* can now take on any value that is relatively prime to
N. As originally defined in [132], [I31] and [29], the coefficient ¢y was equal to —1. If the base N
is chosen to be a power of 2 then these generators admit efficient implementations, however the
connection integer will be constrained to be of the form ¢ = Nc¢ — 1 for some integer c. In this
case, N is never a primitive root modulo ¢ so the generator will never have maximal period. A
similar criticism applied to the subtract-with-borrow generator. The introduction of a nontrivial
value for ¢o (as first described in [107]) comes at the cost of one more multiplication per round
but it has the benefit that the connection integer ¢ may be chosen so that N is primitive modulo

q and this leads to properties (1), (2), and (4) listed above.

7.7.b Periodic states

For a given state (ag, a1, -, am_1; 2) of the generator as in equation (7.4) set
m—1 1
f = Z ZQjCLZ',jNZ —zN™.
i=0 j=0
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Theorem 7.7.1. [106] The output sequence ag, ay,--- of the generator satisfies
gzao+a1N+a2N2—|—~~ € Zy.

This sequence is strictly periodic if and only if —q < f < 0. In this case,
a; =AN""f (mod ¢) (mod N).

The proofs are exactly the same as the proofs of Theorem 7.2.1, Corollary 7.2.2, and Theorem
7.4.2. For convenience we restate Corollary 16.2.1 in this setting.

Theorem 7.7.2. [106] If N is a primitive root modulo q, then from any initial periodic state the
generator will visit all ¢ — 1 periodic states before returning to the initial state. In this case the
output sequence is an l-sequence. (See Chapter 16.) Fiz d > 1 and let z = (21,29, -+, zq) with
0 < z; < N. Then the number M(z) of occurrences of the d-tuple z which begin in any fized period
of the output sequence can vary at most by 1, so M(z) is either

q—1 q—1
{—Nd J or {—Nd J + 1.

7.7.c Memory requirements

(See Section 16.2.)

The memory of the MWC generator is well behaved, but the introduction of (possible) negative
multipliers changes the memory analysis slightly. First we need to eliminate two classes of multi-
pliers. Let us say the MWC generator is extremal if either (a) gy < 0 and all remaining ¢; < 0 or
(b) go > 0 and all remaining ¢; > 0. Define

wt = Z ¢ and w = Z .-

q;i >0 q; <0
0<i1<m 0<t:<m
Theorem 7.7.3. [106] Suppose the MWC' generator is not extremal. If it is in a (strictly) periodic

state then the memory z lies in the range
wo<z<w'.

If z > w' then it will drop monotonically and exponentially fast until it lies within this range
and it will remain within this range thereafter. If z < w™ then it will rise monotonically and
exponentially fast until it lies within this range and it will remain within this range thereafter. If
the generator is extremal then z will move montonically until it lies within the range w™ < z < w™
and it will remain within this range thereafter.
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Proof. Let us assume gy < 0. (The proof for gy > 0 is completely parallel.) Since 0 < a; < N — 1,
from equation (7.18) we have

1 e N -1 z
/_—_ . s < [ + —_ 1
z NLEOanmﬁ—zJ _( N )w +N, (7 9)

where we have written a,, in place of a, ;. If z < w" this gives 2/ < w*. If z = w* this gives
2 <wt. If z > w" this gives

N-—-1
I _ < + - 0
2 —z<(w z)( N >< :

hence the memory decreases monotonically. Moreover, if z > 0 then 2’ —w™ < (z —w™)/N, which
is to say that z — w™ decreases exponentially.

There are no strictly periodic states with z = w™ unless the generator is extremal. For if
z =z = w™, then equation (7.18) gives

(N - 1)’LU+ = ZQiam—i'
=0

where we have written a,, = a},_;.

(N — Dw™, when @, ; =0 and

The right side of this equation achieves its maximum value,

0 — 0 whenever ¢; < 0
‘| N—1 whenever g; > 0.

Eventually this 0 = a],_; will get shifted into one of the positions where ¢; > 0 and then the
value of z will drop below wt. (If ¢; < 0 for all 4, then the generator is extremal, w™ = 0, and
the degenerate “bottom” (all-zero) state satisfies z = w™.) In summary, if the generator is not
extremal and if the memory starts out at any positive value, it will drop until z < w™ and will
remain there forever.

To obtain the lower bound on z, equation (7.18) gives

1 | N -1 2
/—_ . . - —
TN {Z: qz“m‘ﬁzJ =N Yty

If z>w™, then 2/ >w™. If z=w~ then 2/ > w™. If 2z <w™, then

., __N-1
>
=N

(z —w7)
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so the value of z — w™ will increase monotonically (and exponentially) until it is nonnegative. Let
us examine the possible periodic states with z = 2’ = w™. For such a state, equation (7.18) gives

(N =D = gt
=0

The right side of this equation achieves its minimum value, (N — 1)w~, when a/, ; = N — 1 and

0 = N —1 whenever ¢; <0
10 whenever ¢; > 0.

If some coefficient ¢; is positive (which is to say, if the generator is not extremal) then this N —1 =
ar._, will eventually be shifted into the ith position, and the value of z will rise above w~. However,
if the generator is extremal (that is, if ¢; < 0 for 1 <4 < m) then this argument fails and indeed,
the degenerate “top” state satisfies z = w™ and a; = N — 1 for all 7. In summary, if the generator
is not extremal and if the memory starts out at some negative value, then it will rise until z > w™

and it will remain there forever. O]

7.7.d Finding good multipliers

Let ¢ > 2 be a prime number and let N = 2° with s > 1. Then N is a primitive root modulo ¢
if and only if 2 is a primitive root modulo ¢ and s is relatively prime to ¢ — 1. Moreover, 2 is not
primitive modulo ¢ if and only if

20=D/P =1 (mod q)

for some prime factor p of ¢ — 1. If 2 is a primitive root modulo ¢ then ¢ =3 or 5 (mod 8). These
facts make it fairly easy (using a computer algebra package) to find large primes ¢ for which 2 is a
primitive root. In [62] several examples are provided with N = 2° (s = 25,31, 32 etc.) that involve
only two or three multipliers but which have periods of the order of 103%° to 109,

7.8 Exercises

1. The Fibonacci sequence mod N can be generated using an LFSR over Z/(N), with connection
polynomial —1 + z + 22 and with initial loading 1,1. What are the possible periods for this
sequence? What is the period of the Fibonacci sequence modulo 77

2. Now consider the analogous FCSR over Z/(N), that is, the FCSR with connection integer
—1+ N + N2. What is the period of this “Fibonacci FCSR” sequence for N = 7? What are the
possible periods of the Fibonacci FCSR sequence modulo N7
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3. Let a be an integer and let b be a positive integer. Show that a is divisible by b in the N-adic
numbers if and only if a is divisible by b in Z.

4. Let p > 2 and u be integers. Show that the (—p)-adic expansion of u/q is periodic if and only if

—q/(p+1) <u<pg/(p+1).

What does this say about the number of periodic (—2)-adic sequences with a connection integer
q?
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Chapter 8 Algebraic Feedback Shift Registers

This is the most general, but also the most abstract chapter on sequence generators in the book. In
this chapter we describe the theory of algebraic shift registers (AFSRs). This is a “shift register”
setting for the generation of pseudo-random sequences, which includes as special cases the theory
of linear feedback shift register (LFSR) sequences, feedback with carry shift register (FCSR) se-
quences, function field sequences, and many others. The general framework presented here first
appeared in [107]. Tt “explains” the similarities between these different kinds of sequences. Many
of the interesting properties of these sequences simply reflect general properties of any AFSR se-
quence. However, because this chapter is fairly abstract, the rest of the book has been written so
as to be largely independent of this chapter, even at the expense of sometimes having to repeat,
in a special case, a theorem or proof which is fully described in this chapter.

8.1 Definitions

The ingredients used to define an algebraic shift register are the following.

1. An integral domain R (see Definition 2.2.2).

2. An element 7 € R.

3. A complete set of representatives S C R for the quotient ring R/(7). (This means that the
composition S — R — R/(m) is a one to one correspondence, see Section 5.5.)

For any u € R denote its image in R/(7) by & = uw (mod 7). Having chosen S, every element
a € R has a unique expression a = ag + br where ag € S. Then aq is the representative (in S) of
a, and a — ag is divisible by 7. Abusing notation slightly (by confusing ay € S with its image in
R/(m)) we write

ap =a (mod w) and b=a (divn) = — (8.1)
7T

Definition 8.1.1. Let qo, q1, -, qm € R, and assume that qq is invertible (mod 7). An algebraic
feedback shift register (or AFSR) over (R, m,S) of length m with multipliers or taps qo, g1, , ¢m
18 a discrete state machine whose states are collections

(ag, a1, ,am_1;2) wherea; €S and z € R

consisting of cell contents a; and memory z. The state changes according to the following rules:
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z —— Om—1 ap ——

g

Figure 8.1: Diagram of an AFSR.

1. Compute
o= Z qiQm—i + 2.
i=1
~]~

2. Find a,, € S such that —qya,, = o (mod 7). That is, 4, = —G, 0.
3. Replace (ag, -+, am—1) by (a1, -+, ay) and replace z by o (div 7) = (0 + goam) /7.

We remark that a,, in step (2) depends only on the values of ¢;, a;, z modulo 7. It is the unique
lift to S of —¢;'d € R/(7).

The register outputs an infinite sequence ag, ay, - - - of elements in S. The state change rules
may be summarized by saying that this sequence satisfies a linear recurrence with carry,

— qoQp + T2 = q1Qp-1 + *** + Gnln—m + Zn—1 (82)

for all n > m. Here, z; € R represent the sequence of memory values, with z = z,,_; being the
initial value. At each stage the right side of this equation (denoted o above) is determined by the
memory and the previous m cell values. Then there is a unique a,, € S and a unique z, € R so
that equation (8.2) is satisfied. In practice one usually considers ¢; € S. However the analysis of
the AFSR does not depend on this assumption. (See also Section 8.6.h). A diagram of an AFSR

is given in Figure 8.1 where §# = —G;'. The element
q= Zqﬂri €ER (8.3)
i=0

plays a central role'in the analysis of AFSRs and it is referred to as the connection element. The
invertibility of gy is equivalent (cf. Section 5.5) to coprimality of 7 and g.

If the ¢; are restricted to lie in a complete set of representatives (such as S) for the elements of R/(r), then
the connection element ¢ determines the multipliers qg, q1,- -, ¢m—_1. However if the g; are not restricted in this
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As with LFSRs and FCSRs, when thinking of AFSRs as physical devices as in the figure, we
sometimes list the components of the state in descending order of their indices. We again write
[am—1]am—2]---[a1]ao] for the machine state to distinguish the two notations.

An LFSR (Chapter 6) over a field (or even an integral domain) K is an AFSR where R = K|z]
is the ring of all polynomials with coefficients in K, m = z, and S = K is the set of polynomials
of degree 0, which may also be identified with the quotient R/(7) = K|z|/(z). If we initialize the
memory to zero, then it remains zero throughout the infinite execution since there is no “carry”
when multiplying and adding polynomials. In this case the connection element ¢ coincides with
the classical connection polynomial of equation (6.2).

An FCSR (Chapter 7) is an AFSR with R =7, 7 = N, and S = {0,1,---, N — 1}. Three other
cases of AFSRs will be described in this book: when R = Z[r] and m = p'/? (in Chapters 9 and
17), when R is the ring of integers in an algebraic number field and 7 € R is arbitrary (in Section
8.3.a), and when R = K|z| and m € R is arbitrary and more generally when R = K[xq,- -, 2,]/I
where [ is an in ideal and R/() is finite (in Chapter 15).

Note that the behavior (even the period) of an AFSR depends highly on the choice of S. (See
Section 8.6.h.)

8.2 Properties of AFSRs

Throughout this section, we consider an AFSR over (R,w,S) and we assume, as in Section 5.5
that

ﬂ (7)) = 0. (8.4)

Recall from that section that R, consists of all formal power series Zio a;m" with a; € S. Let
qosq1,- -, qm € R be a set of multipliers for an AFSR with connection element ¢ = g9 + 17 +
-+« 4 g™ and assume that qo is invertible (mod 7). Hence ¢ is relatively prime to 7 and by
Proposition 5.5.4 it is invertible in R.

Fix an initial state (or initial loading) (ag, a1, - - -, a;,_1; 2) of the register. The (infinite) output
sequence a = ag, a1, - - - may be identified with the m-adic number

a=ay+am+aym’ + - € R,

which we refer to as the 7w-adic value of the register (with its given initial loading (ag, - - -, @m_1; 2)).
We write a = seq,(a). We now show that the collection of m-adic numbers obtained in this way
is exactly the set of fractions u/q with u € R.

way then it is possible for two different AFSRs to correspond to the same connection element ¢. In fact, any ¢ € R
that is relatively prime to 7 is the connection element of a 1-stage AFSR obtained by taking ¢ = qo + mq1 where
go = ¢ (mod 7) € S.
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Lemma 8.2.1. The equation

m—1 n

u= Z GiOp_;im" — 2™ € R (8.5)

n=0 =0
determines a one to one correspondence between elements u € R and states of the AFSR.

Proof. 1t suffices to show that, given the multipliers ¢;, every u € R has a unique representation
as in equation (8.5) with a; € S. Suppose we are given v € R. Reducing the right side of equation
(8.5) modulo 7 gives u (mod 7) = goap (mod 7). Since g is invertible mod 7 there is a unique

solution for ay (mod ), and this has a unique lift ag € S. Similarly, by reducing (mod 7%) we

find
U — qoa
1% (mod ) = (901 + Gao) (mod ),
from which the knowledge of ag uniquely determines a; (mod w) € R/(w). Lifting this to S
gives a unique value for a;. Continuing in this way by induction, one arrives at unique values

ag, a1, -+ - amym—1 such that

m—1 n
—u + Z Zqian_i =0 (mod 7™).
n=0 i=0
Therefore this difference is divisible by 7. Hence it can be uniquely written as z7™. O

The operation of the AFSR therefore defines a map 7 : R — R which models the state of the
shift register in that the following diagram commutes.

R ——— states

Tl l change (8.6)

R —— states
In Corollary 8.2.3 we find a formula for .

Theorem 8.2.2. (Fundamental Theorem on AFSRs [107]) The output of an AFSR with connection
element q, initial memory value z,_1, and initial loading ag, ay, - - -, amn_1, @s the coefficient sequence
seq,. (u/q) of the m-adic representation of the element a = u/q € R, where u is given by (8.5).

Proof. The proof is essentially the same as the proof of Theorem 7.2.1 (for the case of FCSRs), or
of Theorem 6.4.1 (for the case of LFSRs) which ultimately goes back to [53]. Let

a= Zaﬂri € R, (8.7)
=0
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be the m-adic number corresponding to the output sequence of the AFSR. If z,,_1, 2,n, - - - denotes
the sequence of memory values then by equation (8.2)

— Gon = Y _ Gittn—; + (201 — T20), (8.8)

i=1

provided that n > m. Now substitute equation (8.8) into the expression (8.7) for a to obtain

@a = qolaog+am+ -+ a7+ a,m")

= qov — Z (Z %%—i) T — Z(Zn—l — 27", (8.9)
n=m \i=1 n=m

where v = ag + a;m + -+ + ap_1 ™! is the element represented by the initial loading of the

register. The second summation in equation (8.9) cancels except for the first term, —z,, 1, leaving

o m
m ) n—i
o = GoU — Zm—1T  — E E qiT Qp ;T

n=m i=1
m o)
m 7 n—1i
= qoV — Zm—1T — E q;T E Ap—;T
=1 n=m

m
= oV — Zm_1T " — Z qiﬁi(a — (aoﬂo R i am_i_lﬁm_i_l))
i=1

m—1m—i—1

m
= QU — ZmaT" —a Z qmi + Z Z qiﬂiajwj
i=1 =1 j=0
(where the inner sum is empty, hence zero, when ¢ = m in the third line). These equations give

m m—1 m—i—1 i 1
Qv = Zma™" + 300 DLy @i am

a = m i
qo + Zi:l ¢
m—1 n n m
_ D n=0 (2oizo Gin—i)T" = Zm T . O (8.10)
q

We emphasize that the sequence seq,(u/q) depends on the choice of S. How properties of
seq, (u/q) reflect choices of S is not well understood.
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As discussed above, if ¢; € R are arbitrarily chosen, then every ¢ € R that is relatively prime
to 7 can be realized as the connection element of some AFSR. However if the g; are restricted to
lie in a complete set of representatives (for example, the set S) for R/(7), then the set of possible
connection elements ¢ that can be realized by a finite AFSR does not necessarily account for all
elements in R that are relatively prime to 7.

For example, in the basic N-ary FCSR model we always assume ¢y = —1. But there exist
q € Z, relatively prime to IV, that are not of this form. However, in the AFSR model of an N-ary
FCSR we allow other values for qy. Having done so, even if we require ¢; € S for ¢ > 0, it is easy
to see that every ¢ € Z (with ged(q, N) = 1) has the property that either ¢ or —¢ can be realized
as a connection integer for such an AFSR.

For u € R, denote its reductions in R/(7w) and R/(q) by u € R/(w) and w € R/(q).
Corollary 8.2.3. The map 7 : R — R, which models the state change of the AFSR, is given by

U — aoq

u=mn7(u)+aq or T(u)= (8.11)

s
Here, ag € S is uniquely determined by Lemma 8.2.1; it may also be abstractly described as the
unique lift to S of the element /G = u/Gy € R/(m). The mapping T preserves the ideal (q) C R

and the induced mapping, also denoted by 7 : R/(q) — R/(q), is given by multiplication by 7.

Proof. Let u € R. If the m-adic expansion of u/q is

u
2
—=agt a7+ axm + -

then ag € S is the unique lift to S of 4/¢G € R/(w). By Theorem 8.2.2 (and the definition of the
state change operation 7 : R — R), if v’ = 7(u) denotes the succeeding element, then the m-adic

expansion of u'/q is
/

u 2
E:al—f—ag’ﬂ'—i-(lg)ﬂ' + -

So

/
u
7—4+ay=— or u=mu + aoq.

Therefore u — apq is divisible (in R) by = and v = (u — aeq)/7, which proves equation (8.11).
Reducing modulo ¢ gives @' = 7~ '4. O]

8.3 Memory requirements

For any hardware or software implementation of an AFSR, the memory must remain “bounded”.
That is, it should take on at most finitely many values throughout an infinite execution. There are
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many examples of AFSRs for which the memory grows without bound, but in many cases explicit
bounds are known. In an LFSR the memory is always 0. Memory requirements of an FCSR were
analyzed in Section 7.6. There are two additional types of rings R for which it is possible to
guarantee that the memory takes on finitely many values. The first is when the field of fractions
(see Section 2.2.h) of R is an algebraic number field (a finite extension of the rational numbers, see
Section 3.4). In this case we can use well known results from number theory to determine those R
for which the memory always remains bounded. The second case is when R is a polynomial ring
over a finite field, so its field of fractions is a function field (see Section 5.2.d). In this case, when
adding two elements, there is no “carry” from lower degree terms to higher degree terms, so the
degree of the memory always remains bounded independent of the size of the AFSR.

8.3.a AFSRs over number fields

In this section we assume the ring R is an order in an algebraic number field F', cf. Section 3.4.c.
(In this case, R is automatically an integral domain and F' is its field of fractions.) Fix 7 € R
and assume that R/(7) is finite. Fix a complete set S C R of representatives for R/(m). Consider
an AFSR based on a choice of elements qg, ¢1,- - -, ¢n € R where o and 7 are relatively prime. A
special class of such AFSRs is considered in detail in Chapter 9.

The field F' can be embedded in the complex numbers. In general there are several embeddings
of F' in the real numbers (real embeddings), and several that are not in the real numbers (complex
embeddings). The complex embeddings always occur in conjugate pairs. Let e; denote the number
of real embeddings and let 2e5 denote the number of complex embeddings. Then e;+2es = [F': Q,
the degree of the extension F/Q [17, p. 95].

Having fixed an embedding, denote by |x| the norm of a complex number z. If z is the memory
of the AFSR, we want to consider the growth of |z| over an infinite execution.

Theorem 8.3.1. [107] Let m € R C F be as above. If there is an embedding of F' in the complex
numbers such that |w| < 1, then there is an initial state of this AFSR such that the memory grows
without bound.

Proof. Suppose ag, aq,--- is the output sequence, and z,,_1, 2, - - is the sequence of memory
values as in Definition 8.1.1. Recalling equation (8.2),

m
MZp = Zp—1 + E qiQp—i-
=0

It follows that

|Z | > |Zn—1| - ZZZO |Qian—z‘|
n -
||
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2n1| — (m +1)BC
7]

where B = max{|¢;| : 0 <i¢ <m} and C = max{|c| : ¢ € S}. Suppose |r| < 1. Let

(m+1)BC
1 —|n|
Then
Wp—1
Wy >
]

Thus there are initial states from which the memory increases without bound. In particular the
memory takes infinitely many values in an infinite execution. O

To guarantee that the memory takes finitely many values, it is not sufficient to take a single
embedding of F' in C and show that the complex norm of the memory is bounded. Indeed, there
may be infinitely many elements with complex norm bounded by a constant. For example, suppose
that F' = Q[v/2]. Then u = v/2 — 1 is positive, real, and less than one. But its powers u*, k € N
are all positive, real, and distinct, with 0 < |u¥| < 1.

Theorem 8.3.2. [107] Let m € R C F be as above. Suppose that || > 1 for every embedding of
F in the complex numbers. Then the memory in any infinite execution of the AFSR takes on only
finitely many values. The output is therefore eventually periodic.

Proof. First suppose that for a particular embedding of F' we have || > 1. By the same reasoning
as in the proof of Theorem 8.3.1 we see that

|zp—1| + (m +1)BC

|2n]

||
i (m+1)BC
m +
’anly < |7T| _1 (812)

then the same inequality (8.12) holds for |z,|. If inequality (8.12) does not hold, then

Wn-1

m|

w, <
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where

W, = |2] — (m+1)BC
We conclude that
1)B
|2,| < D = max <\zm1|, %) for all n > m — 1. (8.13)

As we have observed, a bound on all |z,| does not necessarily mean that the memory takes on
only finitely many values: there may be infinitely many elements y € R such that |y| < D. To
guarantee that the memory takes on finitely many values, we need to use the stronger assumption
that |7| > 1 for every embedding of F' into the complex numbers.

Let e = e1 4+ 2e5. Suppose 01, -+, ¢, +e, 15 a set of embeddings of F' in the complex numbers
that includes all the real embeddings and one complex embedding from each conjugate pair. The
real embeddings are treated as functions into R, while the complex embeddings are treated as
functions to C = R2. The preceding argument implies that there exists a bound D’ > 0 so that
|oi(z,)| < D' for all ¢ and for all n. Consider the map 1 : F' — R® defined by

() = (01(), -+, Ter ey (2))-

Then
10(z)ll = (01(2)%, -+, Oeyren (€))7 < (e1 + €2) 2D
for all n > m — 1. The image of R under v is a full integer lattice of rank e, and ) is injective

[17, p. 95-99]. By Theorem 2.2.30, any set of points in 1(R) is finite if it is bounded in Euclidean
norm. The theorem follows. O]

8.3.b AFSRs over rational function fields

Fix a ring K which is an integral domain and take R = K[x] to be the ring of polynomials with
coefficients in K. It is also an integral domain (Theorem 2.2.14). If F' denotes the fraction field of
K then the fraction field of K] is the field of rational functions, F(z), see Section 3.5.b.

Fix 7 € K[z] a polynomial of any degree. Let S C K[x] be a complete set of representatives
for K|x]/(m). Let qo,q1," -, qm € K[x] be polynomials and assume that qq is relatively prime to 7.
We consider the AFSR based on (R = K|x], m,S) with multipliers given by qo, - -, ¢;n. Sequences
generated by such an AFSR are studied in more detail in Chapter 15.

Proposition 8.3.3. Let U = max{deg(u) : u € S}, Q = max{deg(q;) : 0 < i < m} and let
d = deg(m). For any initial loading of the AFSR such that the degree of the initial memory z, 1
is e, the degree deg(z,) of the memory z, satisfies

0 < deg(z,) <max(U+ Q —d,e — (n—m)d). (8.14)
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Thus
0 <deg(z,) <U+Q—d

provided n is sufficiently large. If the ring K s finite, then the output of the AFSR is eventually
periodic.

Proof. From equation (8.2) we immediately obtain
deg(z,) < max(U + Q,deg(z,-1)) —d = max(U + Q — d,deg(z,—1) — d)

which implies equation (8.14). If K has finitely many elements then there are only finitely many
polynomials z, with this property, so only finitely many states of the AFSR can be reached from
any given initial loading. The proposition follows. O

We remark that the bound on the degree of the memory is independent of the length of the
AFSR, and that if the ¢; are restricted to lie in S then we may use U instead of @), giving a bound
on deg(z,) which is also independent of the choice of multipliers.

8.3.c AFSRs over global function fields

Let p € Z be prime, h > 0 € Z, and r = p". Let I be an ideal and 7 be an element in F,[z1, - - -, z,,].
Assume that R = F,[zq,- -, z,]|/] has transcendence degree 1 over F, (meaning that the fraction
field of R is a finite degree extension of the field of rational functions F,(z), see Section 3.5.b).
Assume also that K = R/(w) is finite. Then R/(7) is a vector space over F, so its cardinality is a
power of r, say r°. If n = 1 then we are in the case of the previous section, and if n =1, 7 = xy,
and I = (0), then the AFSRs we obtain are exactly the LFSRs.

The general behavior of these AFSRs seems quite complex, so we want conditions under which
they are well behaved enough to analyze. We need a “well structured” complete set of represen-
tatives S for R modulo 7.

Hypothesis H1: The set S is closed under addition and contains F,.

Such sets S exist in abundance. For example, we can take S to be the [F,.-span of a set in R
that contains 1 and maps one-to-one and onto a basis of R/(m) over F,. Any S that satisfies H1
is closed under multiplication by F,, but possibly not under multiplication by any larger field. In
general we can represent any element of R as a m-adic element with coefficients in S, but in order

that we get good randomness properties we need to be able to represent the elements of R finitely.

Hypothesis H2: Every v € R is a finite linear combination v = vy + v, 7+ - - - +v,7’ with v; € S.
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Since 7 is not a zero divisor, the above representation for v is unique if v, # 0. Indeed, suppose

m ¢
Z Uﬂri = Z ’Uﬂri (815)
=0 =0

for some u;,v; € S with u,, # 0 # v, and (ug,uy,--+) # (vo,v1,---), and let £ be the minimal
integer so that such a pair of representations exists. Reading equation (8.15) modulo 7 we see
that uy = vg. By subtraction and the fact that 7 is not a zero divisor we have

m—1 /—1

i i
E Ui 1T = E Vi1 T
i=0 i=0

and (uq,ug, - +) # (v1,ve,- ). This contradicts the minimality of ¢.
The smallest ¢ in Hypothesis H2 with v, # 0 is called the 7-degree of v, ¢ = deg,(v).

Lemma 8.3.4. If Hypotheses H1 and H2 hold, then for all u,v € R,
deg, (u+ v) < max(deg, (u),deg, (v)).
Let a = max{deg(st) : s,t € S}. Then for all u,v € R,
deg, (uv) < deg, (u) + deg,(v) + a.

Some randomness properties of AFSR sequences (see Theorem 15.2.2) require one further
hypothesis. Let V, denote the set of elements u of R such that seq,(v/q) is (strictly) periodic.

Hypothesis H3: There exists k so that the elements of V, are distinct modulo 7*.

Let a = ag,ay,--- be the output from an AFSR based on R, 7, S with connection element
q=—q+qm+--+ g,m" with ¢; € S and with ¢q invertible modulo 7. By Theorem 8.2.2 there
exists u € R so ag + a;m + -+ - = u/q. We call this a rational representation of a. Any left shift

of a can be generated by the same AFSR (with a different initial state), so also has a rational
representation with denominator q.

Theorem 8.3.5. [96] Suppose that S satisfies Hypotheses H1 and H2. Then the memory takes
on only finitely many values in any infinite execution of an AFSR. Consequently every output
sequence a is eventually periodic.
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Proof. Suppose that at some point the AFSR is in state
(a5, @11, Ajpm; 2)

with z = Ef:o zimtand zg,- -+, 2z € S. Also, suppose that the maximal 7-degree of the product of
two elements of S is d. Then the carry z’ of the next state satisfies

m—1
w7 =2+ Z QiQjtm—i-

i=0
The right hand side is divisible by 7 and its 7-degree is at most max{/¢, d}, so the m-degree of 2’
is at most max{¢ — 1,d — 1}. Thus the w-degree of the carry decreases monotonically until it is
less than d, and then remains less than d forever. This proves that only finitely many states of the
AFSR are visited in any infinite execution, so eventually some state is repeated and from then on,
the output is periodic. O

8.4 Periodicity

We now return to the general setting of AFSRs. We wish to consider the following question: Given
an AFSR based on (R,m,S), for which initial loadings is the output sequence strictly periodic?
This turns out to be a surprisingly subtle question in general. Throughout this section let us fix
an AFSR based on (R, 7, S) with multipliers qo, g1, -, ¢n € R where g is relatively prime to 7.
Let ¢ = Y /", ¢;7" be the connection element. Assume that R/(w) and R/(g) are finite. For u € R
write & € R/(m) and u € R/(q) for the image of u in these quotients.

The output sequence of the AFSR is seq, (u/q) where u € R is given by equation (8.5). So
the above question concerns periodicity of seq.(u/q). We remark again that the operation of the

AFSR and the expansion seq, (u/q) both depend on the choice of the set S C R of representatives
for R/(m).

Lemma 8.4.1. Let u € R. Consider any strictly periodic tail in the sequence a = seq,(u/q).
Then this tail is seq,(h/q) with h € R and with the same denominator q.

Proof. By Lemma 8.2.1, the sequence a is the output sequence of an AFSR with connection element
¢, and some initial state. Then any strictly periodic tail of a is the output from some other state.
By Theorem 8.2.2, this periodic tail is the m-adic expansion for some h/q with h € R. O

Theorem 8.4.2. Suppose (R, 7, S) satisfies equation (8.4). Let g € R as above and suppose that
for every u € R the sequence seq,.(u/q) is eventually periodic. Then there exists a complete set of
representatives A C R for the elements of R/(q) such that for every u € A the sequence seq,(u/q)
15 strictly peridic.
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Proof. We need to show that for any h € R/(q) there exists a representative v € R so that
v (mod ¢) = h and so that the m-adic expansion of v/q is strictly periodic. To see this, choose
any lift, u € R of h € R/(q). By assumption, the m-adic expansion of u/q is eventually periodic.
The periodic part occurs after some power, say, 7. There exists N > A so that 7V =1 (mod ¢).
(Just take N to be a sufficiently high multiple of the multiplicative order of © € R/(q), which is
finite by assumption.) Write the m-adic expansion of u/q as a polynomial of degree (N — 1) in 7
plus a tail,

4 a+ Vb,

q
where a € R and where the 7-adic expansion of b € R, is strictly periodic. By Lemma 8.4.1 we
can write b = v/q for some v € R. This gives u = aq + 7™¥v. Reducing this equation modulo ¢ we
see that v = v (mod ¢) and that the 7m-adic expansion of v is strictly periodic. O

8.5 Exponential representation and period of AFSR sequences

The goal of this section is to describe AFSR sequences in a manner analogous to the trace repre-
sentation and other exponential representations (Section 6.6) of an LFSR sequence. We have only
succeeded in doing so under mild additional hypotheses.

Throughout this section, fix an AFSR based on (R, 7, .S) as in Section 8.1. Let g, q1,*,qm € R
be its collection of multipliers (where gq is relatively prime to ) and let ¢ = Y_"  ¢;7° € R be the
connection element. If v € R, then denote by @ its image in R/(7) and denote by u its image in
R/(q). Set y=7"" € R/(q).

As in Theorem 8.4.2 we suppose that for any v € R the sequence seq,(u/q) is eventually
periodic (or, equivalently, that for any initial loading, the memory of the AFSR takes on finitely
many values over its infinite execution). Let V, C R be the set of elements u € R such that
seq, (v/q) is strictly periodic. The change of state mapping (see Corollary 8.2.3) 7 : R — R
preserves V. In Theorem 8.4.2 it was shown that there exists a complete set of representatives
A C R for the elements of R/(q) such that A C V,. Now we wish to make a further assumption,
that such a set A can be chosen so that it is preserved by the change of state mapping 7.

Theorem 8.5.1. Suppose there exists a set A C R so that

1. ACV,
2. A 1s preserved by the change of state mapping T, and
3. no two elements of A are congruent modulo q.

Then for all w € A the m adic expansion

u
—=aytam+t -
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18 given by 4
a; = Gy ' (uy" (mod ¢)) (mod 7). (8.16)

Note that now A is not necessarily a complete set of representatives modulo gq.

The notation on the right side of this equation should be interpreted as follows. The element
uy' € R/(q) should be lifted to a complete set of representatives T' for R/(g) containing A, then
reduced modulo 7 to give an element of R/(w). Then it should be multiplied by ¢;' € R/().
The resulting element a; has a unique lift to S and this is a;. There is another way to view this
equation. Define the mapping ® : R/(q) — R/(m) to be the composition around the following
diagram:

The mapping ® is not a homomorphism. However, by abuse of notation we might refer to it as
“reduction modulo 7”. Then the theorem says that a; € R is the unique lift to S of the element

a; = Gy " ®(un).
Proof. Let u € A. If the m-adic expansion of u/q is Y -, a;7", then by (8.11)
u=7nT1(u)+ apq € A. (8.17)
Reading this equation modulo 7 gives
ap = ¢ 'u (mod 7) = Gy 'u (mod T)

which is the case i = 0 of equation (8.16). Reading equation (8.11) modulo ¢ gives 7(u) = uy. So
equation (8.16) follows by induction. O

Let n denote the multiplicative order of m# modulo ¢. That is, n is the smallest nonnegative
integer such that 7 =1 € R/(¢q). As in Section 3.2.c, if u € R define the uth cyclotomic coset
modulo ¢ relative to 7 to be the (finite) collection of elements C,(7) = {a7’:i=0,1,---}. It is a
subset of R/(q) on which the group

{7:0<i<n-1}=2Z/(n)

acts transitively by multiplication. It follows that the cardinality c¢,(7) of C, () is a divisor of n.
It is the smallest nonnegative integer ¢ such that un® =u € R/(q).

223



Corollary 8.5.2. Suppose that A satisfies hypotheses (1), (2), and (3) of Theorem 8.5.1. Let
u € A. Then the period of the sequence a = seq,(u/q) is equal to ¢, (7). If u € R/(q) is not a
zero divisor, then c,(m) = n.

Proof. The period of the sequence of coefficients equals the period of the sequence of numerators
(u,u’ = 7(u),---) as in the proof of Theorem 8.5.1. This coincides with the period of the sequence
of images (u,u7,---) in R/(q). But this collection is exactly C, (7). Moreover, if 4 is not a zero
divisor then the equation u7® = u implies that 7¢ = 1, and the least such c is in fact n, the order
of 7. O

Corollary 8.5.3. Suppose that no two elements of V, are congruent modulo q. Then A =V,
satisfies hypotheses (1), (2), and (3) of Theorem 8.5.1. Therefore, if u € V,, then the sequence
a=seq,(u/q) is:

a; = g, (@' (mod g)) (mod 7). O

The description of V, as the set of numerators u of ¢ such that u/q has a periodic m-adic
expansion is not usually very useful. Sometimes, however, we are able to more precisely identify
this set. For example, if R = K[z|, 7 = z, and S = K, (the case when we have an LFSR), then
V, = {u : deg(u) < deg(q)} and we can take A = V. In this case the representation (8.16) was
derived in Corollary 6.6.3. If R=7Z, 7 > 0,and S ={a:0 <a < ¢}, then V, = {u: —¢ < u < 0},
and we can take A = {u : —¢ < u < 0}. The situation is more complex in other cases and we do
not in general know analogous descriptions for V.

It is not always the case that a set A satisfying hypotheses (1), (2), and (3) of Theorem 8.5.1
exists. See for example Exercise 3 of this chapter. Even if such a A exists, it is not immediately
clear how to characterize such a set because a given h € R/(q) might have several lifts u € V. For
example, suppose 72 = 2, R = Z[r], and S = {0,1}. Then the periodic sequence 11101110 - - has
the corresponding m-adic number

u _3+7T

u 1+ 7+ 72
qg I 3

while the periodic sequence 01000100 - - - has the corresponding m-adic number

T T _u
-1 3 q

v
q
That is, we have ¢ = 3 and u = v (mod ¢) both give rise to periodic sequences. The congruence
class modulo ¢ does not uniquely determine a periodic sequence.

Suppose A C R is a complete set of representatives of R/(q) consisting of elements u such that

the m-adic expansion of u/q is strictly periodic. Even if A fails to satisfy conditions (2) and (3) of
Theorem 8.5.1 it is still possible to say something about the period of this sequence.
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Proposition 8.5.4. If A C R is a complete set of representatives of R/(q), then for any u € A
the period of seq, (u/q) is a multiple of ¢, ().

Proof. 1f the sequence of coefficients is periodic of period T' then by summing the geometric series
we find that u/q =v/(1 —nT) € R,, or

u(l — 1) = vq.

Therefore @(1 — 77) = 0 € R/(q) from which it follows that T is a multiple of the order of the
coset of u. O

In particular, if v and ¢ are relatively prime, then the period is a multiple of n, the order of 7
modulo q.

Now suppose we are given u/q and are free to choose S. How close can we come to the bound
given in Proposition 8.5.47

Proposition 8.5.5. Let q,u € R with q relatively prime to w. There is a complete set of repre-
sentatives S C R for R/(m) such that seq, (u/q) is strictly periodic (with coefficients in S) and its
period equals the cardinality c,(m) of the coset of u modulo q.

Proof. Let t = ¢,(m). We have u — w'u = bg for some b € R. Let b = m*c, with ¢ not divisible by
m. If t =1, let S contain b and enough other elements to make a complete set of representatives
modulo 7.

If Kk <tandt>1,let S contain 0, ¢, and enough other elements to make a complete set of
representatives modulo 7. Then

b=0+0-714---+0-7" e +0- 7" 4 402

t

If k>¢t>1,let Scontainm,v=cr" ' —1—7—72—...— 71 and enough other elements

to make a complete set of representatives modulo 7. Then
b=r4+ovr4+7m 124 4wl
In each case we can write )
t_
u— 7 = (Z CLﬂTi> q
i=0
with a; € S. It follows that the m-adic expansion of u/q with coefficients in S is

t—1 i
o i BT
11—t

t—1 t
= aqt+am+- @ S+ agm + e,

which is strictly periodic with period . O
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In particular, if u is relatively prime to ¢, then the period of the m-adic expansion of u/q with
coefficients in the set S found in Proposition 8.5.5 is precisely the order of 7 modulo ¢. Examples
where this fails (and the hypotheses of Theorem 8.5.1 fail) are given in Section 8.6.h.

8.5.a Function Fields

Let us return to the situation of Section 8.3.c: Let r € Z be a power of a prime. Let I be an ideal
and 7, ¢ be coprime elements in F,.[xq,- -+, z,]. Let R = F, [z, -+, 2,]/I. Assume that K = R/(m)
is finite. Let S C R be a complete set of representatives for R/(m). Suppose that S satisfies
Hypotheses H1 and H2 of Section 8.3.c.

Theorem 8.5.6. Under these hypotheses, no two elements of V, are congruent modulo q. Let
u € R and let a = seq,.(u/q) be the coefficient sequence for the m-adic expansion of u/q. Then a is
eventually periodic and the eventual period of a is a divisor of the multiplicative order of m modulo
q. If R/(q) is an integral domain, then the period equals the multiplicative order of m modulo q.
In general, for a given q there is at least one periodic sequence with connection element q whose
period is the multiplicative order of m modulo q.

Proof. By hypothesis H1, the m-adic sum of two periodic sequences is the term-wise sum, so is
also periodic. Thus, to prove that no two elements of V, are congruent modulo ¢ it suffices to
show that no nonzero element of V is divisible by ¢. Suppose to the contrary that ug € V. Then
u = uq/q has a periodic m-adic expansion. But this contradicts the fact that any element of R has
a unique m-adic expansion since by Hypothesis H2 u has a finite m-adic expansion.

The eventual periodicity of a follows from Theorem 8.3.5. To describe the eventual period, it
suffices to consider strictly periodic sequences since ¢ is also a connection element of every shift of
a. Now consider the series of numerators ug, u1, - - - of the rational representations of the m-adic
elements associated with the shifts of a. The period is the least ¢ such that u; = uy. By the
preceding paragraph, this is equivalent to u; = uy (mod ¢). For every i,

Ui—1 U;
=01+ 17—,
q

and so
Uj—1 = qQ;—1 + TU;.

Therefore
u; =7 'uio =7 ug (mod q)

by induction. Thus

u; = ug (mod q) if and only if 7'ug = ug (mod gq),
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which is equivalent to: (7' — 1)ug =0 (mod q).

If R/(q) is an integral domain, then this says that ¢ is the multiplicative order of 7 modulo g.
If R/(q) is not an integral domain, then it implies that ¢ is a divisor of the multiplicative order of
7 modulo ¢, see Section 2.2.a.

Finally, consider the coefficient sequence of the m-adic expansion of 1/q. This sequence may
not be periodic, but it is eventually periodic. Thus for some j its shift by j positions is periodic.
This shift has a rational representation u/q, and by the above argument, u = 777 (mod ¢). In
particular, u is invertible modulo ¢, so

(7' = Du =0 (mod q) if and only if 7/ =1 (mod q).

Thus in this case the period equals the multiplicative order of 7 modulo ¢. O

8.6 Examples

In this section we illustrate the behavior of AFSRs by several examples. In each case we give a
table of some of the successive states of the AFSR. These tables are written so that we shift toward
the left at each state transition.

86.a R=Z,p=n=2

Suppose that R =Z so F = Q. Let m = p = 2, s0 K =y, and let S = {0,1}. If g = —1, then
this is the setting that gives rise to FCSRs. Suppose that

g=rt+m+ 1t —-1=27.

Then an AFSR with connection element ¢ has four stages, with coefficients 1, 1, 1, and 0. If we
start the register in the initial state (0,0,0,1), and with initial memory 0, then the sequence of
states of the register is given in Table 8.1. The output sequence thus has period 18, and one period
is

a =000101101111010010- - - .

Note that the memory size never exceeds two bits, so in effect we have a six stage binary feedback
register with period 18. Also note that

ord,(2) = 18,
and 27! (mod ¢) = 14. The exponential representation of this sequence is

a; = (414" (mod 27)) (mod 2).
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register | mem | i | register | mem | i
0001 00 1110 219
0010 01 1101 2110
0101 01]2 1010 2111
1011 01]3 0100 2112
0110 114 1001 1113
1101 115 0010 114
1011 116 0100 1115
0111 17 1000 1116
1111 18 0000 1117

Table 8.1: The states of an AFSR with R=7Z, p=7n =2, and q = 27.

Finally, since the period is 18 and one period gives the binary representation of 80672, the rational
representation of the sequence is

—80672  —80672  —1
218 _ 1 262143 27

8.6.b R =Z[r] with 7 = /2

Suppose that R = Z[r| with 72 = p = 2, so F' = Q[x] is a real quadratic number field and K = F,.
Let S = {0,1}. This is an example of a d-FCSR, d = 2 [58], which are analyzed in detail in
Chapters 9 and 17. Every element in R can be written in the form a + br with a and b integers.
The embeddings of F' in C are determined by mapping 7 to either the positive or negative real
square root of 2, each of which has complex norm greater than 1. Thus every AFSR in this setting
has eventually periodic output. Let

g=m+71—-1=31—-1,

Then an AFSR with connection element ¢ has three stages, with coefficients 1, 0, and 1. If we
start the register in the initial state (1,1, 1;0), then the sequence of states of the register is given
in Table 8.2.

The output sequence has period 16. One period is:
a=1110111100010000- - - .

The memory size never exceeds two bits, so in effect we have a five stage binary feedback register
with period 16. We claim that

7' (mod ¢) =3 and ord,(r) = 16.
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register | mem | i || register | mem | i
111 00 000 T+1| 8
110 w1 001 119
101 112 010 m | 10
011 T3 100 1111
111 114 000 m | 12
111 |5 000 1113
110 T+1]6 001 0|14
100 T+1 |7 011 0115

Table 8.2: The states of an AFSR with R = Z[r], 7 = 21/2 and ¢ = 37 — 1.

To see this, observe that a + br = (3a + b)m (mod ¢) for any integers a,b. Moreover, 177 =
(3w — 1)(m + 6). Since 17 is prime, 177 must be the smallest integral multiple of 7= that is
congruent to 0 modulo ¢. It follows that R/(q) is isomorphic to the integers modulo 17, and every
element has multiplicative order dividing 16. Since 7® = 16 is not congruent to one modulo ¢,
is primitive. The exponential representation of this sequence is thus

a; = (3" (mod 37 — 1)) (mod 2).

Since the period is 16 and one period gives the m-adic representation of 15 + 457, the rational
representation of the sequence is

—15—457 —-15—-457 -1 =3 -1

A1 255 17 17" 31
The third representation shows that the sequence a can be realized by alternating symbols from
the 2-adic expansions of the rational numbers —1/17 and —3/17. But generating the sequence this
way would require a pair of length 4 FCSRs each needing one bit of extra memory, for a total 10
state bits.

Alternatively, we could treat the entire sequence as a 2-adic number. From this point of view,
it is the 2-adic number —9/257, which is generated by an FCSR of length 8 requiring one extra
bit of memory.

Alternatively, we could treat the entire sequence as a power series over Fy. From this point of
view, it is the rational number

—at + 2?41
(x+ 1)1 7
which is generated by an LFSR of length 11.
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Of course there may be a more efficient way to realize the sequence as the output of an AFSR
based on another ring.

8.6.c R =Z[r »] with m=+2and, y2=~+1

Suppose that R = Z[r,~] with v* = y+1 and 72 = p = 2. Here F' = Q[r, 7] is a degree 4 extension
of Q. Also, v reduces modulo 7 to a primitive cube root of 1, so K =F,. Let S ={0,1,v,1+~}.
Every element in R can be written in the form (a+ bv) + (¢ + dvy)m with a, b, ¢, and d integers. Let

q:(7+1)7r3—|—7r—1:(27—|—3)7r—1.

Then an AFSR with connection element ¢ has three stages, with coefficients 1 4 ~, 0, and 1. If
we start the register in the initial state (1,1,1), and with initial memory (1 + 2v)m, then the
output sequence has period 400. Each output symbol has 2 bits, so this register outputs 800 bits.
Furthermore, it can be shown that each integer in the memory never exceeds 3. Hence this register
is, in effect, a 14 stage binary feedback register with period 800. The first few states are shown in
Table 8.3. Each output symbol is of the form a + by, with a,b € {0,1}. We claim that

register mem | i
1 1 1 (14+2y)7 | 0
1 1 v (1+2y)+7| 1
1 v 0 I+ (1+2y)7 | 2
Y 0 v (14+2y)+7n| 3
0 0% 0l I+ (1 +2y)n | 4
v v 1+y (1+27)| 5
0l 1+ 147 (1+2y)r | 6
I+v 147y v A+2y)+ A +y)m | 7
1+ v 1| A+9)+Q+3y)r| 8
v 1 0] (1+3y)+2+2y)7| 9
1 0 Y| (242y) +(1+2y)r | 10
0 Y L (I4+2y)+ 0 +2y)r | 11
ol 1 0] (14+2y)+(1+~)n |12
1 0 0 1+v)+(1+2y)r |13
0 0 0 (1+29)+ (1+y)r| 14
0 0 1 (14+7)+7m | 15

Table 8.3: The first 15 states of an AFSR over Z[r, y] with 72 = 2, v = v+1, and ¢ = (2y+3)7—1.

7' (mod q) =2y+3 and ord,(m) = 400.
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To see this, check that

a+br=((2y+3)a+b)m (mod q)
for any integers a and b. Moreover, 4017 = N(q)m. Since 401 is prime, 4017 must be the smallest
integral multiple of 7 that is congruent to 0 modulo ¢. It follows that R/(q) is isomorphic to the
integers modulo 401, and every element has multiplicative order dividing 400 = 2% - 52. Then one

checks that neither 729 = 2109 nor 78° = 240 is congruent to one modulo g.
The exponential representation of this sequence is thus

a; = (3" (mod 37 — 1)) (mod 2).
Finally, by Theorem 8.2.2, the rational representation of the sequence is

—ym3 =1
(y+Dmd+m—1

86d R=Z,7=3
Next we consider an example that illustrates the behavior of an AFSR when ¢g # 1. Let R = Z,
m=3,and S ={0,1,2}. Let ¢ = 43 = 7® + 272 — 2. Then q is the connection element of a 3-stage

AFSR over Z, w, and S. Its coefficients are 1, 2, and 0. If the register is in state (ao, ai, as; 2),
then the new element a3 and memory z’ are determined by the equation

2CL3+3Z/=0':CL0+26L1+Z.
This AFSR has period 42, which is equivalent to 3 being a primitive element modulo 43. The
memory is always —1, 0, or 1, so in effect it has four 3-ary cells and period 42. A full period of
the register is given in Table 8.4.
One period of the output sequence from this register is
a = 000210111022020100101222012111200202122121 - - - .
We have 7! (mod ¢) =29 and 27! (mod 3) = 2, so the exponential representation is

a; = 2(27 x 29" (mod 43)) (mod 3),

where the 27 = 373 introduces an appropriate shift.
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register | mem | i || register | mem | i | register | mem | i
000 1 0 010 1 14 112 0 28
002 -1 1 100 1 15 120 1 29
021 -1 2 001 0 16 200 2 30
210 1 3 010 0 17 002 0 31
101 1 4 101 0 18 020 0 32
011 0 5) 012 -1 19 202 0 33
111 0 6 122 -1 120 021 0 34
110 1 7 222 0 21 212 0 35
102 0 8 220 2 22 122 0 36
022 -1 9 201 2 23 221 1 37
220 1 10 012 0 24 212 1 38
202 1 11 121 0 25 121 1 39
020 1 12 211 1 26 210 2 40
201 1 13 111 1 27 100 2 41

Table 8.4: One period of an AFSR over Z with 7 = 3, and ¢ = 43 = 7% + 272 — 2.

8.6.e R=7Z,p=m=2, revisited

Suppose again that R =7Z so FF = Q. Let 1 =p=2,s0 K =y, and S = {0,1}. Again suppose
that ¢ = 27, but now we write ¢ = 16 — 5, so that ¢, = 16 and gy = —5. This representation of
q gives rise to an AFSR with one stage. If we start the register in the initial state (0), and with
initial memory 4, then the sequence of states of the register is given in Table 8.5.

The output sequence is

a =000101101111010010 - - -,

identical to the output in Section 8.6.a. The memory size never exceeds four bits, so in effect we
have a five stage binary feedback register with period 18, a more memory efficient implementation
than the previous one (and the best possible for sequences of period 18). The remaining analysis
is the same as before.

Similarly, we can take use the representation ¢ = 27 = 672 + 3 - m — 3, which gives rise to a
length 2 AFSR with coefficients ¢o = —3, ¢1 = 3, and ¢y = 6. If we start the register in the initial
state (0,0), and with initial memory 2, then the sequence of states of the register is given in Table
8.6. The output sequence is again a = 000101101111010010 - - -. The memory size never exceeds
three bits, so again we have a five stage binary feedback register with period 18.
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register | mem | i | register | mem | i
0 410 1 719
0 2|1 1 9110
0 112 1 10 | 11
1 213 0 13 ] 12
0 714 1 4113
1 115 0 10 | 14
1 6|6 0 5|15
0 11 |7 1 0116
1 318 0 8|17

Table 8.5: The states of an AFSR with R =7, 7 = 2, and ¢ = 27.

register | mem | 1 || register | mem | i
00 210 11 419
00 111 11 5|10
01 -112 10 7111
10 113 01 5|12
01 214 10 4113
11 115 00 5| 14
10 516 01 1115
01 417 10 2|16
11 218 00 4|17

Table 8.6: The states of an AFSR with R =7, 7 = 2, and ¢ = 27.

8.6.f R=Tyz],r=2>+1+1

LFSRs arise as AFSRs with R = Fy[z] and 7 = x. Yet another general class of AFSRs arises by
again letting R = [Fy[x] but taking 7 to be a polynomial other than z. As usual we can take S to
be any complete set of representatives modulo 7, but it is natural to take S = {f(z) : deg(f) <
deg(m)}. For example, we can let 7 = 2?4z +1. When we build AFSRs over this R and 7 we obtain
a sequence over Fy[z]/(m) = F,. Let us take the connection element ¢ = 2% + 23+ 1 = 72 + 27 + .
An AFSR with connection element ¢ has two stages, with coefficients 1 and z. If the register is in
state (ag,aq; z), then the new bit ay and memory 2’ are determined by the equation

xas + 12 =0 =ay+ ra; + z.
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If we start the register in the initial state (1,0;0), then the output sequence has period 15. In
particular, 7 is primitive modulo ¢g. The memory is always 0 or 1, so this is in effect a 5 bit
feedback register with period 15. A full period of the register is given in Table 8.7.

register mem | i register mem | i
1 0 0 0l z+1 x 0 8
0 z+4+1 1 1 T 0 1 9
r+1 0 1 2 0 x 1 10
0 1 0 3 x 1 1 11
1 1 0 4 1 z+1 1 12
1 x 1 Sllz+1 x+1 0 13
x T 0 6| xz+1 1 1 14
r r+1 0 7

Table 8.7: One period of an AFSR over Fy[z] with # = 22 + 2 + 1, and ¢ = 7% + o7 + z.

One period of the output sequence from this register is
a=10x+1,0,1,1,z,z,z+1,2,0,z, 1,2+ 1,z +1,---.

As we see in Chapter 15, this sequence is a pseudonoise sequence over [F, but is not an m-sequence.
The inverse of m modulo ¢ is ® + 22 + x and the inverse of ¢y = = modulo 7 is  + 1, so the
exponential representation of this sequence is

a; = (x+1)((2* + 23 (2 + 2* + )" (mod 2* +2* +1)) (mod 2 + 2 + 1),

where 23 + 22 = 771 introduces an appropriate shift.

8.6.g R=TFz,yl/(* +2>+1), m=2"+y

More generally, we can let R be a finitely generated ring over a finite field such that R/(7) is finite.
In this example we let R = Fylx,y]/(y*> + 2> + 1) and 7 = 2% + y. We can represent every element
of R in the form fy(z)+yfi(z) where fy and f; are polynomials. Then every element of R/(7) can
be represented by a polynomial in z alone. We have x4+ 23 +1 =12 +y*+2*+1 € (7, 9>+ 23+ 1),
so Folz]/(2* 4+ 2 + 1) maps onto R/(m). But z* +2° + 1 is irreducible, so Fo[z]/(2* + 23 + 1) = Fyg
is a field. Since the only ideal in a field is the zero ideal, this map is an isomorphism. That is,
R/(m) = Fi6. We can take S = {f(z) : deg(f) < 4}. When we build AFSRs over R and 7 we
obtain sequences over Fyg.
For example, let us take the connection element

q=m*+yr+1=2a"+1+ys?
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Consider a two stage AFSR with connection element ¢, with coefficients 1 and y. If the register is
in state (ag, a1; 2), then the new element ay and memory 2z’ are determined by the equation

ay + 77 =0 =ag+ya; + 2.

If we start the register in the initial state (1,1;0), then the output sequence has eventual period
14. In particular, 7 is not primitive modulo ¢. The memory is always of the form fy(z) 4+ 7 f1(z),
where deg(fo) < 3 and deg(f;) < 1. The cells of the register part are polynomials of degree at
most 3. Thus this is in effect a 14 bit feedback register with period 14 — not very good. The first
16 states of the register are given in Table 8.8. Note that state 1 and state 15 are identical.

register mem i

1 1 0 0

1 x?+1 1 1

2+ 1 242?41 Ry T | 2
2+ a4 1 >+ xm + 2% 4+ 22 3
>+ 0 T+ 2 4

0 x 1 5

T 2+ 1 T 6

»+1 B+ +z+1| (z+Dr+23+1 7
B4’ +z+1 34+ 2? + xm+ 23 + 22 8
>+ a4 23+ 1 xm + 23 4 22 9
41 P+l (z+ )+ +x+1 (10
2+ +1 x? xm+ 23+ xt22 11
x? 2+ T+’ +2x 12

24z x+1 T+l 4+r+1 13
z+1 1 T 14

1 22 +1 1 15

Table 8.8: One period of an AFSR over Fy[z] with # = 22 + x + 1, and ¢ = 7% + o7 + z.

It is not obvious how to do computation in the ring R. The main entries in the AFSR are
polynomials in x of degree at most 3, and the memory is a sum of powers of m whose coefficients
are polynomials in x of degree at most 3. To compute a state change, we need to know how to
express monomials yx?, with 0 < i < 3, as sums of powers of ™ whose coefficients are polynomials
in  of degree at most 3. First note that we have 72 = 2* + y? = 2* + 23 + 1, so that

ot =n 4+ 27+ 1 (8.18)
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i Y

0 T+ 22
1 xm + 23
2

3

7+ ot 42t 41
(z+1D)m?+2®r+ a3+ +1

Table 8.9: Monomials yx® as sums of powers of 7.

Now we can repeatedly multiply y = 7 + 2 using equation (8.18) to obtain the monomials ya',
given in Table 8.9.
One period of the output sequence from this register is

L4+ 1,25 +22 + 1,22 +1,0, 2, 2° + 1, 28 + 2 + o+ 1, 28 + 2% 4o, 22 + 1, 2 422 + 1, 2%, 28 o, o+ 1.

There is no exponential representation for this sequence since it is not periodic.

Now consider what happens if instead of S we use the set of T'= {a+bx+cy+dxy : a,b,c,d €
{0,1}} as our set of representatives modulo 7. We can generate a sequence with an AFSR based
on the same connection element ¢ = 72 + y7 + 1 starting with the same initial state. However,
now the sequence is periodic with period 127. The first 16 states are given in Table 8.10.

In this case the memory is always of the form a + bz + cm with a,b, ¢ € {0, 1}, so we have an 11
bit register with period 127. In computing in this setting, we use the identities y? = 1 4+ zy + om
and xy?1 + z + zy + o7 + 72

We also note that in both these examples the state change function is Fo-linear when we think
of the state as a bit vector. By Theorem 10.6.2, from the point of view of linear span these AFSRs
are equivalent to LFSRs.

8.6.h Dependence of the period on S

It is not the case that for every choice of S the period is the order of the cyclotomic coset of u
modulo ¢g. For example, let R =7 and 7 = 2. Let u = —1 and ¢ = 3. Consider the two complete
sets of residues S; = {0, 1} and Sy = {4, 1}. With respect to Sy, —2/3 has the coefficient sequence
010101 - - -, with period 2. With respect to Sy, —2/3 has the coefficient sequence 4114441114441 - - -,
with (eventual) period 6. Now suppose u and ¢ are arbitrary relatively prime integers. By Corollary
7.4.3 the choice of S as complete set of residues always gives rise to a coefficient sequence with
eventual period equal to the order of 2 modulo ¢g. Consider the set of residues S3 = {0, k} for k
odd and relatively prime to u. Suppose

q 1=0 1=0
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register mem i

1 1 0 0

1 y+1 0 1

y+1 Ty +y x 2

Ty +y y+1 s 3
y+1 1 r+1 4

1 T 0 5)

T ry +1 0 6

zy +1 ry+y+1 T+ 7
ry+y+1 ry+y+1 m+1 8
zy+y+1 ry +1 m+1 9
zzy+1 ay+y+ax+1|7+ax+1]10
ry+y+ax+1 y+ax+1 T+ 1 11
y+z+1 zy+x+1 z+1 12
xy+ax+1 r+1 T+ 13
r+1 y+1 1 14
y+1 ay+y+ax+1 1 15

Table 8.10: The first 16 states of an AFSR over Fy[x] with 7 = 2 + x + 1, and ¢ = 72 + a7 + .

where a; € S3 and b; = a;/k. If the period of ag,a,- - is ¢, then

u C

gk 2t —1

for some integer c. Thus ¢ is the least integer such that gk divides 2! — 1, so t is the least common
multiple of the order of 2 modulo ¢ and order of 2 modulo k. In particular, the period can be
arbitrarily large (but the requirements for the memory grow as the size of the elements in S5 grow).

One can also consider a fixed g, AFSR with connection element ¢, and initial state of the AFSR.
We can then vary the set S and ask what effect there is on the output. To make sense of this, we
consider the contents of the register and the output as consisting of elements of the residue field
K.

For example, let 7 = 1 + v/—1 be a root of the quadratic equation #2 — 2z + 2 = 0. Then the
ring R = Z[r] equals the Gaussian domain Z[y/—1] and 7 is prime. We have that R/(7) = Z/(2),
and so may choose complete sets of residues S; = {0, 1} and Sy = {0,3}. Consider an AFSR over
(R,7,S;) with connection element ¢ = 72+ — 1 (so the length » = 3), initial state (ag, a1, as; 2) =
(1,1,1;1 — 7). Since 7> =27 — 2 and 2 = 71(2 — 7), we have

o=apqs+a1qa+aqn+z2=24+(1—-m)=1+2—-—7m)=1+n(1—mn).
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register mem | 1 || register mem | 1
333 1—m] 0 303 1—-27m |12
333 3—2m| 1 330 —m | 13
333 4—-3m | 2 333 —11|14
033 7T—05m| 3 333 2—m| 15
003 5—om| 4 033 7T—4m | 16
000 3—4m | 5 003 6 —om | 17
300 —41 6 300 1—37 |18
330 | 442 | 7 030 1—-27 (19
333 | —2+27m | 8 303 | —4+m |20
033 6—-2m| 9 030 3—m |21
303 4—-3r |10 303 -1 22
030 7T—>5m|11] 330 2—m |23

333 1l—m |24

Table 8.11: The states of an AFSR over the Gaussian domain using Ss.

Therefore the feedback element is a3 = 1 and the updated memory is z = 1 — m, hence unchanged.
This shows that the output sequence consists of all 1s and its rational representation is 1/(1—m) =
T — 1.
We now keep the same u, ¢, 7, but replace Sy by S;. We then have an AFSR over (R, 7, Ss). In
terms of S, the initial state is (3,3,3;1 — m). The first 25 iterations are displayed in Table 8.11.
The output sequence has period 24. In terms of K, one period is

a=111110001110101111001010- - - .
By Theorem 8.2.2, the rational representation for the output is (7* — 73 — 3) /¢, which is a reduced

rational representation.

8.7 Exercises

1. Let N > 2 be a natural number and let ¢ be a positive integer that is relatively prime to N. We
have observed that by allowing the multipliers to be arbitrary we may construct many different
AFSRs with various lengths that have connection element g. Give a tight bound in terms of the
multipliers for the maximum number of N-ary symbols needed to store the extra memory.

2. In this exercise, use the bound proved in exercise 8.7.1.
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a. Find the length 1 AFSR with connection integer ¢ and nonnegative multipliers that minimizes
the amount of storage space needed for the state (including the extra memory, but not
including the fixed multipliers).

b. For which ¢ does the optimal length 1 AFSR result in a memory savings over the FCSR, with
connection integer ¢ (with multipliers in {0,1})?

3. Let p > 0 be square free, 72 = —p, and R = Z[r]. Let ¢ = 7" — 1 with n = 2 (mod 4)

a. Characterize the u € R such that the m-adic expansion of u/q is periodic. (Hint: Use Exercise
7.8.4.)

b. Show by counting that there exists u € R such that u/(7™—1) has a periodic m-adic expansion
whose period does not divide n.

¢. Show that the hypotheses of Theorem 8.5.1 do not always hold.
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Chapter 9 d-FCSRs

In this chapter we consider d-FCSRs, a special case of AFSRs that is nearly as amenable to analysis

as LFSRs and FCSRs.

9.1 Binary d-FCSRs

d-FCSRs were introduced in [100] and [58] and further analyzed in [58, 61, 63]. In this section
we consider the special case of binary d-FCSRs; the general case is analyzed beginning in Section
9.2. A binary d-FCSR consists of a shift register with cell contents ag,aq,...,a,,_1, feedback
connections ¢, Gm-1,---,q1, and memory cells mqg, mq,...,mg, each of which is a 0 or 1. The
operation of a d-FCSR is similar to that of the FCSR except that each “carried” bit is delayed
d — 1 steps before being added.

This is best understood using the ring Z[r| which consists of polynomials in 7 (with integer
coefficients), subject to the formal relation 7¢ = 2. The ring Z[r] contains the integers Z and it can
be embedded as a subring of the real numbers R by mapping 7 to the positive v/2. However there
are also other embeddings into the complex numbers. Any z € Z[r| may be uniquely expressed as
a polynomial z = 2y + 217 + - - - + 24174 with z; € Z by making use of the equation 7¢ = 2 - 7°
whenever higher powers of 7 are encountered. Let us say that such an element z is nonnegative if
each z; > 0. (This is stronger than saying that the associated real number is nonnegative.) Using
the binary expansion of each z;, any nonnegative element z € Z[r| can be uniquely expressed as a

polynomial
e
z= E Zimt
=0

with coefficients 2/ € {0,1} and e > 0. (For this reason, it is possible to implement the binary
d-FCSR using binary logic hardware. See Figure 9.1.) Addition and multiplication preserve
nonnegative elements, and are performed as for integers, except that carried bits are advanced d
steps because

1+1=2=0+0r+07r"+ -+ 07" + 17%

So it is best not to think of these coefficients as lying in the field Fy. The operations (mod 7) and
(div 7) make sense in this ring. If 2 = zo+ 27+ - -+ 24_17% L then z (mod ) = 25 (mod 2) € Fy,
and we will say that z is odd if z (mod 7) = 1. (For example, —1 =1 — 7% s0 —1 (mod 7) = 1.)
Similarly z (div 7) = 21 + 207 + -+ + 2g_1 742
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We represent the memory by a nonnegative element z € Z[r]. The connection element
q=—-14+qmn+q@r’+- -+ g™ € Z[n]. (9.1)

is associated to the feedback connections. Then ¢ € Z[r] is odd, and ¢ + 1 is non-negative. The
output sequence is given by the linear recurrence with delayed carry

m—1

T2+ ap = 241 + Z qiGt—; (9.2)

=0

(for t > m), with initial memory z = z,,_;. This equation can be solved for z; and a; by first
finding a; € {0,1}: it is the right hand side of equation (9.1) reduced (mod 7).
To be explicit, the operation of the d-FCSR may be described as follows: Form the integer sum

Write ¢’ as a nonnegative element of Z[r] — that is, as a polynomial in 7 with binary coefficients —
using 2 = 7. (It is this fact which gives rise to the delay by d steps in the carry operation.) Using
addition in Z[r| form the (nonnegative) sum o = z 4+ ¢’ € Z[r|. Shift the contents of the register
cells to the right by one step. Place the bit a,,, = ¢ (mod 7) in the leftmost register cell. Replace the
memory by 2’ = o (div 7) = (0 —a,,) /7w € Z[r]. Thus the new state (ag, da},...,al,_;;2’) is related
to the old state (ag, a1, ..., am-1;2) by a; = a;31 for 0 <i <m—1and 72’ +a,, = 2+ | ¢iGm—,
which shows that the output is given by (9.2).

Implementation. Figure 9.1 illustrates a binary d-FCSR (for d = 2). Since addition in Z[r]
is needed, it is slightly more convenient to break the addition into two parts. The part labeled
Y adds the ¢;a,,_; inputs as integers and outputs the result ¢’ according to its binary expansion.
The remaining part is an adder in Z[x|, which we now describe.

(This diagram involves a slight change of notation, with z; € {0, 1} now denoting the contents
of the i-th memory cell, rather than the full value of the memory after the i-th iteration.) Each
symbol ¥ represents a full adder with 3 inputs, cascaded so as to form a ripple counter. With
each clock cycle the current contents z of the memory is added to the integer ¢’ which is presented
at the input to the adder according to its binary expansion. The result o is returned to the
memory (which involves modifying only the even numbered memory cells). Then the contents of
the memory are shifted one step to the right, thus outputting the lowest order bit ¢ (mod 7) and
retaining the higher order bits, o (div 7) (with the highest order bit, 2z in the following example,
set to 0).
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Figure 9.1: d-FCSR

Let wt(q + 1) denote the number of nonzero ¢’s involved in the feedback. We see from Figure
(9.1) (or from the change of state equations above) that the memory will decrease until z; = 0
for all ¢ > dlog,(wt(q + 1)) + d, so no memory overflow will occur provided the shift register is
provided with memory cells 2, 21, . . ., 2z, where s > dlog,(wt(q+ 1)) + d. The deeper analysis of
a d-FCSR is completely parallel to that of an FCSR, however it requires the m-adic formalism,
developed in Section 5.5, which we now review in this special case.

Let Z, be the ring of m-adic integers consisting of all formal power series in 7,

a= Z a;m" (9.3)
=0
with a; € {0,1}. Addition and multiplication are performed using the relation 7¢ = 2 whenever
necessary. In particular, Z, contains the 2-adic integers Z,. Since
~1=1+nt 7243 4...

we see that Z, also contains Z[r]. In fact, Z, contains all fractions a = u/q with u,q € Zn|
provided that ¢ is odd, (meaning that ¢ = 1 (mod 7)) in which case we refer to equation (9.3)

as “the” m-adic expansion of u/q, and we write a = ag,as,- -+ = seq,(u/q). Such fractions are
precisely the elements of Z, whose m-adic expansions are eventually periodic. The following result
(originally proven in [58]) is a special case of Theorem 8.5.1

Theorem 9.1.1. Suppose an m-stage (Fibonacci) d-FCSR with connection integer q has initial
state (ag, @y, ..., am_1;2). Set g = —1 and

m—1 k

h=ma™r — Z Z Qip_iT"

k=0 =0
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Then the output sequence a = ag,aq,--- of the d-FCSR 1is the coefficient sequence for the mw-adic
expansion of the fraction « = —h/q, that is, a = seq,(—h/q). It can also be expressed as

a; =7 "'h (mod ¢) (mod 7).
In Corollary 9.5.2 we prove that the (periodic) output sequences are also given by
a; =b"'A (mod N) (mod 2)

for appropriate A, b, where N is the norm of the ideal (¢) C Z[r]. (See [63].) In this way maximal
length sequences may be obtained when 2 is not necessarily primitive (mod N).

9.2 General d-FCSRs

Let N > 2 and d > 1 be integers such that the polynomial 2% — N is irreducible over the rational
numbers Q, as described in Section 5.5.c. Let m € C be a root of this polynomial in an extension
field of Q. Here we consider AFSRs based on the ring R = Z[x| consisting of polynomials in 7
with integer coefficients. It is an integral domain in which every prime ideal is maximal. In fact it
is an order (cf. Section 3.4.c), but not necessarily the maximal order, in its fraction field F' = Q(n)
of elements u/v with u,v € Z[r]. As remarked in Section 5.5.c, F' =~ Q[r] because 1/7 = 7¢"!/N.
So

As described in Section 5.5.c, the set S = {0,1,2,---, N — 2} is a complete set of representatives
for the quotient R/(mw). Consequently the ring R, (sometimes denoted Z,) of m-adic integers
consists of formal power series u = ug + uym + - -+ in 7 with coefficients u; € S. If d = 1 then
m =N, Z[r] =Z, Q[r] = Q, and the 7m-adic integers are just the N-adic integers Zy.

By Proposition 5.5.5, the intersection F'N R, can be described in two ways: as a subset of R
it consists of formal power series a = Z;’io a;m (with 0 < a; < N — 1) whose coefficient sequence
seq,(a) = (ag, a1, as,...) is eventually periodic. As a subset of F' it consists of fractions u/q (with
u,q € R) whose denominator ¢ = Zf:_ol gt (with ¢; € Z) is coprime to 7 or equivalently, if o is
relatively prime to N. In summary, we have a diagram

F=Q) = Q[ c F
U U U
R=Z[r] ¢ FNR, C R,

Definition 9.2.1. A d-FCSR is an AFSR based on this choice of (R = Z[r|,nw,S). A d-FCSR
sequence is the (eventually periodic) output from a d-FCSR, that is, seq, (u/q) where u € R.

As in Section 5.5.c the different embeddings o, -+, 04 : I — C are determined by o;(7) = ('m
where ¢ € C is a primitive dth root of unity. Then |o;(7)| > 1 and so Theorem 8.3.2 gives another
proof that the output of any AFSR based on (R, 7, .S) is eventually periodic.
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9.3 Relation between the norm and the period

As in Section 9.2 suppose that % — N is irreducible over Q and that 7 € C is a root of this
polynomial. In our analysis a central role is played by the algebraic norm of the connection
element. As in Theorem 3.4.4, the norm N§(a) € Q of an element a = S a4t € F s defined
to be the product of the images of a under the embeddings o; of F' in C. Equivalently, it is the
determinant of the linear transformation f,(b) = ab on the field F' (when it is considered as a
d-dimensional vector space over Q). With respect to the basis {1, 7,72, ..., 7% 1} the matrix of
fa is given by

ag Nad,1 ce NCLQ Nal
ay Qo tee NCL3 NCI,Q
M, = (9.4)
ag—p aq-3 -+ ag  Nag_;
adg—1 Aq—2 AN 5] Qo

If a € R, then N(S(a) € Z is an integer. For example, if d = 2, then
NG (a0 + arm) = af — Nay.

If d = 3, then
NG (ao + arm + a27®) = aj + Na$ + N?aj — 3Nagayas.

By Lemma 3.4.8, if ¢ € R is a non-unit, then the absolute value |N(‘g(q)| is equal to the number
of elements in the quotient ring R/(q). The following lemma is used to determine the period.

Lemma 9.3.1. Let g € R. Then the element § = IN{(q)|/q is in R.

Proof. Let q = Zf;ol a;7" with a; € Z. As in Section 9.2, let ¢ be a primitive dth root of unity, so
that

d—1 d—1d—1
§ = :I:HJj(q) = :I:HZaiCijﬁi.
=1 j=1 i=0

For any multi-index I = (i1, 1s,...,9q-1) (where 0 <i; < d—1), let u(I) = E = (eq, €1, ..,€4-1)
where for each j, e; is the number of occurrences of j among the components of I. It follows that

d—1
0=+ Z Z QZ?;ll Jij H (Z?Wiei
£ i=0

Lu(I=FE
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where the first sum is over all multi-indices E = (e, e1,...,e4—1) such that 0 < e; < d—1 and
> e; =d— 1. For each such multi-index E and element a € C, let

Z Z e

Iiu(I)=E

Since the a; are integers, to prove the lemma it suffices to show that cg(() is an integer for each
E. Note that ¢ and 7 have now left the picture.

The element cg(() lies in the field Q[¢], which is a Galois extension of the rational numbers.
For an integer k, let 7, be the homomorphism on Q[¢] induced by 73,(¢) = ¢*. The Galois group
Gal(Q[¢]/Q) consists of all 75, such that k is relatively prime to d [33, p. 195].

We claim that cg(() is a rational number. By Galois theory, to show this it suffices to show
that cp(7%(¢)) = cg(Q) for every 7 in the Galois group of Q[(] over Q. Let k¢ =1 (mod d). For
any multi-index I = (iy,...,i4-1), let @} = ig;, and I = (4},...,iy_;) (here the index £j in iy is
taken modulo d). The mapping from [ to I’ is a permutation of the multi-indices I with u(I) = E.
Thus

d—1, ;.
o) = X (M
— Z CZ?;%J'%'
_ S

Ip(I)=

= CE(C)-

This proves the claim.

Furthermore, cg(¢) is integral over Z (¢ is integral over Z since it is a root of the integral
polynomial ¢ — 1. The sum and product of integral elements are integral.) But the only elements
of Q that are integral over Z are the integers. Thus cg(() € Z, proving the lemma. O]

Lemma 9.3.1 says that for any ¢ € R the norm N(g(q) is divisible by ¢. It follows that the
composition Z — R — R/(q) induces a well-defined ring homomorphism

v Z/(NG(9) — R/(q)-
Proposition 9.3.2. Suppose that (q) = (r)" for some r € R and t € Z*, and that N{(r) is (an

ordinary, or “rational”) prime. Then (r) C R is a prime ideal, Nf(q) = N§(r)", and the mapping
Y : Z/(NG(q)) — R/(q) is an isomorphism.
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Proof. First consider the case t = 1. The ring homomorphism % is nontrivial since it takes 1 to 1.
So its image is a subring of Z/(N{(¢)), which is a field, so ¢ is surjective. Moreover the cardinality
of R/(q) is IN{(q)| so 1 is an isomorphism.

Now we proceed by induction on ¢. For any s let us write

v =15 Z/(Ng(r*)) — R/(r).

This induces a mapping between short exact sequences

0 — R/ — R/(Y) — R/ — 0

= o [en

0 — Z/(Ng(r* 1) — Z/(Ng(r*)) — Z/(Ng(r)) — 0

The horizontal maps are additive group homomorphisms giving short exact sequences. The
vertical maps are ring homomorphisms. Since the vertical homomorphisms on the ends are iso-
morphisms by induction, the homomorphism in the middle is a group isomorphism as well. But
since it is also a ring homomorphism, it is a ring isomorphism as well. Finally, the norm map is

multiplicative so
NG (rf) = (NG (1) O

Proposition 9.3.2 says two things:

e If u € R then there exists an integer m € Z such that m = u (mod ¢). Moreover m may be
chosen so that 0 < m < [N§(q)]-

e If a,b € Z are integers, then a = b (mod Ng(q)) (as integers) if and only if a = b (mod q)
(as elements of R).

9.4 Periodicity

As in Section 9.2, assume that 2? — N is irreducible over Q and that 7 € C is a root. In this
section we identify the fractions u/q € F' such that seq,(u/q) is strictly periodic. Fix

QZQO+Q17T+"'+Qd717Td71€R

which is invertible in R/(7). (Thus gy (mod N) is invertible in Z/(N).) Let § = [N§(q)|/q € R.
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Lemma 9.4.1. Let u € R. Set 6u = 29+ 217 + + -+ + zg_17% 1, with z; € Z. Then seq,(u/q) is
strictly periodic if and only if
_|N5(Q>| <z <0.

Proof. We can uniquely write du = ngol 2wt with z; € Z. Then in Q[r],

U

~1
ou Z

INE(q)] — &= NE(q)]

(2

.

u
q

Il
o

It follows that the m-adic expansion of u/q is the interleaving of the N-adic expansions of the
zi/ |N(g(q)| Thus the former sequence is strictly periodic if and only if each of the latter sequences
is strictly periodic. But the N-adic expansion of z;/|N{(q)| is strictly periodic if and only if

~INg(g)] < = < 0. O
In the next section we make (implicit) use of the vector space isomorphism
7 F —Q* (9.5)

given by 7(ug + wym + -+ - + ug_ 17 = (ug, uy, ..., uq_1). Then 7(R) = Z% which is a lattice in
Q<. Suppose that ¢ € R is invertible mod 7. Define the half open parallelepiped for ¢ to be

d—1
P= {Zaiqﬂi: a; € Q and —1<ai§0} C Q[n]. (9.6)
i=0
Also define the closed parallelepiped for ¢ to be
d—1
PC:{Z%W: a; € Q and —1§ai§0} C Q[n]. (9.7)
i=0

The terminology refers to the fact that in equation (9.5) the image 7(P) C Q? is the parallelepiped
spanned by the vectors —q, —qm, —qm?, ..., —qn®!. Define

A=PNR and A°=P°NR

to be the sets of lattice points in the half open and closed parallelepipeds. Applying the projection
to R/(q) gives a mapping
»:ACR— R/(q). (9.8)
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Theorem 9.4.2. If ¢ € R is invertible mod m, then the mapping ¢ is a one to one correspondence.
For any element u € R, the coefficient sequence of

v Z a;m (9.9)
A
is strictly periodic if and only if u € A°. If u e A, then
a; =7 " (7 'u (mod ¢)) (mod ). (9.10)

This last equation needs a bit of explanation. Using the fact that ¢ is a one to one correspon-
dence, for any element a € R/(q) define

a (mod 7) = ¢~ !(a) (mod 7) € R/(w) = Z/(N), (9.11)

meaning that we first lift @ to A and then reduce modulo 7. The image of 7 in R/(q) is invertible,
so the product 7 “u is defined in R/(g). Hence

7 'u (mod 7) = ¢ (7 "u (mod ¢)) (mod 7)
is defined in Z/(n). Moreover, the element
7=q (mod m) € R/(m) = Z/(N)

is also invertible; by equation (9.4) it coincides with gy (mod N). So the product in equation
(9.10) makes sense in Z/(N). As usual, the mapping defined by equation (9.11), R/(q) — Z/(N)
is not a ring homomorphism and in fact it depends on the choice A C R of a complete set of
representatives for the elements of R/(q).

Proof. First we show that the above mapping ¢ : A — R/(q) is one to one and onto. The idea
is that existence and uniqueness of representatives modulo ¢ in P corresponds to existence and
uniqueness modulo |[N§(¢)| in the (half-open) hypercube

d—1
OP = {Zaﬂri ca; € Qand — |N6(q)| <a; < O}
=0

(the image of P under the linear map ' — F which is given by multiplication by §). First we
show that ¢ is onto. For any w € Q define w € Q to be the unique rational number such that

—INg(g)| <@ <0
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and such that
w— b = e|NG(q)]

for some integer e. If w is an integer then so is w. Now let b € R be arbitrary, and write

d—1
b=y b
i=0
for some integers b;. Set
d—1
C = Z)Z?TZ
=0

We claim that 6~ !c € A and that it is congruent to b modulo ¢. In fact,

b—0te = §16b—c)
d—1 .
= 571 Z(bz - bl)ﬂ'l
=0

d—1
= 5! Z ei|NG(q)|m"
i=0

d—1
= qE e;m
i=0

(for some integers e;). This last expression is in R, hence 6 'c € R. But §~'c is also in P, so
6 'c € A and (again by the last expression) it is congruent to b modulo (q). To prove ¢ is one to

one, suppose that b, € A are congruent modulo ¢q. Then b — b’ = ¢q for some ¢ € R, so

b — b = cdq = ¢|NG(q)].-

But both §b and ¥’ lie in the half-open hypercube 6 P whose sides all have length |N6(q)| So no

coordinate can differ by as much as |N6 (q)|, hence ¢ =0 and b =¥'.

Next suppose that b € R. By Lemma 9.4.1, b/q has a periodic m-adic expansion if and only if

d—1
db € {Zaﬂrﬂ a; € Q and —|N{(q)| < a; < O} = 0P°,

1=0

which holds if and only if b € P¢.
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To verify equation (9.10), first observe that reducing equation (9.9) modulo 7 gives
ap =q 'u (mod 7).

The sequence {ay, as, ...} is also strictly periodic and corresponds to a m-adic integer

12 (o]
u i
- = E A1 T
q i=0

with the same denominator ¢ (and with some numerator v’ € A). Then

u U

—T =——2a
q q

or u'm = u — apq. Reducing modulo ¢ gives
u' =7 'u (mod q).

Equation (9.10) now follows by induction. O

Remark. A face U C P of the parallelepiped P in equation (9.6) is the set of points obtained by
setting some of the coefficients a; equal 0. The set of lattice points AN U in any face corresponds
under equation (9.8) to an additive subgroup of R/(q). If N§j(¢) is prime then there are no additive
subgroups other than {0}. Hence, if Ng (q) is prime, then all the nonzero elements of A lie in the
interior of the parallelepiped. Let

d-1
Py = {quwﬂ v; € Qand —1 <Ui<0} C Q[n] (9.12)

i=0
be the open parallelepiped associated with ¢, and define

AO = P() N Z[TF]
Corollary 9.4.3. If Ng(q) is prime and u/q is strictly periodic, then either q divides u oru € Ay.

The following lemma is used in the proof of Proposition 17.3.3 to analyze arithmetic correla-
tions.

Lemma 9.4.4. Suppose b € A. Then the representative of —b modulo q in A is

|

— —b.

c=—q
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Proof. The element b is in A if and only if each m-adic coordinate z; of db is between —|N6 (q)]
and 0. If this holds, then
—INE(q)] < ~IN5 ()| — = < 0.

But —|N§(g)| — 2 is the ith 7-adic coordinate of —|N(q)|(14+ 7 +7*+---+7%"") —db = de. Thus
¢ is in A and is congruent to —b modulo q. O

9.5 Elementary description of d-FCSR sequences

In some cases it is possible to describe the d-FCSR sequences in elementary terms (without ref-
erence to algebraic number fields). As in Section 9.2, suppose that 7¢ = N and that 2¢ — N is
irreducible over Q. Let ¢ € R and suppose that

e ¢ is invertible in Z,,

e d is relatively prime to N (q),

e (¢) = (r") for some r € R, and

e NG(r) is (a “rational”, or ordinary) prime.

Recall that all these conditions are satisfied if N is prime and Ng(q) is prime.
Let Q = \Ng(q)| € 7Z. By Proposition 9.3.2 we have a natural isomorphism of rings, 1 :
Z](N) — R/(q). Each of these rings has a canonical set of representatives: let

T={0,-1,-2,....—(Q-1)}CZ

and let A C R be the parallelepiped as defined as in Section 9.4. Then T is a complete set
of representatives for Z/(Q) and A is a complete set of representatives for R/(q). By abuse of
notation we also write ¢ : T'— A for the resulting one-to-one correspondence. Set

Theorem 9.5.1. Let u € A. Then in Z/(N),

(7 'u) (mod ) = Ng(q)il(sowfl(u) (mod Q)) (mod N).

The left side of this equation makes sense since the image § € R/(r) of ¢ € R is invertible. On
the right side of the equation, the element ¢y~ (u) € Z/(Q) is multiplied by sy (mod Q) then lifted
to the set T of representatives. Then the result is reduced modulo N. The image N§(q) € Z/(N)
of Ng(q) € 7 is invertible, so the product on the right hand side makes sense. This result may be

best explained in terms of the following two diagrams. Both the upper and lower squares in the
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first diagram commute. Although the upper square in the second diagram commutes, the lower
square does not. Theorem 9.5.1 supplies “correction factors” which are needed in order to make
it commute.

Z/(Q) - R/(q) Z)Q - R/(g

)
| | I
Z — R T A
| L
Z[/(N) — R/(m) ZJ)(N) = R/(r)

Replacing u with 7 %u in Theorem 9.5.1 gives the following corollary which describes the d-
FCSR sequence completely in terms of operations on ordinary integers.

Corollary 9.5.2. Let u € A and let e =~ (7r) € Z/(Q). Write

for the w-adic expansion of the fraction u/q. Then the coefficient sequence seq, (u/q) = ag,ay, - ..
18 strictly periodic and moreover

a; = Ng(q) "' (Ab’ (mod Q)) (mod N)

1

where b= e~ and

A=spp (u) € Z/(Q).
The proof of theorem 9.5.1 occupies the next subsection.

9.5.a Proof of theorem 9.5.1

Continue with the same notation as in Section 9.4, that is,

=N, qeR Q=INi(@), =NEi@)/g=> s, ande=1v"'(r)€Z/(Q).

Let ¢ € C be a primitive d-th root of unity and let U denote any one of the following rings:
z, Rzl Zr)
The integer ) € Z generates an ideal (Q)y in the ring U. If a,b € Z we write
a=b (mod Q) in R
to mean that a — b € (Q)yv.
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Lemma 9.5.3. For any a,b € Z we have
a=0b (mod Q) inU <= a=>b (mod Q) in Z.

Proof. Both m and (¢ are integral over Z so each ¢ € U is integral over Z. If a = b (mod Q) in U,
then a — b = ¢Q for some ¢ € UR. Then ¢ = (a — b)/Q is a rational number which is integral over
Z, hence ¢ € Z. O

Lemma 9.5.4. The inclusion Z[(] — Z|r, (] induces a ring isomorphism

U Z[C)/(Q) = Z[m, (] /(q).

Proof. The proof is similar to that of Proposition 9.3.2. Since ¢|@ in Z[r, (] the mapping ¥ is
well defined. To see that it is surjective it suffices to show that 7 is in the image of ¢. But
m =e (mod q) in R, hence also in Z[r, (]. That is, U(e) = 7. Finally, the cardinality of both rings

is |Q|*Y) (where ¢ is the Euler totient function), hence W is also injective. O
Lemma 9.5.5. Let u € R and set .
ou = Z 2t
i=0
Then
27" = 2 (mod q)
(in R) and

2pe = 2z (mod Q)
(in Z) for all k =0,1,...,d.
Proof. Let Z; denote the j-th Fourier coefficient of the finite sequence of complex numbers

2 d—1
(20, 21T, 20 ... Zg1 7)),

which may be considered to be a function f : Z/(d) — C. In other words, if ( € C denotes a
primitive d-th root of unity, then
d—1
ZA’]‘ = Z Ziﬂ'icij.
i=0

Evidently, the Fourier coefficient 2; lies in the ring Z[r, ¢]. The homomorphism ¢; : R — C may
be extended to this ring by setting ¢;({) = ¢. Then

0;(0) = H 0i(q)

i
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which implies that, in the ring Z[r, ], the element o;(0) is divisible by ¢ for j = 1,2,...,d — 1.
Hence

The Fourier inversion formula gives

d 3
% (mod ),

which is independent of k. Since d is invertible mod N§(g) it is also invertible in R/(g), meaning
that da = 1+ yq for some a,y € R. Hence d is also invertible in Z[r, {]/(q), which shows that

2 = 2om° (mod ¢) in Z[r, (]
for all k. We need to show the same holds in R. However,

Zkﬂ' = 29 (mod q) in Z[r, (]
(

= ze" =2 (mod q) in Z[r, (]
= zef =z (mod N) in Z[(]
= ze" =2 (mod N) in Z
= ze" =2 (mod q) in R
= " =2 (modgq)in R
by Lemma (9.5.4), Lemma (9.5.3), and Proposition (9.3.2). O

Proof of theorem 9.5.1. As in the previous section set

d—1 d—1

_ k _ k

ou = 2L and 0= SETe.
k=0 k=0

Lemma 9.5.5 gives du = dzy (mod ¢) and § = dsy (mod ¢q), hence dzy = dspu (mod ¢). Since d is
invertible modulo ¢, this implies 29 = sou (mod ¢). The isomorphism ¢! : R/(q) — Z/(Q) is the
identity on integers, so we obtain

20 = s H(u) in Z/(Q).

254



Now lift these elements to the set 7" C Z of representatives of Z/(Q) and reduce modulo N to

obtain
2 (mod N) = (sp¢ ' (u) (mod Q)) (mod N).

But 2y (mod N) = du (mod 7)) € Z/(N). That is,

(du) (mod 7) = (s~ *(u) (mod Q)) (mod N).
Multiplying by Ng(q)i1 € Z/(N) gives

(@ "u) (mod ) = NE(q)  (sov~*(x) (mod Q) (mod N)

where § € R/(m) is the image of ¢, and where the right hand side is interpreted as follows: first
compute sqtv " (u) € Z/(Q), then lift this to the set T’ of representatives, then reduce modulo N,

then multiply by Ng(q) . This completes the proof of Theorem 9.5.1. O

9.6 An Example

Consider a binary d-FCSR (meaning that N = 2) with 72 = 2 (so d = 2) and with connection
element ¢ € R which is invertible in Z,. Let @ = [N{(g)|. Then

NG(g)  (mod 2) =1

and Corollary 9.5.2 says that the strictly periodic portions of the d-FCSR sequence will be described
by
a; = Ab (mod Q) (mod 2)

for certain A,b € Z/(Q). Let us take ¢ = 5+ 2m. Then Ng(q) = 17 which is prime, so the
parallelogram contains 16 elements in its interior. It is illustrated in Figure 1.
The isomorphism
¥ Zr]/(q) — Z/(17)

maps m to m = 6. Hence m™! = 3 € Z/(17) which is primitive, so we obtain a maximal length
output sequence. The element § equals 5 — 27 hence sg = 5. Each element in Z[r]/(q) has a unique
representative u in the parallelogram; these representatives are listed in the second column of Table
2. Each element in Z/(17) has a unique representative in the set 7" = {—1,—2,..., —16}; these
representatives h are listed in the third column. The correspondence between the second and third
column is given by Theorem 9.5.1. That is, h = se1» ' (u) (since § = Ng(q) =1 (mod 2)). The
fourth column (which is the d-FCSR sequence under consideration) is the third column modulo 2,
and it coincides with the second column modulo 7.
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Figure 9.2: Parallelogram for ¢ = 5 + 2.

i |7 (modgq) |56 (mod 17) | output
0 —4 — 27 —12 0
1 —2 =27 —2 0
2 —2—-7 —6 0
3 —1—-7 —1 1
4 -3 —3m -3 1
5 —5 —d4m -9 1
6 —6 — 57 —10 0
7 -5 — 3 —13 1
8 —5 — 5w -5 1
9 —7 =57 —15 1
10 —7 —6m —11 1
11 —8 — 67 —16 0
12 —6 — 47 —14 0
13 —4 — 3 -8 0
14 —3—27 —7 1
15 —4 —4n —4 0

Table 9.1: Model states for ¢ = 5 + 27.
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9.7 Exercises

. Let 7® = 2 and R = Z[r]. Consider the connection element ¢ = 1 — 7 + 372.

(a) Show that the multiplicative group of Z[r]/(q) is cyclic.

(b) Find a maximum period periodic output sequence from a 3-FCSR with connection
element q.

(c¢) Find the elementary representation of this sequence as in Section 9.5.

. Let 7> =7 and ¢ = 8 + 7. Find all u for which u/q has a strictly periodic m-adic expansion.
. Prove that under the hypotheses of Section 9.5, if 7 is primitive modulo ¢, then the second
half of a period of a binary d-FCSR sequence with connection element ¢ is the bitwise
complement of the first half.
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Chapter 10 Galois Mode, Linear Registers, and Related
Circuits

In this chapter we examine the issues involved in efficient implementation of feedback shift registers.
In general feedback shift registers can be implemented either in hardware or in software. The
choice depends on the application, the resources available, and the set of output symbols. Binary
sequence generators (which are typically used in high speed cryptographic applications) can often
be implemented very efficiently in hardware, often with only a small number of gates, but less
efficiently in software — they either waste space or require slow packing and unpacking of words.
Generators with outputs in a set {0,1,---, N — 1} with N requiring 8 or more bits (which are
typically used in pseudo-Monte Carlo and quasi-Monte Carlo simulation) are often slow in hardware
but relatively fast in software where they can make use of built-in word operations.

10.1 Galois mode LFSRs

Throughout this section we fix a commutative ring R with unit. A Galois mode linear feedback
shift register or modular shift register of length m over R, with “multipliers” ¢, ¢o, - -+, ¢ € R is
a sequence generator (cf. Definition 5.1.2) whose state is an element

s = (ho,h1, -, hm—2, hyp—y) € R™ = X,
whose output is out(s) = ag = hg, and whose state change operation 7 is given by
(ho, by s g, b 1) — (b1 + quho, ha + q2ho, -+ -, hn1 + Gm—1ho; Gmho)- (10.1)

It is convenient to think of a Galois mode LFSR as the circuit depicted in Figure 6.1.

As with LFSRs, because we like to think of bits as flowing out to the right, the order of the
components a; in the diagram is the reverse of the order when we write the state as a vector.
When thinking of LFSRs as physical devices as in the figure, we sometimes list the components of
the state in descending order of their indices. We write ’hm,l |hm,2 ‘ . | hq |h0 ‘ for the machine
state to distinguish the two notations.

The connection polynomial for this shift register is defined to be

¢(r) = —1+ @@+ @2° + - + gua™.

We assume that g, # 0 (otherwise periodic states of the shift register may be described using only
those cells to the right of the first nonzero coefficient ¢s.) It is not immediately apparent how to
describe the output of this machine: the cell contents (hy,—1,-- -, k1, hg) are not simply shifted to
the right; they are modified with each clock tick. So the following fact may come as a surprise.
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Figure 10.1: Galois LFSR.

Theorem 10.1.1. The output sequence a = ag, ay, as,--- of the Galois LFSR satisfies the linear
recurrence
a/n = QIan—l + q2an—2 + e _'_ qma/n—m (102)
for all n > m. If ¢, is invertible in the ring R then a = seq(—h(z)/q(x)) is the (coefficient
sequence of the) power series expansion of the rational function —h(z)/q(x) € R[[z]], that is,
—h(z)
q(x)
where h(x) = hy + hyx + -+ + hyp_12™ 1 corresponds to the initial loading. By Theorem 6.4.1

the output sequence is strictly periodic. The output sequence may also be described by the equation
(cf. Section 6.6.a),

= ag + a1z + apx® + - - € R[[7]] (10.3)

a, =z "h (mod ¢q) (mod ) (10.4)
for allm > 0.
Proof. In the ring R[z]/(q), using equation (6.15) calculate
e () = (A @r o g™ Dho A+ by F ot 4 By 2™
= (@ho + M) + (gho + ha)x + -+ + (gm-1h0 + hm1)2™ % + ghoz™ ™

Since this polynomial has degree < m it is the unique representative of z7'h in R[z]|/(q) and we
see from equation (10.1) that it exactly corresponds to the change of state operation. The constant
term is

ay = qtho + hy = 27 h(z) (mod ¢) (mod ).

It follows by induction that a,, = ™"h (mod ¢) (mod x) which proves equation (10.4). By running
the displayed equations in the proof of Theorem 6.6.2 backward, it follows that the output sequence

ao, ai, - - - satisfies the linear recurrence (10.2). Finally, Proposition 6.6.1 says that
Z a;x' = —h(x)/q(z).
i=0
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The Galois LFSR is sometimes preferred in applications because the additions are performed
in parallel by separate adders. Another difference between the Galois LFSR and the Fibonacci
LFSR concerns the relation between the initial loading and the numerator —h(x) of the rational
function (10.3): in the Galois case the initial loading hg, by, - - -, hy—1 exactly corresponds to h(x) =
ho + hix + -+ hp,_12™ L. In the Fibonacci case the initial loading ag, a1, - - -, @m_1 corresponds
to the numerator f(z) in equation (6.5).

10.2 Division by ¢(x) in R][[z]]

Suppose q(z) = =1+ qgox + - - - + gmx™ is a polynomial and h(x) is either a polynomial or a power
series, and we wish to calculate —h(z)/q(x) as a power series. According to Theorem 10.1.1 this
can be accomplished by setting up a Galois LFSR with connection polynomial ¢ and by initializing
the cells with the coefficients hg, hy, - - -. If deg(h) = N > deg(q) then we need a Galois LFSR with
cells extending to the left of the final coefficient g,,.

hN hm-‘,—l hm 4’@—'hm—1 e e
= (=) (o

Figure 10.2: Division by ¢(z).

hi 1 ho T~

It is not necessary to store the coefficients h; (for j > m) in separate memory cells: they may be
presented to the leftmost cell of the LFSR as a signal that is synchronized with the LFSR clock.
In this way polynomials of arbitrarily high degree (or even power series) h(x) may be divided
by ¢(z). An alternative to initializing the LFSR cells is to calculate the quotient —h(x)z™/q(z)
(where deg(q) = m), for this may be achieved by initializing the LFSR cells to zero and presenting
the whole polynomial (or power series) h(z) at the leftmost cell. Of course, after m clock cycles,
the state illustrated in Figure 10.2 will be reached.

10.3 Galois mode FCSR

As in Chapter 7 we fix a positive integer N and consider a feedback with carry shift regis-
ter for which the cells contain entries from R = Z/(N). The register has fixed “multipliers”
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Gy, qm € R. A state consists of cells ag,a1, -, am,m-1 € {0,1,---,N — 1} C R (sep-
arated by adders) and memory (or “carry”) integers, ci,c2,---,¢y. The state is written as
s = (ag, a1, ,Qm_1;C1,Cy "+, Cm)-

The change of state can be described as follows. Calculate o, = ¢p+gmao and o; = cj+a;+gjag
in the j-th adder for 1 < j < m. The new values are then

a;_; =0; (mod N) ¢ =o; (divN)=|0;/N]
so that
Nci+as  =cj+aj+qag (1 <j<m) and Nc, +a, | = cn+ gmao. (10.5)

This procedure is illustrated in the schematic of Figure 10.3 in which the symbol ¥ denotes an
integer adder (mod N) with carry.

OENCENONNG
|

9 Qp—1 9 . —»@—» aq 9 Qo >
O C RN ORNC
Figure 10.3: Galois FCSR.
Define the connection integer
¢g=—-1+q@N+@N*+ -+ ¢, N™ (10.6)

It is relatively prime to N so it is invertible in the N-adic integers Zy.

Theorem 10.3.1. Suppose an m-stage Galois FCSR with connection integer q has initial state
(ag, a1, Qm_1;C1,Coy "+, Cm). Sel

h=ag+ (a;+ci)N + -+ (amo1 + Cn 1) N™ P+ ¢, N™. (10.7)
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Then the output sequence by, by, - - - of the FCSR is seqy(—h/q), that is,
—h
—:bo+b1N+b2N2+ GZN

and b; = N~'h (mod ¢) (mod N). Conversely, if b = by, by, - is a periodic sequence (with
b; € Z/(N)) with corresponding N -adic number 3 = —h/q then q is the connection integer of a
Galois FCSR that generates the sequence b.

Proof. As the FCSR iterates its state change, it goes through an infinite sequence of states,
{5(n) = (ao(n), @ (), -+, am_1(0); €1 (), e3(n), -+ () £ 1 > 0},

Each s(n) can be considered as an initial state. Thus for each n > 0 there is an associated output
sequence (bo(n),bi(n),be(n)---) = (ap(n),ao(n + 1),a0(n + 2)---). Each such sequence has an
associated N-adic number

= Zbi(n)N" = Z ao(n 4+ i)N™. (10.8)

We also have a sequence of integers

h(n) = ag(n) + (a1(n) + c1(n)N + - + (am-1(n) + cra (R)) N + cn(n) N

= > (ai(n) + ()N,
i=0
where we take co(n) = a,,(n) = 0 for convenience. We show that for all n, h(n) + ¢B(n) = 0.

By multiplying out the formulas (10.6) and (10.8) for ¢ and B(n) we see that h(n) + ¢B(n) =
ag(n) —bo(n) (mod N) = 0. That is, each h(n) + ¢B(n) is divisible by N. Now, compute

h(k) +qB(k) = > (ai(k) +ci(k))N' + q(ao(k) + NB(k + 1))

M

Il
=)

3
m

= ao(k)+ Y (ai—1(k+1) + Neg(k + 1) — giao(k))N' + gag(k) + gNB(k + 1)

=1

(ai_1(k + 1) + Neg(k + 1))N* + gNB(k + 1)

[
Ms

=1

= N(h(k+1)+¢B(k+1)).

This allows us to prove by induction that for all 4, N’ divides every h(k) + qB(k). Thus h(k) +
q¢B(k) = 0 as we claimed. O
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As with the Galois LFSR, the additions are performed in parallel in a Galois FCSR. The
relationship between the numerator h and the initial loading of the FCSR is simpler and more
direct than for the Fibonacci mode FCSR. If ¢; = 0, then the memory cell ¢; may be omitted
because no carry can occur at that location. If ¢,, = 1, then ¢,, may be omitted for the same
reason, and it follows from Corollary 7.2.2 that (under these conditions ¢,, = 1, ¢,, = 0) the output
sequence will be strictly periodic.

Proposition 10.3.2. If the memory c; at the j-th cell is in the range 0 < ¢; < N — 1, then it will
remain within that range forever. If ¢; < N, then it will remain < N forever. If c; > N, then it
will drop exponentially until it falls within the range 0 < ¢; < N, where it will remain thereafter.

Proof. The state change equation gives

g rﬂra;\;r%aoJ < erF(N—l]z]ﬂL (N—l)zJ _ LC_JJ +N-1.

J N
The result follows. [

There are two stable states, the all-zero state (or bottom) state, and the top state where ¢; = ¢;
1<i<m-1),¢n=¢n—1,and a; = N —1 (0 <i <m —1). For the top state, h = ¢ so the
output from the top state is the all N — 1’s sequence. That is, it is the N-adic representation of
the integer —1. For any periodic state other than the top state, if ¢; = 0 then the memory cell ¢;
will eventually drop to 0 and it will remain there forever. So the periodic states must satisfy ¢; = 0
whenever ¢; = 0. Let us say that a state satisfying this condition is an admissible state. Then
the collection of admissible states is in one to one correspondence with the elements of Z/(q), the
correspondence being given by equation (10.7).

10.4 Division by ¢ in the N-adic numbers

Let g= -1+ q¢N+ -4+ ¢,N™ and let h = hg + hy + - -+ + hy be the base-N expansion of two
integers. We wish to calculate the quotient —h/q in the N-adic numbers. Just as in Section 10.2
this may be accomplished using the Galois mode FCSR of Figure 10.3 by initializing the cell and
memory values to 0, and then presenting the coefficient sequence for h as a signal (synchronized
with the FCSR clock) to the leftmost adder. After m steps the FCSR will acquire the state shown
in Figure 10.4, so by Theorem 10.3.1 the output sequence will be the N-adic expansion of —h/q.

10.5 Galois mode d-FCSR

In this section we describe Galois mode circuitry for a binary d-FCSR, so this is the situation
of an AFSR based on the ring R = Z[r] with 7 = 2 and S = {0,1}. A general (non-binary)
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Figure 10.4: Division by ¢ in Zy.

Galois d-FCSR (see Section 9.2) may be constructed similarly. In the Galois architecture for a
binary d-FCSR, the carried bits are delayed d — 1 steps before being fed back, so the output of
the memory or “carry” cell ¢; is fed into the register cell a;14 2. (Recall that the register cells are
numbered starting from ag.) If there are r feedback multipliers ¢1, ..., ¢, and r carry cells ¢1, ..., ¢,
then r + d — 1 register cells aq, .. ., a,.q_2 are evidently needed since ¢, will feed into a,4_5. This
is illustrated in Figure (10.5) for d = 2. If d > 3 the situation is more complicated and a some
number ¢ of additional memory cells ¢,,1, ..., ¢.1¢ are needed, which feed into ¢ additional register
cells ayyg_1,...,ar141q-2- It is not at all obvious at first glance whether the amount ¢ of extra
memory can be chosen to be finite without incurring a memory overflow during the operation of
the shift register. However we show later (in Theorem 10.5.1) that this is indeed the case and
henceforth we suppose that ¢ has been chosen as described there, sufficiently large so as to avoid
any memory overflow.

Suppose a general (Galois) d-FCSR is initially loaded with given values (aq, a1, ..., Gritrqg—2;
c1, C2, ..., Cr4t). The register operates as follows. (To simplify notation, set ¢; = 0 for j > r + 1,
set ¢; =0 for j <0 and also for j > r+t+1, and set a; =0 for j > r+t+d—1.) For each j
(with 1 < j <r+t+d—1) form the integer sum o; = apq; + a; + ¢j_4+1; it is between 0 and 3.
The new values are given by a’_; = 0; (mod 2) and ¢; = o; (div 2). That is,

2¢; +aj_y = aoq; +a;+cjapn for 1<j<r+t4+d—1 (10.9)

(Note, for example, that these equations say a,,,,, o = Cr4+.)
Assume ¢, # 0 and define the connection element

g=—1+) qr' €Z] (10.10)

=1
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Figure 10.5: Galois 2-FCSR

Theorem 10.5.1. Suppose a Galois d-FCSR with connection element q € Z[r| has initial state
(ao, cee s Qpytrd—25C1,Co, . .. ,CT_H). Set

r+t+d—2

h= Y (a;+ciam)r € Zn]. (10.11)

i=0
If t satisfies
2
t> i log, (21 — 1),

then no memory overflow will occur, and the output sequence b = (bo,by,...) coincides with
seq,(—h/q), the m-adic expansion of the fraction —h/q € Z.. Conversely if b = (by,b1,...) is
a periodic sequence with corresponding m-adic number § = —h/q and if ¢ + 1 is nonnegative, then
q 1s the connection element of a Galois d-FCSR which generates the sequence b. The change of
state is given by h — w'h. Hence the output sequence is:

bi =7 'h (mod ¢) (mod 7).

Proof. First we make our model mathematically simpler by thinking of the state as two doubly
infinite sequences (---,a_1,ag,ay, --;-++,¢_1,Co, C1,Ca, -+ +), We assume that initially

ci=a;=0fori<0andj<-1 (10.12)

and we update the state using equation (10.9) for all j. Then it is immediate that equation (10.12)
holds throughout the infinite execution of the d-FCSR. It can also be seen that if initially

ci=a;=0fori>r+tandj>r+t+d—1, (10.13)
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then equation (10.13) holds throughout the infinite execution of the d-FCSR [61]. We omit the
details and assume this is the case.
As the d-FCSR iterates its state change, it goes through an infinite sequence of states,

s(n) =(---,a_1(n),ap(n),ar1(n),---;---,c_1(n),co(n),c1(n), ca(n),---),n > 0.

Each s(n) can be thought of as an initial state. Thus for each n > 0 there is an associated output
sequence (bo(n),b1(n),ba(n)---) = (ap(n),ap(n + 1),a9(n + 2)---). Each such sequence has an
associated m-adic number

B(n) = Zbi(n)ﬂn = Z ao(n + )7 (10.14)

We also have a sequence of elements of R

) = Yoasln) +ecan(m)r = 3 (@) + e aas ()

We show that for all n, h(n)+¢B(n) = 0. By multiplying out the formulas (10.10) and (10.14) for
q and B(n) we see that h(n) + ¢B(n) = ag(n) — bp(n) (mod 7) = 0. That is, each h(n) + ¢B(n)
is divisible by 7. Now, compute

hk) +qB(k) = Y (ai(k) + cimar1 (k)7 + glao(k) + 7 B(k + 1))

= ag(k) + Y (ai—a(k+ 1)+ 2ci(k + 1) — qiag(k))7" + qao(k) + qr B(k + 1)

i>1

= Y (ai(k+1)+2c(k+1))7' + qnB(k + 1)

1>1

= 7> ai(k+ 1)’ + ) ik + D)t grB(k +1)

i>0 i>1
= WZ ai(k+)r" + 7 Z Cicar(k+ 17"+ qnB(k+ 1)
i>0 i>d

= w(h(k+1)+qB(k +1)).

This allows us to prove by induction that for all 7, 7* divides every h(k) + ¢B(k). Thus h(k) +
qB(k) = 0 as we claimed. O

Corollary 10.5.2. There is a mapping from the set of periodic states of the Fibonacci d-FCSR with
connection element q to the set of periodic states of the Galois d-FCSR with connection element q
so that corresponding states produce the same output.
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Our understanding of the Galois d-FCSR architecture still leaves much to be desired. We do
not know how to intrinsically characterize the strictly periodic states. We don’t even know how
to find a class of “admissible” states for which the output is strictly periodic (as we did in the
case of the FCSR). We do not know an optimal estimate on the amount of memory needed for the
d-FCSR (except in the case d = 2). We do not know how to describe the contents of each cell as
a function of time.

10.6 Linear registers

The relationship between Fibonacci and Galois modes of LFSRs, FCSRs, and d-FCSRs can be
made clearer by considering various generalizations. We start by considering the state of an LFSR
or the basic register of an FCSR or d-FCSR to be a vector over some ring (the ring containing the
output symbols for an LFSR and Z for an FCSR or d-FCSR).

Consider first an LFSR over a ring R in Fibonacci mode with connection polynomial ¢(x) =
S giat — 1 € R[z]. As in Section 6.2, the state change is given by multiplication by a matrix

0 1 0o --- 0
0 o --- 1 o0 |, (10.15)
0 o -+ 0 1
m dm-1 " 42 (g1

where the state is treated as a column vector. Similarly, the state change of the associated Galois
mode representation is given by multiplication by the matrix

g 1 0 -0
e 0 1 -0
: (10.16)
qm—1 0 0 1
G O 0 0

Both modes can be generalized by choosing an arbitrary m x m matrix M over R and defining
the state change operation s — Ms = s’. Furthermore, the output function can be replaced by an
arbitrary linear function of the state, s — v - s where v is a length m vector over R and - is the
inner product. We call such a sequence generator a linear feedback register or LFR of length m. A
special case of this construction, called a ring LFSR was treated by Mrugaski, Rajski, and Tyszer

[149].
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Theorem 10.6.1. Suppose R is a field. If a = ag,aq,--- is the output sequence from a length
m linear feedback register over R based on matriz M and vector v, then a is also generated by a
LFSR with connection polynomial det(I — xM).

Proof. Forn =0,1,--- =, let s(n) = (so(n), -, sm-1(n)) denote the state at time n. Let S(z,k) =
(So(z, k), -+, Sm_1(z, k) = >0~ s(n + k)™ be the generating function of the state starting at

time k. It suffices to show that det(/ — xzM)S(z,0) is a vector of polynomials of degree less than
m.
For every k > 0 we have the relation

S(x, k) =s(k) +xS(x,k+1) =s(k) + aMS(x, k).

Thus
(I —axM)S(z, k) =s(k)

is a vector of scalars.

Recall from linear algebra that for any square matrix L over any ring, there is a matrix adj(L),
the adjugate of L, satisfying adj(L)L = det(L)I, and that adj(L) can be expressed as a polynomial
in the entries of L of degree less than the dimension of L (Cramer’s rule). It follows that

det(I —aM)S(z, k) = adj(I — xM)s(k)
is a vector of polynomials of degree less than m as we wanted. O]

Thus in some sense LFRs are no more powerful than LFSRs. However, it may be possible
to find an LFR that has a more efficient implementation — e.g., fewer total taps so that fewer
operations are needed in a software implementation, or a smaller maximum row Hamming weight
so that update time is smaller in a hardware implementation.

A similar generalization can be made of FCSRs. As with Galois mode FCSRs, we need a vector
of carries. First we choose a nonnegative integer N and let 7' = {0, 1,---, N—1}. The state consists
of a vector s of elements of T', representing the main register, and a vector ¢ = (cg,¢1,- -+, Cm_1)
of integers, representing the carry. The state change is determined by an m x m integer matrix
M and the output is determined by an integer vector v. The state change is given by

(s,c) = (Ms+c (mod N), Ms +c (div N)) = (¢,c),

and the output is (v -s) (mod N). We call the resulting sequence generator an N-ary feedback
with carry register (FCR) of length m. This model was studied by Arnault, Berger, Lauradoux,
Minier, and Pousse in a special case [2].

Theorem 10.6.2. If a = ag,aq,--- is generated by a length m N-ary FCR based on matriz M
and vector v, then a is also generated by an N-ary FCSR with connection integer det(I — NM).
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Proof sketch. The proof is similar to the proof of Theorem 10.6.1. With notation analogous to the
notation above, for every k£ > 0 we have the relation

S(N, k) = s(k) + NS(N, k +1).

We also have
sin+k+1)+Nc(n+k+1)=Ms(n+k)+c(n+k).

Thus
S(Nk+1) =) s(n+k+1)N' =) (Ms(n+k)+c(n+k)—Ne(n+k+1))N' = MS(N, k)+c(k)
n=0 n=0

It follows that
det(I = NM)S(N, k) = adj(I — NM)s(k)

is an integer vector. O

Again, it may be possible to find an FCR that has a more efficient implementation

10.7 Exercises

1. Describe a Galois LFSR whose output is the Fibonacci sequence 1,1,2,3,5,8,

2. Consider the linear register in Figure 10.6 that combines the Galois feedback and the Fibonacci
feedback.

a. Show that this register has matrix representation

P1 1 0 0
0 1 0
D3 0 O 1

Pa+T4 T3 T2 T1
and that its characteristic polynomial is

at — 2% (p1+ 1) — 2% (ro + p2 — r1ip1)
—x (r3 + p3 — rop1 — ripe) — (T4 + ps — r3p1 — TaP2 — T1P3) .

b. Show that the output sequence is an m-sequence provided this polynomial is primitive.
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Figure 10.6: Galois/Fibonacci LFSR.

Figure 10.7: Division by 5 in Zs.

3. Consider a 1-stage Galois FCSR over Z/(3) with ¢ = —1+2-3 =5. Let h = 1+2-3+2-3% = 25.
As in Section 10.4 imagine h being used as an input signal to the FCSR, by adding two “phantom”
cells, so that after running the register for one step it attains the state shown in Figure 10.7. Show
that the output of the register is the sequence 1,1,2,2,2, .- and verify that this is the 3-adic
expansion of —5.

4. a. Use a computer algebra program such as Mathematica or Maple to find all the maximal

length binary FCSRs of length 128 having 4 taps. In other words, find all the prime numbers
p with 2128 <p+1 <2422+ ... +2'28 guch that 2 is a primitive root modulo p and so that
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the dyadic weight of p + 1 is four, i.e. p = —1 + 2%+ 2° 4+ 2¢ + 24 (There are fewer than 200
such primes.)
b. Take the first of the FCSRs that you found in the previous exercise and, starting with the

“impulse” initial state = @ 10]0]---]0]1] consider the state vector to be the binary expan-

sion of a 128-bit integer. List the (decimal equivalent) of the first 100 such integers that are
generated by your FCSR.

5. Let R be aring. Generalize the notion of a linear feedback register to an affine feedback register
over R by allowing state change operations of the form

s — Ms+w,

where M is an m X m matrix over R and w is a constant vector over R. If R is a field and a is
an output sequence from this affine feedback register, then prove that there is a LFSR of length
at most m + 1 that outputs a.
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Part 111

Pseudo-Random and Pseudo-Noise
Sequences
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Chapter 11 Measures of Pseudorandomness

Golomb’s randomness postulates. In [53], [51], S. Golomb proposed three desirable criteria
that one might ask of a binary pseudorandom sequence a.

1. It should be balanced,
2. it should have the run property (Section 11.2.b), and
3. it should have an ideal autocorrelation function.

These concepts are described below. Since 1967, new applications have created an enormous de-
mand for pseudorandom sequences that exhibit additional, more sophisticated randomness prop-
erties. Some of these requirements are known to be incompatible with others. Currently, for any
given application, one generally draws up a list of required randomness properties and then goes
about trying to find or to design a pseudorandom sequence that meets these requirements. Al-
though Golomb’s list looks rather minimal by today’s standards, it is an amazing fact that there
are still only a handful of known techniques for constructing sequences with all three of these
properties. In this section we will describe some of the most common measures of randomness.

11.1 Why pseudo-random?

Random numbers (in one sense or another) have applications in computer simulation, Monte Carlo
integration, cryptography, randomized computation, radar ranging, and other areas. In each case
you need a sequence of numbers (or of bits) that “appears” to be “random”, yet is repeatable.
Of course these are contradictory requirements. If we know the sequence beforehand, then it is
not random. So instead, we settle for sequences that are “pseudo-random”, meaning that they
behave in the same way that a truly random sequence would behave, when subject to various tests
(usually statistical tests), but they are generated by a specific repeatable rule. In other areas,
such as spread spectrum communication, we want sequences that pass specific statistical tests
that allow us to draw specific conclusions about the systems that use them.

Repeatability is important in the case of spread-spectrum communications and cryptography
where a receiver must know the same sequence as a sender in order to decode a message. But it is
also essential for simulations, Monte Carlo integration, and sometimes even randomized computa-
tion. Suppose we are simulating traffic flow along a highway, by having cars enter the highway at
random times and places. We use a truly random generator (which counts cosmic rays or perhaps
measures activity on the internet) to create this “arriving traffic” data. We are hoping to alleviate
a bottleneck that develops at a certain spot, say, by widening the road or by eliminating a bend
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in the road. After making these changes to the highway, we run the simulation again and discover
the bottleneck has disappeared. Is this apparent success the result of our changes to the road, or
is it an artifact of the pattern of arrival of new traffic? We can only be certain if we can run both
simulations with the same pattern of arriving traffic.

We can consider a variety of measures of randomness. These include statistical measures such
as large period, balance, uniform distribution of blocks, chi-square, autocorrelation and others,
and security measures such as linear complexity or linear span, N-adic complexity, nonlinearity,
and resilience. In some cases statistical tests for families of sequences must be considered, such
as pairwise shifted cross-correlations.Typically these generators are chosen so as to give sequences
with extremely long periods, say, 10'°°, which makes it impossible to perform these tests on the
actual sequence of numbers. Instead, one hopes to be able predict or theoretically compute the
outcome of the test based on the knowledge of how the sequence was constructed. There is often a
tradeoff — in order to pass many tests it may be necessary to make the sequence generators very
complex, making it harder to analyze the the sequences with respect to the randomness measures.

Depending on the application, some of these measures may be more important than others.
For spread spectrum applications, correlation coefficients are vital. For cryptographic applications,
complexity measures with respect to classes of sequence generators give some estimate as to the
difficulty of breaking a given cipher. For Monte Carlo integration, certain statistical measures
(such as the discrepancy) provide precise bounds on errors in integration.

It is essentially hopeless to generate pseudo-random sequences that pass all statistical tests.
The pseudo-random generators themselves provide statistical tests that the sequences cannot pass.
Short of this, in complexity theoretic cryptography we typically want sequence generators that pass
all polynomial time computable statistical tests. There are various constructions of such sequence
generators, all depending on some believable but unconfirmed complexity theoretic assumptions.
In general such generators sacrifice speed to a degree that is unacceptable for the applications we
have in mind, and we do not consider them in this book.

It is common to speak of a “random” sequence or other object, but we must be clear what we
mean by this. There is no set of sequences that can be identified as the random ones. Rather,
when we say that the random sequence has some statistical property, we are making a statement
about the expectation of a statistical measure.

A further problem is that the very properties that are taken to me a sequence is random are
typically uncommon. For example, we typically ask that a binary sequence of even length n have
equal numbers of Os and 1s. But the probability that a sequence has this property is

so such sequences is are quite special.
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11.2 Sequences based on an arbitrary alphabet

Suppose a = ag,aq,--- is a sequence with period T (so ar = ag) whose elements a; are taken
from some finite alphabet A. A block b = (by, by, - - -, bx_1) of length k is an ordered sequence of k
elements, b; € A. An occurrence of the block b in (a single period of) the sequence a is an index
i < T —1 such that (a;,aj11, -+, a1 x—1) = b. (In the parlance of cryptography, an occurrence of
a block b is called a k-gram.) A run of length k is a block of k consecutive identical symbols that
is not contained in a longer block of consecutive symbols.

11.2.a Distribution of blocks.

What is the expected number E[P(k,b)] of occurrences of a given block b of length k& in sequences
a of period T? There are |A|” possible such sequences. The number N(b,7) of occurrences of b
starting at position i among all sequences is |A|7~* since choosing the k values for the block b
leaves T — k values free. Thus the total number of occurrences of b among all sequences is T'|A|T*.
So the average number of occurrences of b in any one sequence is

T
E[P(k,b)] = —.
[P(k.B)) =
Let us say the sequence a is equidistributed to order r if, for every k (1 < k <) and for every
block b of length k, the number N(b) of occurrences of b within a single period of a satisfies

[T/IA]*] < N(b) < [T/|A[F].

A sequence is equidistributed only with low probability: with high probability some blocks will
occur more often and some blocks will occur less often. However for many purposes, such as
sampling, equidistribution of blocks is a desirable property. In cryptography, if an external observer
knows the extent to which a sequence is not equidistributed, she can often exploit this knowledge
to predict the sequence on the basis of partial information.

The periodic sequence a is balanced if it is equidistributed to first order (r = 1), meaning that
each symbol in the alphabet occurs either |T'/|A|| or [T/|A|] times in a single period of a. Now
suppose that a is a periodic sequence whose symbols a; are in a finite group G. A related notion
of balance arises by considering a nontrivial character y of the group G.

Definition 11.2.1. If a = (ag, a1, ) is a periodic sequence of period T with entries a; € G then
the imbalance of a with respect to a nontrivial character x is
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where u(g) is the number of occurrences of g € G in a single period of a. The imbalance of
an eventually periodic sequence is the imbalance of one complete period in the periodic part. An
eventually periodic sequence a is balanced with respect to x if |Z,(a)| < 1.

If G is the cyclic group Z/(NN), then its group of characters is also cyclic and is generated by
the character x (i) = ¢* where ¢ € C is a primitive N-th root of unity. In this case we write Z(a)
for Z, (a), simply called the imbalance of a. If a € Q is a rational number with N-adic expansion
a = ag+ a;N + - - - then define the imbalance of a to be the imbalance of its coefficient sequence
(which is eventually periodic).

Proposition 11.2.2. Let G be a finite Abelian group with |G| = N elements. Let a be a periodic
sequence of elements a; € G and period T. Suppose that a is balanced with respect to every
nontrivial character x : G — C. Then a is balanced. Conversely, suppose that a is balanced and
that

T (mod N) € {-1,0,1}.
That 1is, the period of a differs from a multiple of N at most by one. Then a is balanced with
respect to every nontrivial character x.

Proof. Let p(g) be the number of times that ¢ € G occurs in a single period of the sequence a.
Consider its Fourier transform, i, which is a function on the set of characters. For any character
X we have:

Zi(a) =D _x(a) = 3 nlg)x(g) = Bx)

geG
The Fourier inversion formula says that for any g € G,

Let us write T'= Nh +r with 0 <7 < N — 1 and write € = ¢(g) for the above sum, so that
plo) = h+ o (r+ o).

The hypothesis of the Proposition implies that |e] < N — 1 since there are N — 1 non-trivial
characters of G. Therefore 1 — N <r+¢e < 2N — 2. But pu(g) is an integer so r + € is a multiple
of N, hence the only possibilities for r + ¢ are 0 or N. These give u(g) = h or u(g) = h+ 1. Thus,
the sequence a is balanced.

The converse statement (which requires that 7' (mod N) € {—1,0,1}) follows from Proposition
2.3.2. O]

Proposition 11.2.2 implies, for example, that m-sequences and de Bruijn sequences (see Section
11.2.c below) are balanced with respect to every nontrivial character.
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11.2.b Run property.

What is the expected number E[Q(k)] of runs of length k in sequences a of period T'?7 Let Q(k, i) be
the number of occurrences, among all possible sequences, of a run of length k starting at position
i. Let us suppose that k¥ < T — 2. There are |A| possible choices for the symbol that repeats in the
run. There are |A| — 1 possible choices for the symbol that precedes the run, and |A| — 1 possible
choices for the symbol that immediately follows the run, and |A| choices for each of the remaining
T — k — 2 symbols. So

Q(k, i) = |A[(JA] = 1A

Adding these up over all possible start positions ¢ and dividing by the total number of sequences,
|A|T gives

ElQ(k)] = T("j‘,—‘”

Let us say that a periodic sequence a has the run property if the number N (k) of runs of length
k in the sequence satisfies

L%J < N(h) < [—T("‘z"kj)ﬂ

11.2.c de Bruijn sequences

The study of these sequences goes back to [20]. See also [73] Section 9.

Definition 11.2.3. The sequence a is a de Bruijn sequence of span k if every block of length k
occurs exactly once in (each period of) a.

Proposition 11.2.4. Suppose a is a de Bruijn sequence of span k. Then

1. The period of a is T = |A|.

2. For any t < k and for any block b of length t, the number of occurrences of b within a single
period of a is |A|*~!, hence a is equidistributed to order k.

3. For any m < k — 2 the number of runs of length m within a single period of a is exactly

AP (Al - 1)%. (11.1)

The number of runs of length k — 1 is |A|(|A] — 2). The number of runs of length k is |A|.
There are no runs of length greater than k.
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Proof. Part (1) is left to the reader, and part (2) just counts the number of ways of completing b
to a block of length k. For part (3), first consider the case 1 < m < k —2. A run of length m is a
string of the form xyy - - - yz where x and z are distinct from y. By part (2), for each such choice of
x,v, 2 there are |A|*=™~2 occurrences of this block, and there are |A|(|A| — 1)? such blocks, which
gives equation (11.1). If m = k — 1 then each block zyy---y with = # y occurs once. Having
chosen y € A there is a single value x = zy for x such that another y occurs after this block.
Thus, we have two forbidden values x # vy, zo for z, giving a count of |A|(]A| — 2) runs. Next,
suppose m = k. For each y there is a single block of k consecutive y's within a single period,
giving |A| such runs. Finally, if there were a run of length greater than k consisting of a single
element y then there would be two or more occurrences of the block ¥, y, - - -,y of length k£, which
is a contradiction. O

11.2.d Punctured de Bruijn sequences

If a is a deBruijn sequence of span k, then for each by € A the block by, by, - - -, by of length k occurrs
exactly once. The periodic sequence a’ is said to be a punctured or modified de Bruijn sequence, or
a pseudonoise sequence, if it is obtained from a de Bruijn sequence a by deleting a single by from
the single occurrence of this block bybg - - - by (in each period). It follows that such a punctured de
Bruijn sequence a’ has period |A|* — 1. From Proposition 11.2.4 we conclude the following. For
any t < k the number of occurrences of a fixed string b of length ¢ is |A|*~! except for the single
string bobg - - - by of length k, which occurs |A|*~! — 1 times. Fort =1, A= {0,1,---,N — 1}, and
by = 0, this is the N-ary generalization of Golomb’s first randomness postulate. For any m < k—1
the number of runs of length m in a’ is |A[*"™71(|A] — 1)2, and the number of runs of length & is
|A| — 1. This is the the generalization of Golomb’s second randomness postulate.

11.2.e Shift register generation of de Bruijn sequences

Suppose a is a de Bruijn sequence or a punctured de Bruijn sequence of span k with elements
in some finite alphabet A. Consider a generalized (nonlinear) feedback shift register as in Figure
11.1.

The cell contents are elements of A, and the feedback function f : A¥ — A is an arbitrary
function. The output from the rightmost cell will be an eventually periodic sequence. It is easy
to see that there exists a unique such f : A¥ — A so that the output coincides with the de Bruijn
sequence a as follows. Let b = (bg, by, ---,bx_1) be a block of size k. It occurs once in each period
of the sequence a and it will be followed by some element, let us call it b;. Imagine loading the
shift register with the initial loading given by the block b. If the shift register is to output the
sequence a, then after shifting one step, the new contents of the leftmost cell must be b;. So we
are forced to define f(bg,by1,---,bx—1) = bx. Such a definition will not lead to any contradictions
because the block b occurs only once in (each period of) the sequence a. Moreover, in the case
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Qp—1 | Ag—2 ay ag ——

Figure 11.1: Generalized Feedback Shift Register of Length k.

of a de Bruijn sequence, this prescription defines f on all elements of A* (that is, on all blocks
of size k). In the case of a punctured de Bruijn sequence, there is a single block (bg, bo, -+, bo)
of size k that does not occur in a. In this case we define f(bg,bo,---,by) = by, so that the state
(bo, by, - - -, bp) is “stable”. Starting the shift register at any other state will produce (a shift of)
the sequence a.

More generally, if a is any periodic sequence, then there is a minimal block length k so that
every block of length k occurs at most once in a. We call k the nonlinear span of a. By a similar
construction to the one in the preceding paragraph, we can construct a nonlinear feedback register
of length k that outputs a (just fill in any undetermined values of f arbitrarily). This is a smallest
nonlinear feedback shift register that outputs a.

In some sense, all binary de Bruijn sequences are “known”: there are iterative procedures for
starting with a de Bruijn sequence a of span k and producing de Bruijn sequences of span k41 that
contain a as a subsequence. (See [1, 7, , ].) However one does not necessarily derive from
this process a simple prescription for finding the feedback function f. Only in the case of a binary
m-sequence does one have a good understanding of the construction of the feedback function f
(see Section 13). One of the long-standing unsolved problems in the theory of de Bruijn sequences
is that of finding a simple prescription for those feedback functions f which produce de Bruijn and
punctured de Bruijn sequences. In Section 15.1.c we describe a procedure for generating punctured
de Bruijn sequences over a non-prime field, using an algebraic feedback shift register.
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11.3 Correlations

11.3.a Classical correlations

Let G be a finite Abelian group. Let a and b be periodic sequences, with the same period T,
of elements of G. For any integer 7 let a” be the 7-shift of a, that is, a™ = (a,,a;11, ). Let
X : G — C* be a character of G. (See Section 2.3.a.) It takes values in the unit circle and

X(9) =x(g) " =x(g7").

Definition 11.3.1. The (periodic) cross-correlation function of the sequences a,b with respect to
the character x is the function

=
L

Cab(T) = ) x(ai)X(bisr)- (11.2)

]

Il
o

The (periodic) autocorrelation function Aa(7) = Caa(T) of the sequence a is its cross-correlation
with itself.

A sequence a has ideal autocorrelation function if for every nontrivial character y and for every
nonzero shift 7 we have: |Aa(7)] < 1. If G = Z/(2) = {0,1}, and T = 2% — 1 for some k, then
the stronger condition that A,(7) = —1 for all 7 that are not multiples of 7" is Golomb’s third
randomness postulate.

Remarks. In the case of binary sequences (G = {0, 1}) there is a single nontrivial character x,
and the cross-correlation C, p(7) is the number of agreements minus the number of disagreements
in a single period of a and b”. In most applications the group G is cyclic, so the group G of
characters of G consists of all the powers of a single (“primitive”) generator x, cf. Section 2.3.a. In
these cases, it is traditional to consider only the cross-correlation with respect to such a primitive
character y. However, as we shall see, correlations tend to be remarkably insensitive to change of
character.

11.3.b Expected correlation values

Let G be a finite Abelian group and let y be a nontrivial character of G. Fix a positive integer
T and consider the collection § of all periodic sequences of elements of G with period T'. Let 7
be an integer (to be interpreted as a “shift”) with 0 < 7 < T — 1. In this section we consider the
expected value of the autocorrelation function, A,(7), averaged over all elements a € S and the
expected value of the cross-correlation, C, p(7), averaged over all pairs of elements a,b € S.
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Proposition 11.3.2. Let x be a nontrivial character of G. The expected value of the autocorrela-
tion Aa(T) with respect to x is

T ifrt=0
ElAa(7)] = { 0 otherwise
The expected value for the square of Aa(T) is
T ift=0
E[AL(7)Y] =13 2T if T is even and 7 =T/2 and x* =1

T otherwise.
The variance of Aa(T) is

0 ifr=0
VI[Aa(T)] =< 2T if T is even and 7 =T/2 and x* = 1
T  otherwise.

The expected value, the expected value of the square, and the variance of the cross-correlation with
respect to x, Cap(T), of a pair of sequences a and b are

ElCan(r)] =0, E[Can(r)?] =T, and V[Can(r)] =T.

Proof. There are |G|T sequences in . For any such sequence a the autocorrelation with shift
T=01s

so the expected value is T" as well. If T" = 1, then this is the only case, so we may now assume
T>2.
If 7 # 0 then the expected value of A,(7) is

E[ szal az+r :GLZZ az—i—r
es

aeS =0 =0 a

For any g,h € G and 0 < i < T, there are |G|T~2 sequences a € S such that a; = g and a;,, = h.
This gives

E[A.()] = GL Z G123 ) x(9)x(—h) = ﬁ i (Z x(9)> =0

g€G heG
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by Proposition 2.3.2.

Similarly, if 7 = 0 and if a € S is any sequence then A,(0)> = T2. If 0 <7 < T — 1 then

T-1
E[AL(T)?] = |G|TZZX a;)X(@itr Z x(@jir)
acS =0 7=0
1 T—1T-1
= G—ZZH 6T
=0 7=0
where
Z j» ZX az az-i-T ( )X(aj-l—T)'
acS

There are five cases to consider. For T" > 3, they are listed in Table 11.1 together with the number
N of pairs 4,5 with 0 < 4,5 < T — 1 for which each case occurs. The expected values of the
autocorrelation follow from the data in Table 11.1.

L N N H H
Type | Description /o) (r=2/2) 2 2=
(a) | i4,4,i+ 7,7+ 7 all distinct (T -3)|T(T-2) 0 0
(b) |i=jandi+T=j+7 T T |G|T G|T
(c) |[i=j+7andi+7# 7 (mod T) T 0 0 0
(d) |i=j+7andi+7=j (modT) 0 T 0 |G|T
() |j=i+7and j+7#i (modT) T 0 0 0

Table 11.1: Numbers of Occurrences of Values of H

In case (a), the index ¢ can be chosen arbitrarily (7" choices), then j is chosen with three
forbidden values, 7,7 + 7,4 — 7 (mod T'). (If 7 = T'/2 then this amounts to only two forbidden
values.) If T > 4 then the four values ¢ = a;, h = aj1r, ¢ =
independently so

aj, W = aj;, may be chosen

H(i o) = 1GI" Y Y D x(@x(Wx(g)x(R) =0

g€G heG ¢'€G WEG

again by Proposition 2.3.2. In case (b) the index i is chosen arbitrarily so there are T" choices. The
values g = a; and h = a;, may be chosen independently so in this case

H(i,j.m) =GI"2 Y > x(g)x(h)x(9)x(h) = 1G|".

g€G heG
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Cases (c) and (e) are similar, as is the cross-correlation calculation. In case (d) we find

H(iaja T) = Z X2(ai)X2(aj)

aesS

which is 0 if x> # 1 and is |G|T if x* = 1.

If T'=2, then 7 =1 = T/2 and the table is still valid. If ' = 3, then 7 # T'/2 and case (a)
reduces to 0, so the table is also still valid.

The variance of a random variable X is V|[z] = E[X?] — E[X]?, so the results on the variances
follow immediately. [l

11.3.c Arithmetic correlations

In this section we define a with carry analog of the usual notion of cross-correlations.

For any N-ary sequence b, let b” be the sequence formed by shifting b by 7 positions, b = b;; ..
In terms of Section 11.2.a, the ordinary cross-correlation with shift 7 of two N-ary sequences a
and b of period T is the imbalance of the coefficient sequence of the difference between the power
series associated with a and the power series associated with b”. In the binary case this is the
number of zeros minus the number of ones in one period of the bitwise exclusive-or of a and the
7 shift of b [54]. The arithmetic cross-correlation is the with-carry analogue.

Definition 11.3.3. Let a and b be two eventually periodic N-ary sequences with period T and
let 0 <17 <T. Let a and b" be the N-adic numbers whose coefficients are given by a and b”, so
a =seqy(a) and b™ = seqy(b7). Then seqy(a —b") is eventually periodic and its period divides
T. Fiz a non-trivial character x of Z/(N), x(x) = ¢* with { a primitive complex Nth root of
unity. The arithmetic cross-correlation (with shift 7) of a and b is

Clo(1) = Z(a — b)), (11.3)

where Z is the imbalance with respect to x (see Definition 11.2.1). When a = b, the arithmetic
cross-correlation is called the arithmetic autocorrelation of a and is denoted AZ(T).

The sequences a, b (of period T') are said to have ideal arithmetic correlations if,

T ifa=b"
0 otherwise

cam={

for each 7 with 0 < 7 < T. A family of sequences is said to have ideal arithmetic correlations if
every pair of sequences in the family has ideal arithmetic correlations.
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11.3.d Expected arithmetic correlations

In this section we investigate the expected values of the arithmetic autocorrelations and cross-
correlations for a fixed shift. We also compute the second moment and variance of the arithmetic
cross-correlations. Computing the second moment and variance of the arithmetic autocorrelation
is an open problem.

First we do some initial analysis. Fix a period T. By Theorem 5.4.4, the N-ary sequences of
period T are the coefficient sequences a of rational numbers of the form a = —f/(NT — 1) with
0< f<NT—1.

Lemma 11.3.4. Ifa and b are distinct N -adic numbers whose coefficient sequences seqy(a), seqy ()
are periodic with period T, and a — b € Z, then {a,b} = {0,—1}.

Proof. First note that the N-adic expansion of an integer is strictly periodic if and only the integer
isOor —1. Leta=—f/(NT—1)and b = —g/(NT—1) with 0 < f,g < NT—1. Assume that f > g.
Then a—b = —(f —g)/(NT —1) is strictly periodic and nonzero, so —1 = a—b = —(f—g)/(N*—1).
Thus f = g+ (N7 — 1). The only possibility is that f = N7 — 1 and g = 0. That is, a = —1 and
b= 0. The case when g > f is similar. n

Next fix a shift 7. Then the 7 shift of a corresponds to a rational number

_NTfrf

aT:Cf’T+—NT_17

where 0 < ¢, < N777 is an integer.
Now let b be another periodic N-ary sequence with the same period 7" and corresponding to

the rational number
-9
NT —1°

Then the arithmetic cross-correlation between a and b with shift 7 is

A _ -/ —N""7g
Can(T) = Z <—NT — (cg; + NT 1 >>

NT—Tg _ f
= Z (W - Cg77) . (114)

b:

Theorem 11.3.5. For any 7, the expected arithmetic autocorrelation, averaged over all sequences
a of period T, is

T
A —
EAL(T)] = NT—ged(r,T) "
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The expected cross-correlation, averaged over all pairs of sequences a and b is

Bl (7)) = o

Proof. If the 7 shift of b equals a, then C::b(T) = T. Otherwise a and b” are distinct periodic
sequences. In particular, by Lemma 11.3.4 a — b, is an integer only if {a,b,} = {0, —1}.
First we consider the autocorrelation. Let

NT 1
_ (N -1f
S = Z A (W - Cf;,-) .

f=0

It follows from equation (11.4) that the expected arithmetic autocorrelation is E[AZ(7)] = S/NT.
By the first paragraph of this proof a — a, is an integer only if a, = a. When it is not an
integer, the periodic part of
(N -1)f
—_— Cf7‘r
NT —1
is the same as the periodic part of

(NT=" —1)f (mod NT —1)
NT —1 ’

where we take the reduction modulo N7 —1 in the set of residues {— (N7 —2), —(NT-3),---,—1,0}.
In particular, this latter rational number has a strictly periodic N-adic expansion with period T,
so we can compute its contribution to S by considering the first T" coefficients.

Let d = ged(T, T — 7) = ged(T, 7). Then ged(NT — 1, NT=™ — 1) = N9 — 1. Then the set of
elements of the form (N7=7 — 1)f (mod N7 — 1) is the same as the set of elements of the form
(NY—1)f (mod NT —1). Thus

S:Nilz((f\fd—l)f (mod NT—l)).

NT —1
F=0

Now consider the contribution to S from the ith term in the expansion in each element in the
sum, say corresponding to an integer f. If we multiply f by N7~* modulo N7 — 1, this corresponds
to cyclically permuting the corresponding sequence to the right by 1" — ¢ places. This is equivalent
to permuting to the left by ¢ positions, so the elements in the ¢th place become the elements in the
0th place. Moreover, multiplying by N7~ is a permutation modulo N7 — 1, so the distribution of
values contributing to .S from the 7th terms is identical to the distribution of values from the Oth
term.
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To count the contribution from the Oth position, let
NT -1
Nd —1
and f =u+vD with 0 <u< D and 0 <v < N¢—1. Then
(N*—1)f (mod N* —1) = (N — 1)u (mod N* —1) = (N* — 1)u — (NT - 1).

D=

Hhos (N —1)f (mod NT —1) (N?—1)
© - LY (11.5)

NT —1 NT —1
In particular, the contribution to S from the Oth position depends only on u. Thus we can count
the contributions over all ¢ with 0 < u < D, and then multiply by N4 — 1. The contribution
from the Oth position for a particular u is given by reducing the right hand side of equation (11.5)

modulo N. We have
(N4 —1)u
NT -1

~1 = I+ N NT 4 (N = 1u—1
—u —1 (mod N).

Since
—(1+ N+ N>+ 4 NTH < —u—1< -2,

as u varies its reduction modulo N takes each value in {0,1,---, N — 1} exactly
Nd—l + N2d—1 ot NT—d—l

times. It follows that the contribution to S from the sequences that are not equal to their 7 shifts
is a multiple of
1+¢+---+¢V =0

Thus we need to count the number of sequences that are equal to their 7 shifts. These are
the sequences whose minimal periods are divisors of 7. Of course the minimal periods of such
sequences are also divisors of T', so it is equivalent to count the sequences whose minimal period
divides d. The number of such sequences is exactly N¢. Thus the expected autocorrelation is

NAT
A
BIAAT) = S

Now consider the expected cross-correlation. The set of 7 shifts of all T-periodic sequences is
just the set of all T-periodic sequences, so we can take 7 = 0. Thus ¢, = 0. Let

oY 2 (L) -y 2 (e el Ny,

f,9=0 f,9=0
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Here when we reduce modulo N7 — 1 we must take (g — f) (mod N* —1) =g — fif ¢ < f and
(9—f) (mod NT —1)=g—f—(NT—-1)if f < g. By similar arguments to those in the derivation
of the expected autocorrelations, we can reduce to counting the distribution of values contributed
by the Oth positions. Thus

_ g—f g—f—NT+1
R=TN"+ Y Z(NT_1>+ > Z( T T )

0<g<f<NT—1 0<f<g<NT—1

where the first term on the left hand side accounts for the cases when f = ¢g. The rational numbers
in the remaining two terms have periodic expansions, so the reductions of these numbers modulo
N are coefficients of N° in the expansions of the numerators. That is, if f = fo + Nf' and
g=¢go+ Ng with 0 < fy,90 < N, then

R=TNT + Z Cgo_fo + Z ggo—fo—l'
0<g<f<NT -1 0<f<g<NT -1

We have g < f if and only if either ¢’ < f' or ¢ = f’ and gy < fy. If we fix an f and consider all
g < f with ¢’ < f', then the gq is free to vary over {0,1,---, N — 1}. Thus the contribution to R
from such terms is zero. Similarly, if f/ < ¢’ then the contribution is zero. Thus we only need to
consider the cases when f’ = ¢’. Since there are N7~! choices of f’, we have

-1 fo—1 N—-1 —
R = TNT 4 NT- 1ZZC90 f0+NT 12 Z 9o~ fo—1
=0 go=0 =0 go=fo+1
—1 fo—1 N—-1 N-2
SEEERIEd 3 S IRD o) S
=0 go=0 =0 go=fo
-1 N-2
= TNT + NT- 1224‘90 fo
fo=0g0=0
— TNT NT 1CN_1 CNl
¢—1 C—l
= TNT.
Thus R T
E[CaA,b<T)] = N2T :W O

Theorem 11.3.6. For any shift T, the second moment of the arithmetic cross-correlation, averaged
over all pairs of sequences a and b is
NT'4+1-T

BleA (] = T
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The variance s
(NT +1)(NT —T)

N2T

Proof. As in the computation of the expectation, we can reduce to the case when 7 = 0. We let

', ((g_f)fﬁo_dfw_ 1))

V()] =T

2

NT
ey

f,9=0

Y

so that the second moment is P/N?T. We proceed by determining the number of pairs f, g with
g—f=—h (mod N' —1) and 0< f,g<N' -1 (11.6)

for each h with 0 < h < NT — 1. If h = NT — 1, then equation (11.6) only holds for g = 0 and
f=NT—1. Let h < NT — 1. For every f < NT — 1 there is exactly one g < NT — 1 satisfying
equation (11.6), namely f —h (mod NT —1). For g = NT — 1 there is one f < NT — 1 satisfying
equation (11.6), namely f = h. For f = NT — 1 there is one g with 1 < g < N7 — 1 satisfying
equation (11.6), namely g = N7 — 1 — h. This accounts for all choices of f and g, and we see that
for 0 < h < NT — 1 there are NT + 1 pairs f, g satisfying equation (11.6), and for h = N7 — 1
there is one such pair.

Let us first compute as if all h occurred equally often. We switch to thinking about N-ary
T-tuples h = (hg, hy, -+ -, hy_1) representing single periods. If each h occurred N7 + 1 times, then
each h would occur N7 + 1 times as single periods of —h/(N* — 1)s. This would give a total
contribution to P of

T—1 2 T-1T-1
XS] - oy r e
h [i=0 h =0 j=0
T—1

_ Z Chz‘*hz‘ + (NT + 1) Z Z Chz'*hj

z:O h i#j h
= TN"(N"+ 1)+ (N"+1)) N Z‘Zgh h
i#]
= TNT(NT 4+1).

But we have over counted since the T-tuple h = (N — 1, N —1,--- N — 1), corresponding to the
N-adic number —1 and the numerator h = N7 — 1, only occurs once. For this value of A we have
|Z(—1)|*> = T?, so in fact

P=TNT(NT +1) - T?°NT = TNT(NT +1-1T).
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It follows that

P N +1-T
E[Cib(7—>2] = N2T =T NT
as claimed. The claimed value of the variance follows. O]

11.3.e Hamming Correlations and Frequency Hopping

The fascinating history of research on frequency hopping includes the now-famous 1942 patent [129]
of actress Hedy Lamarr (Hedy Marky) and composer George Antheil for remote control guidance
of torpedos, which used a piano roll to implement a pseudo-random sequence of frequency hops,
in order to avoid jamming by the enemy; see [179, |. Marky was familiar with issues of torpedo
guidance as her ex-husband was a munitions dealer in Austria. After escaping from Austria and
emigrating to America, she apparently came up with the frequency hopping idea while playing a
piano duet in which one voice would lead and the second voice would follow with exactly the same
sequence of notes. The technical expertise for implementing this remarkable idea was provided
in part by Antheil’s experience with player piano mechanisms, which he had used in his Ballet
Méchanique (1924).

In a frequency hopping system, the transmitter and receiver jump, in synchronization, from
one frequency to another, as directed by a pseudo-random sequence a = ag, aq, - - - that they share.
Thus the symbols of the sequence are drawn from an alphabet F' = {fi, f2, -, fm}, sometimes
called a frequency library, whose elements correspond in a one to one way with the frequencies that
are allocated to the system. The system might implement fast hops in which a single information
symbol might be transmitted over several hops, or slow hops, in which a single hop might involve
the transmission of several information symbols.

Now suppose a second transmitter-receiver couple wishes to use the same collection of frequen-
cies for their own communications according to a second pseudo-random sequence b with the same
set of symbols b; € F', and (in most applications) with the same period, say, T

A collision occurs when both transmitters send messages on the same frequency. Provided this
happens relatively rarely, an error correcting code can be used to recover from collisions. In their
foundational article [121], Lempel and Greenberger defined the Hamming (cross)correlation with
shift 7 of the sequences a, b to be the number of collisions that occur in a single period, that is,

T-1 1 if ;=0
Ham _ . . ; i) — s
Cap (T) = Ze(al,bHT) where  ¢(a;, by) { 0 if a; # b;.

1=

The Hamming autocorrelation function is AY*™ (1) = CEa™ (7).
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We need to assign a pseudo-random sequence to each of the transmitters in such a way that
the number of collisions never exceeds the error correcting capability of the ECC. In order to syn-
chronize the receiver with the transmitter, we also need to minimize the number of self-collisions,
that is, collisions between the sequence a and its shifts.

Therefore we need to find a collection S of sequences such that for each pair a,b € § of
sequences, the numbers A" (a), AHam(b), CHam(a, b) are all small, where

Ham . Ham Ham o Ham
C""(a,b) = o JEX Cap' (1) and A" (a) = 1;{12%(71./421 (7).

Lempel and Greenberger showed that there are a priori limits on how small these correlations can
be. We give their result (in a slightly modified and generalized form) in Theorem 11.3.7 below .

Throughout this section, when considering a sequence of period T of elements in a set I’ we
denote by «, # the unique non-negative integers such that 7' = «o|F| + f and 0 < g < |F.

Theorem 11.3.7. [121] Let a,b be sequences of period T' > 2 with symbols drawn from an alphabet
F of size |F| <T. Then
—1 if|F|=T
Ham > o
AT (a) 2 { o otherwise. (1L.7)
If a and b are balanced then
Ham > o Zfﬁ =0
¢ (a,b) 2 { a+1 otherwise. (11.8)

Proof. The maximum value A" (a) of the autocorrelation is at least as big as its average value
AHam(q) (averaged over all nonzero shifts 7) so

A (2) > AL = T_-1 : €(ai, Qitr)-
For any f € F let K(f) be the number of times the symbol f occurs in the sequence a, so that
> ser K(f) = T. Exchanging the order of summation, and summing over 7 gives:

AL @) = gy D () = 1) = 5 (Z K(f) - T)

Then the minimum is attained when the sequence a is balanced, which is to say that K(f) €
{a,a + 1} for every f € F. In this case, K(f) = a + 1 occurs for § values of f, and K(f) = «
occurs for |F| — 3 values of f. This gives A"2™(a) > A, where

Ay =

a
T-1

(T = [F]+75).
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To further evaluate [Ag], we claim that
a—1< Ay <«
and that the first inequality is strict unless T = |F'|. Multiplying by 7' — 1, we need to show that
(0= 1)(T - 1) < a(T - |F|+ 8) < a(T — 1).

The second inequality holds because §—|F| < —1. For the first inequality, multiply out and cancel
T from both sides, leaving
—a—T+1< —a|lF|+af

or,

1<a+p+ap.

Assuming n # 0, this always holds. Equality holds if and only if (o, ) = (1,0) or (0,1) which is
equivalent to the statements that T'= |F| or T" = 1 respectively.

Next, let us consider lower bounds for Ca™(a, b) under the hypothesis that a, b are balanced.
Let K(f) (respectively, L(f)) denote the number of times that f € F occurs in the sequence a
(resp., in the sequence b), so that so that

Y K(f)=) L(f) =

fer fer

The same argument as in the preceding paragraph gives

cHam(a b) > clam(a, b) ZL (a;) = (Z K(f)L(f)) (11.9)

fer

The balance condition means that K(f), L(f) € {o, a4+ 1}. The minimum value for the sum in
equation (11.9) occurs when K(f) = « is paired with L(f) = a + 1 (or vice versa) as often as
possible because

ala+ 1)+ (a+Da< o+ (a+1)>

This gives
(T +B) it G<|F|/2
CH*™ (ag, by) > Co =
SHT - |F|+p) if B >]|F|/2.

Since CH™(a, b) is an integer and since 0 < 3 < |F|, we conclude, for balanced sequences a, b,
that
« it =0

a+1 otherwise. -

¢ (ab) > ] - {
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Remarks. If a,b are not balanced then C'*™(a,b) may drop below a + 1. Indeed, it will be
zero if the sequences a and b use disjoint sets of symbols from the frequency library F'.
In [122] there is an argument giving a lower bound for the quantity

M'™"(a,b) = max {C"*™"(a, b), A™"(a), A" (b)}
which is repeated in [179] and leads to the bound

« ifg=0

MHam > )
- a+1 otherwise.

a+1
-1+ 0) = {

However there is an error in this argument and a counterexample is the following. Let F =
{1,2,3,4,5,6,7,8} and consider the following two sequences of period 9,

a=(112314567) b=(887685432)

Then A" (a) = AMm(b) = CHam(a,b) = M"*M(a,b) = a = 1. (These sequences are quite
unbalanced since a does not even use the symbol 8 € F', and b does not use 1 € F.)

It always holds that M2 (a, b) > AM"am(a) > o, so at best one might hope to improve this
bound by 1, for certain values of § > 0. We do not know precise conditions on 3 which guarantee
that M"*™(a, b) > a + 1 but we conjecture that 3 > |F|/2 suffices.

11.3.f Hamming-Optimal families

Let S denote a family of sequences of period T over an alphabet F. In [121] Lempel and Green-
berger defined an optimal sequence to be one that meets the bound A" (a) > « of Theorem
11.3.7. They defined S§ to be an optimal family if every sequence a € § is optimal and if every
distinct pair of sequences a,b € S meets the bound CH*™(a,b) > o + 1 of Theorem 11.3.7.

One might expect that a large family & will necessarily contain sequences a,b with large
(Hamming) cross-correlation, as predicted by the Welch bound (see Chapter 14) for the (usual)
cross-correlation. A coding-theoretic approach to this question was described in [162]. Let us
assume the alphabet F'is an Abelian group. If a = (ag,a1,---) € S, v € F, and 7 € Z, then let

a+v=(a+v,a+v,--)

denote the v-translated sequence and let a” = (a,,a,41,a,12---) denote the T-shifted sequence.
Let us assume that the family S is translationally closed, that is, if a € S then a4+ v € § for any
v € F. Let us also assume the sequences in the family S are shift distinct.

We may consider (a single period of) the sequence a € S to be a vector in F7. Thus the
collection of all sequences in S, together with their left shifts, gives |S|T vectors in FT which,
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together with the zero vector, may be thought of as a (possibly nonlinear) code S C FT. (The bar
indicates that we have augmented the family S by including the cyclic shifts of sequences.) The
key observation relating Hamming correlation to coding theory is the following statement, whose
proof is immediate.

Lemma 11.3.8. Let dpin = dHam(S) denote the minimum Hamming distance between any two

— “min

codewords (i.e. vectors) in S. Then for any distinct pair a,b € S the following inequality holds:
CH™(a, b) > T — dypin. (11.10)

At this point one could apply various known bounds on d,;,, the minimum Hamming distance
between codewords of a code. In [162], Quang et al apply the singleton bound

which gives the (rather weak) bound,
CHom(a, b) > log (TIS]) ~ 1.

However other coding theoretic bounds are known, for example, the sphere packing bound which
says that |F|T > S|V (| dmin/2]) where

Viry=1+ G)'F‘ + (§)|F|2 4+t C) Falk

is the volume of a Hamming sphere of radius r in the space F7T.

Other coding theoretic bounds are addressed in [10]. We remark that an earlier well-known
paper [150] in this direction derives the following bound for any pair of sequences a,b € S in a
family S of sequences of period T,

2ITm — (I + 1)I|F|
(Tm —1)m

cHem(a, b) > (11.11)

where m = |S| and I = [Tm/|F|]. Even though this bound appears to depend on the size of
the family, it can be shown that (for 7' > |F|) this bound lies between o = |T'/|F|| and o + 1,
so it is actually independent of the size of the family and in fact, it is essentially the same as the
Lempel-Greenberger bound of Theorem 11.3.7.

Examples of optimal families of frequency hopping sequences are discussed in Section 14.9.
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11.4 Exercises

1. What is the expected number of runs of length 7"— 1 and of length 7" in sequences of period T'
over a finite alphabet A?

2. A periodic N-ary sequence is strictly balanced if the number of occurrences (in a single period)
of each symbol is exactly the same. Prove: if a is strictly balanced then Z(a) = 0. (Strictly
balanced sequences are rare; for example the period must be divisible by N.)

3. Prove that if N is prime and if x is a nontrivial character of Z/(N) then an N-ary sequence a
of period T'= kN — 1 (where k € Z) is balanced if and only if it is balanced with respect to x, and
it is strictly balanced if and only if it is strictly balanced with respect to x, that is, Z, (a) = 0.

4. This exercise shows how many terms of a difference must be computed in order to find arithmetic
correlations.

Let b and c be periodic N-ary sequences with period 7. Let b and ¢ be the N-adic numbers
associated with b and c. Let d = dy, dy,--- be the sequence associated with b — c¢. Prove that d
is strictly periodic from at least dr on.

5. Fix a finite set F' and an integer T' > 2. Consider the class P of all periodic sequences of period
T with entries in F'. For any shift 7 # 0 show that the expected Hamming autocorrelation among
such sequences is

E [ A1 (7)] = T/|F).

6. With F,T,P as in the previous exercise, show that the expected Hamming cross-correlation
between any two sequences a,b € P is

B [Cl(r)] = T/|F|.
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Chapter 12 Shift and Add Sequences

Shift and add sequences are important because (a) they arise naturally as m-sequences (see Sec-
tion 6.8.a and Section 13) or related sequences (see Chapter 14, 15), (b) they often have ideal
autocorrelation properties (see Proposition 12.1.3), and (c) they are often (punctured) de Bruijn
sequences (see Theorem 12.4.1). At one time it was thought that all shift and add sequences
were m-sequences, but this has turned out to be false ([196, 56, 12]; see the discussion in Section
12.2 below), and in this chapter we develop a complete description of the set of all shift and add
sequences. In Chapter 15 we describe a class of (algebraic) shift registers that may be used to
generate “good” shift and add sequences over non-prime fields. In this chapter we also consider a
with-carry version of the shift and add property and develop a complete description of all sequences
with this property.

12.1 Basic properties

Let G be a finite Abelian group and let a = (ao, a1, - - -) be a periodic sequence of elements from G.
Let T' be the minimal period of a. For any integer 7, 0 < 7 < T, let a” be the 7-shift of a, that is,
a” = (a,,a,41,- ). If b is another periodic sequence with period T, then let a+ b be the sequence
(ap+bg,a; +by1,---). If Ris aring, a and b are sequences of elements in R, and «, § € R (or even
a, 3 € M, a module over R), then we denote by aa + b the sequence (aag + by, aa; + (by, - +).

Definition 12.1.1. The sequence a has the shift and add property if for any shift 7, 0 < 7 < T,
either

1. a+a” =0 (the all-zero sequence) or
2. there exists another shift 7, 0 < 7' < T, such that a+a” = a’ .

If a is a shift and add sequence and T is the minimal period of a, then the number 7’ is uniquely
determined by 7 and we define the shift and add rule H : {0,1,---, T —1} — {0,1,---,T — 1} to
be the corresponding function 7" = H(T).

We may similarly define the shift and subtract property. More generally, if a is a sequence of
elements from some module M over a (commutative) ring R we say that a has the shift and add
property with coefficients in R if for any o, € R, and for any shift 7, either

caa+ fa” =0

or there exists a shift 7/ such that
aa+ pa’ =a’.

That is, the set of left shifts of a together with the all zero sequence is a module over R.
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Lemma 12.1.2. Suppose G is a finite Abelian group and a is a periodic sequence of elements of
G. Then the following are equivalent:

1. a has the shift and add property.
2. a has the shift and subtract property.
3. a has the shift and add property with coefficients in Z.

Proof. Every Abelian group is a module over Z, so condition (3) makes sense. Condition (3)
implies conditions (1) and (2).

Suppose that a has the shift and add property. For any element g € G the sum g+¢g+---+g¢g
(|G| — 1 times) equals —g. Let 7 be any shift. Thena+a™+a” +---4+a” = a —a’ (where a”
occurs |G| — 1 times). By repeatedly applying the shift and add property, we conclude there exists
a shift 7/ such that a —a”™ = a”. Thus a has the shift and subtract property. The converse is
similar, so condition (1) is equivalent to condition (2). Now any sum aa + (fa” with a, 3 € Z can
be written as a series of sums and differences of shifts of a, so condition (3) holds as well. [

Proposition 12.1.3. Let G be a finite Abelian group and let a be a periodic sequence of elements of
G, with some period T'. Suppose a has the shift and add property. Then the shifted autocorrelations
of a with respect to any nontrivial character x of G are

Aa(T) = ZX<a)7
where Z,(a) is the imbalance of a (see Definition 11.2.1).

Proof. Fix a shift 7 and a nontrivial character x and compute the autocorrelation,

~
L
=

T'+T—1

Aa(7) = x(ai)X(aiyr) = X(ai — air) = Z x(a;) = Z,(a)
i=0 i=0 =T
for some shift 7/ since a satisfies the shift and subtract property by Lemma 12.1.2. O]

Corollary 12.1.4. Let G be a finite Abelian group and let a be a periodic sequence of elements of
G, with some period T'. Suppose

1. T=0,41, or —1 (mod |G|),
2. the sequence a is balanced (i.e., equidistributed to order 1), and
3. the sequence a has the shift and add property.

Then a has ideal autocorrelations (i.e., |Aa(T)| < 1 for T # 0, ¢f. Section 11.5.a).
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Proof. Consider the case T'=1 (mod |G|); the other two cases are similar. Since a is balanced,
each element in G occurs exactly |7/|G|] times in a period except for one element gy, which occurs
|T/|G|] + 1 times. By Propositions 2.3.2 and 12.1.3, the norm of the autocorrelation is then

[Aa(7)] = [Zx ()] = [ [T/|G]] - 0+ x(90)| = 1.
O

The following lemma is needed in Section 15.1.c where we consider the shift register generation
of punctured de Bruijn sequences satisfying the shift and add property.

Lemma 12.1.5. Let V' be a vector space over I, and let a = ag,ay,--- be a periodic sequence
of elements in V. Suppose a is a punctured de Brm]n sequence with the shift-and-add property.
Let V be another vector space over IF, and let ¢ : 'V — V be a set theoretic mapping. Then the
following conditions are equivalent:

1. The sequence ¢(a) is a punctured de Bruijn sequence with the shift and add property.
2. The mapping ¢ : V — V is a (linear) isomorphism of vector spaces.

Proof. Tt is straightforward to see that condition (2) implies condition (1), so let us assume condi-
tion (1) and prove condition (2). Since a = ¢(a) is a punctured de Bruijn sequence, the mapping
¢ must be a one to one correspondence so dim(V) = dim(V). In particular ¢(0) = 0 because 0
occurs in a (and in &) fewer times than the other symbols. For every shift 7 there exists a unique
shift & = k(7) such that

d(a+a’) - ¢a) = o(a"").
This follows from the facts that a is a shift and add sequence, a is a shift and subtract sequence,
a+a’ #a,
and for all 7, ¢(a’) = ¢(a)’. So for each i,

P(a; + aivr) = ¢(ai) + G(Aiyr(r))-

To show that ¢ is linear it now suffices to prove that k(7) = 7 for all 7. Suppose there exists an
index 7 such that k(7) # 7. Then whenever i satisfies a;;, = 0 we obtain

P(@itn(ry) = 0.
In other words, if a, = 0 then
apip(r)—r = 0.
The sequence a contains a unique largest block of zeroes (with k — 1 zeroes, where k is the
span of the de Bruijn sequence). Applying the above implication to each of these zeroes gives

another (possibly overlapping) block of & — 1 zeroes. This is a contradiction unless these two
blocks coincide, meaning that k(7) = 7. O
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12.2 Characterization of shift and add sequences

N. Zierler stated that the sequences over a finite field with the shift and add property are exactly
the m-sequences [196]. His proof is valid for sequences over a prime field F,, but it is incorrect for
sequences over non-prime fields. Gong, Di Porto, and Wolfowicz gave the first counterexamples
[56]. Subsequently, Blackburn [12] gave a complete characterization of shift and add sequences. In
Theorems 12.2.1 and 12.2.2 below, we describe the results of Zierler and Blackburn. Throughout
this section we fix a prime number p.

Theorem 12.2.1. [196] Let a = (ag,ay,---) be a nonzero periodic shift and add sequence with
entries a; € F,. Then a is an m-sequence (cf. Section 6.8.a, Section 13).

Proof. Consider the set A consisting of the sequence a, all its shifts, and the sequence 0 consisting
of all zeroes. Then A forms a vector space (under termwise addition of sequences) that is closed
under the shift operation. By Theorem 6.7.5 part (7) and the fact that F,[z] is a principal ideal
domain, there exists a polynomial ¢(z) such that A = G(q), the set of all sequences that satisfy
the linear recurrence defined by ¢. By Lemma 6.7.4, G(q) has pd8(@ elements, so the period of a
is

T — pdcg(q) —1.

By Proposition 6.6.5 the order of ¢ is a multiple of 7. But the order of ¢ is no more than piee@ —1
so the order of ¢ is exactly p?°&(@ — 1, which implies by Lemma 3.2.10) that ¢ is a primitive
polynomial. Therefore a is an m-sequence. [l

Theorem 12.2.2. [12] Let V' be a vector space of dimension e over F, and let a = (ag,aq,---) be
a periodic shift and add sequence with entries in V. Then the (minimal) period of a is p™ — 1 for
some n. Moreover, if F' = Fyn, then there exists a primitive element o € F' and there exists an
F,-linear mapping L : F — V such that a; = L(a') fori=0,1,2,---.

Proof. A choice of basis for V' gives an isomorphism

f:(flaf%"'afe):v_)(lﬁ‘p)e

where each f; : V' — F, is linear. Then each sequence b; = f;(a) is either 0 or it is an m-sequence
by Zierler’s theorem (Theorem 12.2.1), whose minimal polynomial, ¢;, is primitive. We claim
the ¢; that arise in this way are all equal. For, consider any two of these (nonzero) sequences,
which (by renumbering if necessary) we may denote by b; = fi(a) and by = fy(a). The sum
b, + by = (f1 + f2)(a) is also a shift and add sequence over F, so its minimum polynomial is
primitive and irreducible. By Theorem (6.7.5) parts (2) and (4) the minimum polynomial of
by + by divides the polynomial ged(qi, g2). In other words, it is either 1, g1, g2, or ¢1g2. But it is
irreducible so it cannot be ¢;¢q2. On the other hand, if ¢; # ¢» then the sequence by + by does not
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satisfy the linear recurrence defined by ¢;, nor does it satisfy the linear recurrence defined by ¢».
This leaves only the possibility that ¢; = ¢o. This proves that each of the (nonzero) coordinate
sequences f;(a) comes from the same primitive polynomial g. Moreover each coordinate sequence
has the same period, p” — 1 where n = deg(q). Therefore a has period p" — 1 also.

Let F' = Fyn, let Ly : F — F, be a surjective linear mapping (such as the trace), and let
a™t € F be a root of the above minimal polynomial g. If the sequence b; is nonzero, then by
Proposition 6.6.5 there exists u; € F' such that the m-sequence b; is given by

b; = (Lo(uja’), Lo(ujat), Lo(uja®), ).
If b; = 0 set u; = 0. Putting these together we obtain a mapping ¢ : F' — (IF,)¢ given by
¢(x) = (Lo(wx), Lo(usx), - - -, Lo(uex)).

In the diagram
F—Lt vy

T

(Fp)©

put
L=f'lo¢p:F—V.

Then A = (L(a), L(a'), L(a?),--+) O

We remark that Theorem 12.2.2 applies equally well to sequences with values in a vector space
V over an arbitrary finite field of characteristic p because V' is also a vector space over the prime
field IF,,.

12.3 Examples of shift and add sequences

12.3.a Window construction

Let G be a finite Abelian group and let a = (ag, a1, - - ) be a shift-and-add sequence with entries
a; € G and with period T. For any positive integer j, define the window sequence (with window
size j)to be the sequence A = (Ag, Ay, - --) of vectors A; € G’ by setting

A = (a;, 0541, - - 7ai+j—1> € G,

that is, A; is the “window” of length j beginning at a; in the sequence a. Then A is a shift and
add sequence (of period T') because each of its coordinate sequences is a shift and add sequence
with the same shift and add rule.
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Suppose the original sequence a is equidistributed to order r (see Section 11.2.a), meaning
that for any any block b of size 7 < r, the number of occurrences of b within a single period of
the sequence a is either |T/|G)’| or [T/|G|7]. Suppose j < r. Then the window sequence A is
balanced (see Section 11.2.a) although it likely fails to be equidistributed to any degree greater
than one because each symbol is a essentially shift of the preceding one.

12.3.b From m-sequences

Let a = (ap, ai, - - -) be an m-sequence with entries in a finite field F' = F, and with period ¢™ — 1.
Then a is a shift and add sequence that is equidistributed to order n (see Proposition 13.1.2). By
applying the window construction with windows of size ;7 < n one obtains a balanced shift and add
sequence A = (Ag, Ay, - -+) with A; € F7 with the same period ¢" — 1. Each symbol A € F7 occurs
exactly ¢"7 times in a single period of A except for the all-zero symbol, which occurs ¢"7 — 1
times.

12.3.c From GMW sequences

Let K C E C F be finite fields of characteristic p and let h be a power of p. Let a = (ag, ay,- )
be the GMW sequence ’
a; = Trg ((Triz(@))")

where a € F' is a primitive element. According to Theorem 14.6.1 the sequence a is a balanced
shift-and-add sequence of period |F| — 1 that is equidistributed to order [F' : E]. Applying the
window construction with windows of size j < [F' : E] gives a balanced shift-and-add sequence of
period |F| — 1 of elements in K7.

12.3.d From function field sequences

Let a be a (m,q)-adic {-sequence (see Section 15.1.c) where m(x),q(x) € F[z] are irreducible
polynomials over a field F, 7(z) is primitive mod ¢(x), and deg(q) = kdeg(m) for some integer
k > 1. In other words, a is a maximal length function field sequence whose symbols lie in the
field F[x]/(7) with |F|4&(™ elements. According to Proposition 15.1.8 and Theorem 15.1.9, the
sequence a is a shift-and-add sequence of period |F \deg(q) — 1 that is equidistributed to order k.
Applying the window construction to this sequence with windows of size j < k gives a balanced
shift-and-add sequence with elements in (F[z]/(7))’ and period |F|d&@ — 1.

12.4 Further properties of shift and add sequences

Let V be a vector space of dimension e over I, We consider periodic sequences of period 7' = p" —1
with entries in V. Let a € Fp» be a primitive element and let L : F,n — V be a set-theoretic
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mapping that is not identically 0. Let A = (ag,ay,...) be the sequence given by a; = L(a?).

We say that L is balanced if n > e and if the set L™'(a) contains the same number, p"~¢, of
elements, for every a € V. If L is balanced, then it is surjective. If L is linear over [F,,, denote by
K = Ker(L) the kernel of L. If u € F,» then denote

uK ={ur € Fpn 10 € K} = {ux € Fyn : L(z) =0}

the translate of this subspace by the action of multiplication by u. We say that L has the kernel

property if
k—1

L is linear, k|n, and ﬂ a 'K = {0}. (12.1)
i=0
If in doubt, we refer to equation (12.1) as the kernel property for L with respect to a~t. If L has
the kernel property then L is surjective (see the proof of part (3) of Theorem 12.4.1 in Section
12.5). See also the remark at the end of Section 12.5.
In Theorem 12.4.1, we show that properties of the mapping L : F,n — V' give rise to properties
of the resulting sequence a according to Table 12.1.

Properties of L | Properties of a
[F,-linear shift and add
balanced ideal autocorrelations
kernel property | de Bruijn

Table 12.1: Properties of L versus properties of a

Recall that two periodic sequences of the same period are shift distinct if the second sequence
cannot be realized as a shift of the first sequence. In the following theorem, ¢ denotes Euler’s
function.

Let V' be a vector space of dimension e over F,. Let L : F,n — V be a set-theoretic mapping
that is not identically 0. Let o € F,,» be a primitive element. Let

a(L,a) =ag,ay,- -
denote the sequence with a; = L(a?).

Theorem 12.4.1. The following statements hold.

(1) The mapping L is F,-linear if and only if the sequence a(L, o) is a shift-and-add sequence for
any primitive a € Fyn, and in this case its (minimum) period is p" — 1. There are
(" —1)e(p" —1)
n(p" —1)
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shift distinct nonzero sequences (of elements in V') with (minimum) period p™ — 1 which satisfy the
shift and add property. Each of these arises from a pair (L,«), where o € Fyn is primitive and
L:Fp —V isFy-linear.

(2) Suppose the mapping L is Fy,-linear. Then L : Fyn — V is surjective if and only if it is balanced,
which holds if and only if the sequence a(L, o) has ideal autocorrelations for any primitive o € Fpyn.

There are
(" =p)@" —p*) - (" —pHo(" — 1)
n

shift distinct shift-and-add sequences (of elements in V') with ideal autocorrelations and minimal
period p* — 1. Each of these arises from such a pair (L,«), where o € Fpn is primitive and
L:Fpn —V is Fy-linear and balanced.

(3) Suppose L : Fpn — V is Fy-linear and surjective. Then for any primitive o € Fpn, a(L, @) is
a shift and add punctured de Bruijn sequence of rank k if and only if n = ek and L has the kernel
property.

(4) Let a and b be two shift and add punctured de Bruijn sequences with the same period p™ — 1,
with symbols drawn from V. Let L, M : F,n — V' be surjective linear maps and let

Oévﬁ € IE?p"

be primitive elements such that a = a(L,«) and b = a(M, 3). If a and b are isomorphic (possibly
after a shift) then the primitive elements o, 3 € Fpn are Galois conjugate.

(5) Suppose L : Fpn — V' is Fy,-linear and suppose that n = ek for some k. Choose a basis for V
and write
L(z) = (Li(x), La(), -+, Le(w)) (12.2)

for the resulting coordinates of L(z). FEach L; : Fyn — F, is Fy-linear so there exist (cf. Theorem
3.2.14 part (7)) unique elements u; € Fyn such that

Li(z) = Trgzn (u;z). (12.3)
Then L has the kernel property if and only if the following collection of ek elements
{uja’ :1<j<e, 0<i<k—1}
forms a basis for Fyn over IF,,.

We need a lemma before giving the proof of Theorem 12.4.1.
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Lemma 12.4.2. Let d be a positive integer and let p be prime. Suppose o, 3 € Fpa are primitive
elements. Suppose A : Fpa — IF), is a nonzero IF,-linear mapping. Define the mapping B : F,u — I,
by B(0) =0 and ' ‘

B(8') = Ala)
for 0 <i < p?—2. Then B is F,-linear if and only if o and 3 are Galois conjugates.

Proof. There exists an integer ¢ such that o = 3'. Therefore
B(p') = Ala’) = A(B")

so B(xz) = A(z') for all z € Fy. If o and § are Galois conjugates then t is a power of p by
Theorem 3.2.9, so the mapping x — z* is F,-linear. Therefore B is F,-linear. Conversely, suppose
B is F)-linear. Let

-1
flx) = Z a;x’
i=0

be an irreducible polynomial with coefficients a; € F,, such that f(«a) = 0. We claim that f(3) = 0.
To show this it suffices to show that B(3'f(3)) =0 for all t > 0. But

d—1 d—1
B(B'£(8)) = Y aiB(B™) = ) aiA(a'™) = A(a'p(a)) = 0.
i=0 i=0
So by Theorem 3.2.9, o and (3 are Galois conjugate. O]

12.5 Proof of Theorem 12.4.1

Proof of part (1). Suppose L is F, linear and a € F,» is primitive. If 7 is an integer with
0<7<p"—1, then A ‘ A
a; + iy = L'+ a'7) = L((1 + a7)a").

Since « is primitive, there exists € with

1+a =d’.

Therefore, for all © we have
a; + Qirr = Qito,

so a is a shift and add sequence. Let R : V — T, be a nonzero IF,-linear mapping. Then the
composition
RoL:aecFp — T,
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is F)-linear so the sequence Re-L(a’) = R(a;) € F, is an m-sequence and has minimum period
p™ — 1. Hence the sequence a has minimum period p™ — 1 also.

The converse is a slight modification of Blackburn’s theorem. If o € F,» is any primitive
element, then every sequence with period 2" — 1 and elements in V' is of the form a = a(L, «)
for some set theoretic map L : F,n — V since the p" — 1 powers of « are distinct. Suppose the
sequence a is a shift and add sequence. We claim that then L : Fyn — V is F-linear. Let W C V
be the image of L(z). Since a is a shift and add sequence, the set W is a vector subspace of V' of
some dimension, say d. A choice of basis for W gives an isomorphism

f= U Fae fa) W — (Fp)

where each f; : W — F, is linear and surjective. So each sequence f;(a) = a(f;oT, ) is a shift
and add sequence of elements in I, which, by Zierler’s theorem (Theorem 12.2.1) is therefore an
m-sequence. In other words, there exists an [Fy-linear mapping

@j : Fpn — T,

such that
pi(x) = fi(L(z))
for all x € Fyn. Putting these together gives a mapping
Y= (9017 T 73061) : Fp” - (Fp)d

so that the diagram

commutes. It follows that L = f~' o : Fyn — W — V is linear, as claimed.

To count the number of shift and add sequences with (minimal) period p™—1 we use Blackburn’s
theorem (Theorem 12.2.2): first count the number of pairs (L, «) where @ € Fpn is a primitive
element and L : Fyn — V is Fp-linear. Then determine when two such pairs define the same
sequence.

The number of primitive elements o € Fyn is ¢(p™ — 1). To count the number of F,-linear
mappings L : Fpn — V' choose bases for both, as vector spaces of dimension n and e respectively,
over [F,. Each linear mapping L then corresponds to a unique n x e matrix with entries in [F,, and
there are p™® such matrices. So there are p"¢ — 1 nonzero linear mappings L.
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Now consider decomposing the collection of pairs (L, ) into equivalence classes, with two pairs
belonging to the same class if the resulting sequences are the same. In the next paragraph we show
that each class contains exactly n pairs by showing that (L, «) and (M, 3) belong to the same class
if and only if a and § are Galois conjugates. Hence 3 = o' for some t, and M (z"") = L(z). In
other words, the mapping L is uniquely determined by M, «, and (.

So suppose a(L,a) = a(M, 3). Then

M(8") = L(a’) (12.4)

for all 7. In particular the images of M and L coincide. Let v # 0 € V' be in the image of M and
L. Choose any linear mapping R from V' to F), such that R(v) # 0. Then R is surjective and both
compositions RoL and R-M are nonzero.

Now we have the equation R-L(a') = R-M(3"), for all i. Since both R-T and R-S are nonzero
F,-linear mappings, Lemma 12.4.2 implies that o and 3 are Galois conjugates with 3 = o' for
some t. Therefore M(2?") = L(z) by equation (12.4).

Conversely, given (L, a) let 5 € F,n be a Galois conjugate to o with 5 = o', Let

M(z"") = L(z).

Then M : Fyn — V is Fy-linear and M (") = L(a") for all i. Consequently a(L,a) = a(M, 3).

To summarize, there are p™©—1 choices for L and ¢(p™—1) choices for a. Such a pair determines
a class consisting of the n Galois conjugates 3 of «, and uniquely determined F,-linear mappings
M to go with them. This counts the total number of sequences; the shift distinct sequences are
counted by dividing by the period, p" — 1. This completes the proof of part (1) of Theorem 12.4.1.

Proof of part (2). If L is balanced then it is surjective. If L is surjective then it is balanced
because L~1(a) is the set of solutions to a system of inhomogeneous linear equations, which is
therefore a translate of the kernel L='(0). Corollary 12.1.4 implies that a(L, o) has ideal autocor-
relations.

On the other hand, suppose that a(L, «) has ideal autocorrelations, but L is not surjective. Let
I C V denote the image of the mapping L : F,» — V. Choose a complementary subspace J C V/
so that V= I & J. Then J has positive dimension. Let x; : J — C* be any nontrivial character,
and define y : V. — C* to by x(a,b) = x1(b). Then x is a character of V', and x(L(x)) =1 for all
x € Fyn. Let 7 # 0 be a nonzero shift. The autocorrelation of shift 7 with respect to the character

X 18

pt—2 pt—2
Y XI(af =) = 1=p -1
i=0 1=0

which is greater than 1. This is a contradiction, hence L is surjective.
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To count the number of sequences with ideal autocorrelations, the same argument as in the
proof of part (1) works, but we must count only those pairs (L, «) such that L has rank equal to
e. Choosing bases for V' and F,» over [F,,, the mapping L may be represented as an n x e matrix
of elements of IF,. The matrices of rank e are counted by choosing the first row to be any nonzero
vector (p" — 1 choices), the second row to be any vector that is not in the span of the first vector
(p™ — p choices), the third row to be any vector that is not in the span of the first two vectors
(p™ — p?* choices), and so on. As in the proof of part (1) above, this counts the total number of
sequences; the shift distinct sequences are counted by dividing this number by the period, p™ — 1.
This completes the proof of part (2).

Proof of part (3). Let a € F,n be primitive. Suppose a = a(L,a) is a punctured de Bruijn
sequence of rank k. Then the period of a is |V|¥ — 1 = p" — 1 so n = ek. Consider the mapping
® : Fpn — V¥ given by ®(x) = (L(x), L(az), -+, L(a*1z)). These k symbols form a block of
the sequence a. Therefore if a is a (punctured) de Bruijn sequence of rank £, then every nonzero
k-tuple of vectors in V appears at some point in the sequence, so the mapping & is surjective.
Since |F,«| = |V|*, the mapping ® is surjective if and only if it is injective. But the kernel of ® is
exactly the intersection in equation (12.1). Therefore L has the kernel property. Conversely, if L
has the kernel property and if n = ek, then ® is surjective, so a is a punctured de Bruijn sequence
of rank k.

Proof of part (4). Suppose there exists a shift 7 and a set theoretic mapping 1 : V' — V' so
that ¢)(a) = b”. We may assume that the shift 7 = 0 by replacing the mapping L : F,» — V with
a new mapping L'(x) = L(uz) where u = a” € Fyn. According to Lemma 12.1.5 the mapping 1) is
automatically an F-linear isomorphism of vector spaces. Let ® : Fpn — V* and ¥ : Fn — V¥ be
the vector space isomorphism considered above, that is,

(I)<:C> = (L(.ZC), L(Oél'), T, L<Oék71x>) )
and the analog for M,
\I/(ZE) = (M(I’), M(ﬂl‘), ) M(ﬁk_lx)) )
Define A : Fyn — Fpn to be the mapping that makes the diagram

A

]F pn — Fpn

0| |

vk Px- Xt vk

commute. Then A : Fyn — Fp. is an isomorphism of vector spaces. Moreover A(ax) = SA(x)
for all z € F,n because ®(ax) is obtained by “shifting” ®(x) € V¥ and similarly for ¥. Thus A
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is almost a field isomorphism. However we do not know whether A(1) = 1. Let u € Fy» be the
unique element such that A(u) = 1 and consider the diagram

Fpn —U) Fpn L Fpn
L l Ll lM
vV o= v -

where L'(x) = L(ux). This diagram also commutes, and the composition A’ : F» — F,n across
the top row is now a field isomorphism such that A’(a) = §. This implies that o and 3 are Galois
conjugate. This concludes the proof of part (4).

Proof of part (5). Having chosen a basis for V, the mapping ® : F,n — V¥ of the preceding
paragraph may be expressed as a k X e matrix ®(z) = [Lj(a'z)] with 0 < i < k—1and 1 <
j < e. Using equation (12.3) this becomes the matrix ®(z) = [TT]IEZ” (uja’z)]. This mapping is an
isomorphism if and only if the collection of linear functions

Lij(x) = Trg;’" (uja'z),

with 0 <4 <k —1and 1 < j <e, forms a basis of the dual space Homg, (Fy»,IF,,). However, the
collection of vectors {u;a'} is linearly independent (and hence forms a basis of F) if and only if

the collection of linear functions L;; is linearly independent. This completes the proof of Theorem
12.4.1. O

Remark. If K = Ker(L) is preserved under multiplication by elements from the sub-field F' =
F,e C Fpn, then the kernel condition holds automatically. This occurs, for example, if V' = F' = .
and if L is F-linear, in which case the resulting sequence is an m-sequence over F'. More generally
if 0 € Gal(F,»/F,) is an element of the Galois group and o(K) is preserved by multiplication by
elements of F'| then L has the kernel property. The kernel property is somewhat mysterious and
we do not know of a simple method for counting the number of linear mappings L that have this

property.

12.6 Arithmetic shift and add sequences

Following the theme of this book, it is natural to consider an arithmetic analog of the shift and
add property. In this section we give some basic definitions and give a complete characterization
of sequences with the arithmetic shift and add property.
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Let N > 2 be a natural number and let a = ag, aq, - - - be an infinite N-ary sequence. Let

o0
a= E a;N*
i=0

be the N-adic number associated with a. As usual, for any integer 7 let a” = a,, a,41,--- be the
left shift of a by 7 positions and let a(” be the N-adic number associated with a”. By the N-adic
sum of a and a”, we mean the coefficient sequence of the N-adic number a + a(”; it is obtained
from a and a” using addition-with-carry.

A first attempt to define the arithmetic shift and add property would be to ask that the set of
shifts of a be closed under N-adic addition, but this is too much to ask. Even if the sequence a is
(strictly) periodic, the N-adic sum of a and a” will only be eventually periodic, and in particular,
repeated addition of a” will result in infinitely many distinct (eventually periodic) sequences.

The solution is to consider only the periodic part of the sum of two sequences. This is consistent
with how we have defined arithmetic correlations. In order to simplify the language, let us say
that the left shift of the N-adic number a means the N-adic number associated with the left shift
of the coefficient sequence of a.

Definition 12.6.1. The sequence a has the arithmetic shift and add property if for any shift
T >0, either

1. some left shift of a + a'”) is zero or
2. some left shift of a + a'”) equals a. That is, there is a 7' > 0 so that (a + o)) = a.

The left shift 7" allows us to ignore the effects of initial non-periodic parts of sequences. If we
replace addition with carry in this definition by addition without carry, then we obtain a definition
that is equivalent to the definition of the without-carry shift and add property. We may similarly
define the shift and subtract property. The main result of this section is the following theorem.

Theorem 12.6.2. An N-ary sequence has the arithmetic shift and add property if and only if it
is the N-adic expansion of a rational number f/q where q is prime and N is primitive modulo q.

These sequences, known as ¢-sequences, are studied in Section 16.1. They are maximal period

FCSR sequences: the arithmetic analogs of m-sequences.

Preliminaries to the proof. It is helpful here to use rational representations of sequences. If
a is periodic with minimal period 7', then for some ¢, f € Z we have: a = f/q with —q < f <0
and ged(q, f) = 1. Then a shift a” of a also corresponds to a rational number of this form, say
a'™ = f,/q. Moreover, there is an integer ¢, so that

a =¢, + N "q.
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Thus f, = c,q + NT-7f. It follows that
f-=N"7f (mod gq).

Therefore the set of numerators f, of the N-adic numbers associated with the left shifts of a is
the fth cyclotomic coset

Cr = {N’f (mod q) : i:0,1,2,~-} CZ/(q)

relative to N (see Section 3.2.d). Now suppose that (a +a”)” = a. Let g/r be the rational
representation of the N-adic number associated with a + a”. Then

g:d+NT’i

r q
for some integer d. In particular, we can take r = ¢q. Then g = qd+ N7 f. Thus g = N f (mod q),
so that g is in CY.

Theorem 12.6.3. Let q, f be relatively prime integers. Suppose the coefficient sequence a of the
N-adic expansion of f/q is periodic. Then the sequence a has the arithmetic shift and add property
if and only if G = Cy U {0} is an additive subgroup of Z/(q).

Proof. As above, let T' be the minimal period of a. It follows from the above discussion that if
a has the arithmetic shift and add property, then f + N7f (mod q) € G for every 7. Since G
is closed under multiplication by N modulo N7 — 1, we also have N°f + N f (mod ¢) € G for
every o and 7. Since every nonzero element of G is of the form N?f modulo ¢, it follows that G
is closed under addition. Therefore it is a subgroup.

Conversely, suppose G is a subgroup of Z/(q). If f =0 or f = —q, then a has the shift and add
property, so we assume that —q < f < 0. For every 7 there is a 7/ so that f+ N7=7f =0 (mod q)
or f+ NT-7f=N"f (mod q). In the latter case

N (f+N"7"f)=N"f+2q= f+wq,

where z and w are integers, the latter because ¢ divides N7 — 1. Therefore
NT-T (i +e NTTi> I, v,
q q q
where y is an integer. It follows that

(a+ a0 =a4u
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for some integer u. But adding an integer to a periodic N-adic integer does not change the periodic
part unless the periodic part is all zero or all N — 1, and this would mean that f =0 or f = —q.
Thus for sufficiently large k we have

(a+ aM)FTH) — ¢
The argument in the case when f+ NT="f =0 (mod ¢) is similar — a sufficiently large shift

of a + a'™ is zero. This proves the theorem. O

Corollary 12.6.4. A sequence has the arithmetic shift and add property if and only if it has the
arithmetic shift and subtract property.

Proof of Theorem 12.6.2. How can it be that Cy U {0} is an additive subgroup of Z/(q)?
It implies, in particular, that C'y U {0} is closed under multiplication by integers modulo q. We
have taken ¢ so that ged(f,q) = 1. Thus f is invertible (mod ¢) so Cy U {0} = Z/(q), that is,
Cy =7Z/(q) — {0}. In particular, every nonzero element of Z/(q) is of the form N’f, hence is a
unit. Thus ¢ is prime, and N is a primitive element modulo gq. O]

12.7 Exercises

1. Let G be a finite Abelian group and let a be a periodic sequence of elements of G with period
T = k (mod |G|) such that a is is equidistributed to order 1. What can be said about the
autocorrelations of a?

2. Let F be a finite field. Let a and b be a pair of period sequences over F' (possibly with different
periods). Let U be the set of F-linear combinations of shifts of a and b,

U= {ZxTaT + Zygb",xT,yg € F} .
Let
V= {elaT + EQbU, €1,€2 € {0, 1}}

a. Prove that if a and b are m-sequences, then U = V.
b. Prove that if U = V, then a and b are m-sequences.
c. Generalize these statements to more than two sequences.

3. Let N and d be natural numbers so that ¢ — N is irreducible over Z.

a. Define a notion of N-ary d-arithmetic shift and add sequences, where addition of sequences
corresponds to addition of m-adic numbers.
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b. Prove that an N-ary sequence has the d-arithmetic shift and add property if and only if it
is the m-adic expansion of a rational element f/q where ¢ is irreducible and N is primitive
modulo q.
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Chapter 13 M-Sequences

13.1 Basic properties of m-sequences

Let R be a finite commutative ring and let a be a periodic sequence of elements in R. Let T be
the period of a.

Definition 13.1.1. The sequence a is an m-sequence (over the ring R) of rank r (or degree r)
if it can be generated by a linear feedback shift register with r cells, and if every nonzero block of
length r occurs exactly once in each period of a.

In other words, the sequence a is the output sequence of a LFSR that cycles through all
possible nonzero states before it repeats. The second condition in the definition also says that a
is a punctured de Bruijn sequence (see Section 11.2.d). In this section we recall standard results
about m-sequences which have been known since [37] and which may be found in [53] and [54].

Proposition 13.1.2. Ifa is an m-sequence of rank r over a (finite commutative) ring R, generated
by a LFSR with connection polynomial q(x) € Rlx], then

1. The ring R is a field and the connection polynomial q(x) is a primitive polynomial with
deg(q) = 7.

2. The polynomial q(x) splits into r linear factors over the unique field extension E of R such
that deg(E/R) =r. If L : E — R is any surjective R-linear mapping and if o € E is a root
of q(x) then there exists A € E such that for all i,

a; = L(Aa). (13.1)

3. The sequence a is a punctured de Bruijn sequence, so it is balanced, equidistributed to order
r, and has the run property (see Section 11.2.0).

The sequence a satisfies the shift and add condition, so it has ideal autocorrelation function.
In the case R =17/(2) let C C (Z/(2))" be the linear block code spanned by a single period of
the sequence a and all of its left shifts, and by the complement of the sequence a and all of its
left shifts. Then C is equivalent to the (punctured) first-order Reed-Muller code of wordlength
2" —1.

Al

Proof. By Theorem 6.6.2 the states of the LFSR can be modelled on the ring F = R[z]/(q) where
q(z) is the connection polynomial of the LFSR, in such a way that the state change operation
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corresponds to multiplication by a fixed element o = 27! in F = R[x]/(g). Since the shift register
cycles through all nonzero states before repeating, it follows that the powers {a’} of this element
account for all the nonzero elements in £. In particular, every element in F is invertible, hence
E is a field and a € FE is a primitive element. The ring R may be identified as the subring of F
consisting of polynomials of degree 0, so R must also be a field. Finally, the powers of a~! also
account for all the nonzero elements of E, but a~! = z is a root of ¢(z) in F so q(x) is a primitive
polynomial. Part (2) is just a restatement of Theorem 6.6.4.

The sequence a is a punctured de Bruijn sequence by definition, so part (3) is just a restatement
of Proposition 11.2.4. Every LFSR sequence satisfies the shift and add condition, so part (4) is
just a restatement of Proposition 11.2.4.

For part (5), recall that the first order Reed-Muller code (with wordlength 27) consists of
codewords, each of which is the incidence vector of a hyperplane H C (Z/(2))" (not neces-
sarily through the origin), together with the all-zeroes and the all-ones codewords. Choose a
Z/(2)-linear isomorphism Fyr = (Z/(2))". Then the nonzero elements in (Z/(2))" become la-
beled by the elements 1, a,---,a? ~2 so the incidence vector of a hyperplane H is the vector
L(1), L(a), L(a?), -+ -, L(a® 72) where L : Fy, — Z/(2) is either a Z/(2) linear map (in which case
the hyperplane H does not contain the origin) or 1 + L is a linear map (in which case H does
contain the origin). In the first case, this incidence vector is a shift of the m-sequence a and in
the second case it is the complement of a shift of a. n

In particular, m-sequences satisfy Golomb’s three randomness properties. Golomb made the
following conjecture, which is still considered open.

Conjecture 13.1.3. The only binary sequences (meaning R = Fy) satisfying the three randomness
postulates are m-sequences.

There exist non-binary sequences that are not m-sequences but which still satisfy Golomb’s
three randomness properties. See Chapter 15 and [50].

13.2 Decimations

Let G be an Abelian group and let a, b be periodic sequences of elements from G, with the same
period T'. The sequences a and b are said to be shift distinct if a differs from every left shift of
b. If d > 1 is an integer, the d-fold decimation of a = (ag, ay,---) is the sequence b = (by, by, - )
where b; = ag;, which consists of every d-th element from a. In this case we write b = a[d].

Proposition 13.2.1. Let F' be a finite field with |F| elements, and let a be an m-sequence of
degree r with values in F'. Then the following statements hold.

1. Every m-sequence of degree r is a left shift of a decimation of a.

313



S

The decimation a[d] is again an m-sequence if and only if d is relatively prime to |F|" — 1.
The decimation a[d] is a left shift of a if and only if d is a power of |F|.

4. Hence there are ¢(|F|" — 1)/r shift distinct m-sequences of degree r with values in F, and
they are in one to one correspondence with the set of degree v monic primitive polynomials
over F.

co

Proof. Let E be the field with |F|" elements and let L : E — F be a surjective F-linear homo-
morphism, for example the trace Trg. Then there exists a primitive element o € E and a nonzero
A € E such that a; = L(Aa") (for all i). Let b = (g, by, - --) be a second m-sequence of degree r,
so b; = L(Bp) for some primitive element 3 € E and some nonzero element B € E. There is a
unique integer d (1 < d < |L| —1) so that 3 = a? and there is a unique integer ¢ (0 <t < |L| —1)
so that B = AB!. Then the t-shift of the d-fold decimation of the sequence a is the sequence
c = (cp, 1, - +) where

cp = L(Aa?* Dy = L(ABkBY) = L(BBY) = by.

This proves (1). The element 3 = a? is primitive if and only if d is relatively prime to |L|—1 which
proves (2). Now let ¢(z) = qo+qz+- - - +¢.2" be the minimal polynomial of a, with ¢; € F. Then

q(z) is also the connection polynomial of a LESR that generates the sequence a. If s = |F| then

¢ = q; so (q(a))® = q(a®) = 0. It follows that the roots of ¢ are the elements a, o, st

If 8 is any one of these, then a and 3 have the same minimal polynomial. Hence the the m-
sequence generated by a coincides (up to a shift) with the m-sequence generated by [ because
they are LFSR sequences with the same connection polynomial. On the other hand, if § is not
one of these, then o and 3 have different minimal polynomials, so the corresponding m-sequences
correspond to different LFSRs so they are different. This proves (3), and (4) follows. O

13.3 Interleaved structure

Let F =F, C E = Fm C K = Fypn be finite fields, let a € K be a primitive element and
let w € K. Let a = (ag,a1,---) be the resulting m-sequence with a; = Tr¥ (wa?). Consider the
decimation b = a[d] with d = (|K| — 1)/(|E| — 1), that is, b; = Tr(wa®). Note that 8 = o is a
primitive element of F (since 5”I=! = 1). We obtain a (shorter) m-sequence ¢ with ¢; = Tri(3%).
Let z = (¢"™™ —1)/(¢g — 1).

Proposition 13.3.1. [F d = (|K| —1)/(|E| — 1), then depending on w, the decimation b = ald]
is either a shift of the m-sequence c (for d — z values of w) or the zero sequence of length |E| — 1
(for d — z values of w). Therefore the m-sequence a may be realized by interleaving d — z different
periods of the m-sequence c together with z copies of the zero sequence of length |E| — 1.
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Proof. Think of writing a single period of the m-sequence a in a series of rows, each of length d,
to obtain an array Ay = Tri(wa*™) with 0 <t <d —1and 0 < s < |E| — 2. Then

Ay = Tr?Tré(watﬁS) = Trg(htﬁs)

where h; = Trk(wat). The sequence b is obtained by reading down the columns, one after another.
Reading down the ¢-th column, if 2, # 0 then we find the m-sequence Trf(h,3°) as s varies from 0
to |E| — 2, which is a shift of the m-sequence c. If h; = 0 then we find a column consisting entirely
of |[E| — 1 zeroes. The number of such columns is calculated from the fact that if h; # 0 then the
t-th column contains ¢™ ! — 1 zeroes, and there are ¢"~* — 1 zeroes in all. O

If E = F then A, = (3°h; so in this case each row is a constant multiple, 3° of the first row, and
each column is either identically zero, or it is a cyclic permutation of the sequence 1, 3, 52, -, 3" 2.

13.4 Fourier transforms and m-sequences

Let p be a prime number and F' = Z/(p) be the field with p elements. Let E be the field with
p" elements. Fix a surjective F-linear mapping L : E — F. Fix a nontrivial additive character
¢ : FF— C*, for example, p(a) = (* where ( = €>™/?. Then 1) = ¢ o L : E — C* is a nontrivial
additive character of E. This data allows us to enumerate all the C-valued additive characters of
E (including the trivial character 1) by setting

Xy(2) = ¢(L(yz))

for any y € E. (See Section 2.3.a and Section 3.2.g.) If B : E — F is any function then the
composition p o B : E — C has a Fourier transform (with respect to the additive group structure
on F),

PB(xy) = Y o(B(2))x,(z) = > ¢(B(z) — L(yx)).

zelR zeE

(When F' = Fy and ¢(y) = (—1)Y it is customary to drop the mention of ¢ and to write this equation
as B(y) = (—=1)B@+LEY) ) Now let o € E be a primitive element and let a = (L(a®), L(at), )
be the resulting m-sequence.

Proposition 13.4.1. Let b = (by, by, - - -) be a periodic sequence, with period |E|—1, of elements in
F. Define B: E — F by B(a') = b; and B(0) = 0. Then the cross-correlation Cy a(t) (with respect
to the character ) is given by the (complex) Fourier transform of the function g o B : E — C.
More precisely, if t > 0 then

PB(Xat) = Coalt) + 1.
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Proof. Compute the Fourier transform (as in Section 2.3.b),

PB(xat) = Y @B@)Xu(z) = ¢(B(x))pL(a'z))
zelE z€EFE
pr—2

= > @(B@))PL(™) + ¢(B(0))p(L(0))
i=0
pr—2
= > eb)p(ar) + 9(B(0) = Coalt) + ¢(B(0)) O
i=0
If b = (by,b1,--) is a periodic sequence of elements in some field F' (with period T), and if
¢ : FF — C is a nontrivial character, then recall from Definition 11.2.1 that the ¢mbalance of b
with respect to ¢ is the sum
T-1
= o(b)
=0

In the case F' = Z/(2) the imbalance is the number of zeroes minus the number of ones in a single
period of b.

Corollary 13.4.2. Let a be an m-sequence of period p" — 1, with entries in the field F = 7./(p).
Let b be any periodic sequence with the same period, and let p : F' — C* be a nontrivial character.
Then the cross-correlation Cp a(t) with respect to the character ¢ satisfies

p
S Coa+ 17 = p* — |Z(b) + 1.
t=0

Proof. We may assume a; = L(a') where « is a primitive element in the field £ = F,- and where
L: E — F is a surjective F-linear mapping such as the trace. Define B : E — F by B(a') = b,
and B(0) = 0. By Parseval’s formula (equation (2.15)),

STIeBO)IP = 1B e(B@)? =p" .

The sum on the left is over all additive characters x of F, including the trivial character yo = 1.
By Proposition 13.4.1 this sum is

p"—2
D [Coa+ 1P + [0 B(xo)|*
t=0
But 9B(x0) = X ep #(B(2)X0(x) = S0  @(bi) + 1= Z(b) + 1. O
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The “simplest” function B : E' — F'is an F-linear function. For such a function, the sequence
b is a shift of the m-sequence a by some amount, say tyo. Then the Fourier coefficient ¢ B(y;) is 0
for t # tg and it is p” if t = t5. Thus, the Fourier coefficients “detect” the function B. Because of
the existence of the fast Fourier transform, such a linear function B should be considered insecure.
A function B : E — F might be considered to be invisible from the point of view of Fourier
analysis if the magnitude |pB(x)| of the Fourier coefficients of B are all equal, in which case (by
Corollary 13.4.2) they must equal 1/|E|. This leads to the following definition ([166], [115]).

Definition 13.4.3. Fiz a nontrivial character ¢ : F — C*. A function B : E — F is bent (with

respect to ) if the magnitude \@(Xy)] of every Fourier coefficient of ¢ o B is equal to \/|E|.
The sequence b = (B(a®), B(a'), ) is a bent sequence if B is a bent function and o € E is a
primitive element.

The theory of bent functions and related concepts is a subject of considerable research that
is largely outside the scope of this book. We just mention one result that shows the notion of

bentness depends only on the function B, not on the character .

Proposition 13.4.4. ([115]) If B : E — F is bent with respect to one nontrivial character
@ F'— C* then it is bent with respect to every nontrivial character ¢ : F' — C*.

Proof. Since F' =F, = 7Z/(p) is a prime field, ¢ = ¢* for some integer s. Then

2 2
0B(x,)> = |3 o(B(x) — L(yx))| = | ¢B@-Lem| — ||
zekl zeE

and

— 2 9

WB(x)? = |3 »(B(x) — Liyx))| =|3 ¢B@-Le=)

zel 2€E

The equality between these is an immediate consequence of Lemma 3.2.12. ]

Proposition 13.4.1 says that for any nontrivial character ¢ : F' — C*, and for any choice of
primitive element o € E the cross-correlation (with respect to ¢) between the bent sequence b
and the m-sequence a = (L(a®), L(a?), - ) satisfies Cpa(t) = \/|E| — ¢(B(0)) for all ¢.

Bent functions have a number of interesting combinatorial properties. A bent function may
be considered as a difference set in an elementary Abelian 2-group [111, 38, ]. Correlation
properties of bent functions have been studied [I15, ]. In Theorem 18.5.3 we present bounds
on the linear span of bent functions which were derived in [114].
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13.5 Cross-correlation of an m-sequence and its decimation

In this section we consider the cross-correlation between an m-sequences and its decimations. This
is a very difficult subject which has been studied for many years by a variety of techniques, and
about which little is known. Often, other questions concerning pseudorandom sequences can be
reduced to understanding the cross-correlation of m-sequences.

Throughout this section we fix a finite field /' = [F, a nontrivial character x : F' — C* and
an m-sequence a = (ag, ay, - - -)of rank r over F. Let £ = F,» be the unique field extension of F'
of degree n. Let Tr : E — F denote the trace Trg. According to Proposition 13.1.2; by possibly
replacing a with a shift of itself, we may assume there is a primitive element o« € F such that
a; = Tr(a'). Let b = (bg, by, - -+) be a second sequence that is a d-fold decimation of a for some d.
That is, b; = Tri:(a®). We want to find the cross-correlations of a and b. According to Proposition
13.2.1 the sequence b is a m-sequence if and only if d is relatively prime to |E| — 1. Conversely,
every m-sequence is a shift of such a decimation of a.

13.5.a Two basic computations

The following proposition gives two interpretations of the cross-correlation of the sequences a, b,
one as a character sum (about which we say more in Section 13.5.d), and the other in terms of
counting the number of points in the intersection of two algebraic varieties.

Proposition 13.5.1. Let a be an m-sequence and let b be its d-fold decimation. The cross-
correlation of the sequences a, b with respect to the character x is given by

Coalt) = S (Tr(a" — Ar)) 1 (13.2)
= Y > 1Qun AT Hyx()X(v) — 1 (13.3)

where A = o', and where |Q, N H,| denotes the number of elements of E in the intersection of the

hypersurface
Qu = {z € E| Tr(2") = u}

and the hyperplane
H,={z e E: Tr(z) =v}.

Proof. Let 8 = a®. Then the cross-correlation with respect to the character y is

q"—2

Coa(t) = ZX(@‘)Y(%’H) (13.4)

1=0
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q"=2

= > x(Tr(F)X(Tr(a™) (13.5)

i=0
= > x(Tr@”)x(Tr(Az)) (13.6)
0#z€E
= > x(Tr(a’ - Az)) - 1. (13.7)
ek
which proves equation (13.2). Equation (13.3) is immediate from the definitions. O

We need to use the following simple lemma. Recall that two hyperplanes in a vector space are
parallel if one is a translate of the other.

Lemma 13.5.2. Let T : E — F be an F-linear surjective mapping (such as the trace). Foru € F
set H,={x € E: T(x) =u}. Letb € E and u,v € F. Then bH, is parallel to H, if and only if
be F.

Proof. We remark that H, is parallel to H, for every a,b € F, and that x € bH, if and only if
T(b™'z) = .

If b € I, then bH, = Hy, which is parallel to H,, proving the “if” part.

Now assume that b € E and bH, is parallel to H, and hence also to Hy. Then for any fixed
zo € bH, we have bH, = Hy + x3. Now

Hy = bH,— xg
{bx —x¢: T(x) =u}
= {yeE: T(b'y+b'ao) =u}
{ye E: T(b7'y) =0}
bH,.

Choose any z € F — H,. Since Hj is a codimension one subspace of E the addition of this one
more linearly independent element will span E as a vector space over F. Therefore we may write
bz = az+ h for some a € F and some h € Hy, so z = h/(b— a) unless b = a. But multiplication by
b preserves Hy, as does multiplication by a, hence so does multiplication by (b — a) and therefore
also multiplication by (b — a)~!. This implies z € Hy which is a contradiction. Thus we conclude
that b=a € F. O

13.5.b Linearly decimated sequences

In this section we assume that d is a power of ¢ = |F'|. This d is relatively prime to ¢" — 1, so b is
an m-sequence. Now the function Tr(z¢) is actually a linear function, so we refer to the sequence
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b as a linear decimation of the sequence a. In fact, Tr(z?) = Tr(x) so the cross-correlation with
respect to the character y is

Coalt) = S0 ST [H, 0 A7 H, [x(w)¥(0) —

ueF veF

where A € E are determined by the shift ¢.

Proposition 13.5.3. Let a be an m-sequence and let b be its d-fold decimation where d is a power
of q. Then d is relatively prime to ¢" — 1 so b is also an m-sequence, and the cross-correlation of

the sequences b, a is
I ! ift#0
Coalt) = { =1 ift=0

Proof. First consider the case when A ¢ F. By Lemma 13.5.2 this implies that H, and A~'H,
are not parallel, so their intersection contains ¢" 2 elements and in particular it is independent of
wand v. But ) . x(u) =0 so we conclude that C, () = —1 in this case. Now suppose A € F.
Then H, and A~'H, are parallel: they coincide if u = A~'v, otherwise their intersection is empty.
That is, they coincide if and only if v = Au. Thus the cross-correlation is

Cb,a = anX Au -1

uel

= ¢ x((1=Au) -1

ueF
B {—1 if A=1

q" — 1 otherwise.
O

In fact, this answer (see also Proposition 12.1.3) is just the autocorrelation function of a (since
b is a shift of a), but we have computed it using a technique that works in many other situations,
as we see below.

13.5.c Quadratically decimated sequences

If d = ¢’ + ¢’ is a sum of two powers of ¢, then the function Tr(z¢) is a quadratic form, and the
set @, is a quadric hypersurface. By Section 3.3 the problem of computing the cross-correlation
when d = ¢' + ¢’ is equivalent to that of computing the cross-correlation for d = 1 + ¢*. First we
need the following technical result whose proof will appear at the end of this section.
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Theorem 13.5.4. Let Q) : £ = Fyn — F =T, be a quadratic form of rank m, and Type I, II,
or III (see Theorem 3.3.1). Let L : E — F be a linear function, let x : F — C* be a nontrivial
character, and for any w € F' set

N, = H{zx€eE: Q(x)+ L(x) = w} (13.8)
S@Q,L,x) = Y Nux(w). (13.9)

Then the value of S(Q, L, x) and the number of times that value occurs, as L varies over all linear
maps £ — F is given in Table 15.1.

g even S(Q, L,x) | Number of occurrences
0]q"—q"
Type I =" 50" = ")
| Mg+ ) — 1
0] q"—qm -1
Type II | —q—tm=072 | 1 (gm=t _ gm-1/2)
gm0/ | L (gmet g glm/2)
0]q"—q"
Type III —g" 2| Hgm 4 gm?) -1
| (g = qm?)
q odd |S(Q, L, x)| | Number of occurrences
0]q"—q"
g | gm

Table 13.1: Cross-correlation of quadratically decimated sequences

Theorem 13.5.5. Let a € E be a primitive element and let a be the m-sequence a = Tra(a¥). Let
d=1+¢" and let b be the d-fold decimation of a. For each shiftt, (0 <t < |E|—2)letL: E — F
be the linear mapping L(z) = Triz(atz). Let x : F — C* be a character. Let m = rank(Q) where
Q is the quadratic form Q(x) = Tri(z®). Then the rank m and the type (I, II, or III) of Q is given
in Theorem 3.3.5 and the cross-correlation of the sequences b, a is the number

Cb,a(t) = S(Q7 L7 X) —1

as determined in Table 13.1.
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The proof of Theorems 13.5.4 and 13.5.5 will occupy the rest of this section. To compute
the cross-correlation Cp4(t) we compute the sum (13.3) for all possible values of A. As ¢ varies
(0 <t < |E| —2) the element A = of € E varies over all nonzero elements so L(z) = —Tre(Az)
varies over all nonzero F-linear maps L : E — F. (See Theorem 3.2.14; the minus sign has
been inserted for convenience in later calculations.) For each nonzero value of A € E we have
A™'H,={x € E: La(z) = —v}. Rather than compute Cp, o(t) for each ¢ separately we determine
the possible values of Cp, 4(f) and the number of values of ¢ for which each value occurs. Thus it
suffices to compute the value of

Cba(l)+1 = ZZ Hr € E: Q(x) =wuand L(x) = —v}| x(u — )

= > HzeE: Q(z)+L(z) = w}|x(w)
= ) Nux(w)=S(Q,L,x)

and the number of times each value occurs, as L : £ — F is allowed to vary over all nonzero
F-linear mappings. Hence, Theorem 13.5.5 reduces to Theorem 13.5.4, which we now prove.

The numbers N,, were determined in Theorem 3.3.4. Fix a basis {1, x9, -, 2,} of E over
F and let L(x) = cix1 + -+ - ¢y, = ¢ - & where ¢; € F. Choose a maximal subspace V' C E on
which @ is non-degenerate. As vector spaces over F' we have an isomorphism, £ = V @ Ker(Q).
Let @1, L; denote the restrictions of ), L to V and let Ly be the restriction of L to Ker(Q).
Then L(a,b) = Li(a) + La(b) for a € V and b € Ker(Q). According to Proposition 3.3.3 if
Ker(Q) ¢ Ker(L), then for any w € F, N,y = ¢" ' s0 S =¢"'Y . x(w) =0. Such an S occurs
for ¢ — g™ different (nonzero) values of L for the following reason. The condition Ker(Q) C Ker(L)
means that Ly = 0 and L, is arbitrary so there are ¢™ — 1 possible nonzero choices for L satisfying
Ker(Q) C Ker(L).

It remains to evaluate S when Ker(Q) C Ker(L). In this case (by Proposition 3.3.3), N,, =
¢"~™N), where N/ is the number of solutions = € V to the equation Q;(z) + L1(z) = w. By a
linear change of variables, we may assume that V' = F™ and that Q,(z) is a quadratic form of
rank m on V. Then

o for ¢" — g™ choices of L
S(Q,L,x) = { ¢ "™S1(Q1, Ly, x) for ¢™—1 choices of L

where S1(Q1, L1,x) = Y. ,cp Nox(w). For each value of Si(Q1, L1, x) we need to calculate the

number of choices of Ly : V' — F for which this value occurs (recalling that Ly = 0). The
calculation of S(Q1, L1, x) and the number of times it occurs is rather messy.

322



Case that ¢ is even. In this case every additive character x : F — C* takes values in {£1}
and so x~! = x. Let Qq, Ly : F™ — F with Li(z) = cjz1 + - -+ ¢y = c-x. First assume Q is a
Type I form of rank m on F™. Then m is even, and for all w € F, N,, = ¢" ' +v(w+Q1(c))g™/?*
from Theorem 3.3.4. Therefore

SUQ1, LX) = Y ¢ X)) v(w + Qu(e)x(w)

= P b0 (@4(0)
¢ X H@1(9) (g — Dx(0) = > x(v)

v#£0
= ¢"* I HQ1(0) (g — Dx(0) + x(0))
P Qu(e)).

This occurs ¢™ — 1 times, representing the different possible values of ¢. The character value
x (k) € {1} is —1 for q/2 values of h # 0; it is +1 for ¢/2 — 1 values of h # 0, and it is +1
when h = 0. Counting the number of ¢ for which Q;(c) = h we conclude that x ™' (Q(c)) = —1
for (¢™ — ¢™/?)/2 values of ¢, otherwise it is +1. In summary,

m/2 for 1(¢™+¢™?*) —1 values of 0 %
q occurs for q” +q ) values of 0 # c €
Sl(QlaLhX) = m/2 ? m m/2
—q occurs for 5(¢™ — ¢™/?) values of 0 £c e V.
Consequently,
for ¢ —q™ values of L
S(Q,L,x) =% ¢™?* for 3(¢™+¢q™?) —1 values of L
—q"™? for 1(g™ — q™/?) values of L.

The same calculation for Type III gives

0 for ¢" — g™ values of L
S(Q,L,x) = —q"™? for 1(¢™+¢™?)—1 valuesof L
g% for (g™ —qm?) values of L.

Now assume that @)1 : F'™ — F'is a Type II quadratic form of rank m. Then m is odd. Let
1 F— C* be the trace character,

Y(w) = (~1) T
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Let Ly(z) = 121 + - - - + ¢p. The number N, of solutions to the equation Qq(z) + Ly (z) = w is
N, =¢" " +7(c,w)g™ V2,
where 7(c,w) is given by equation (3.12). That is,

0 if e, =0
T(c,w) = { V(Bp_1(c)/2)Y(w/c2) otherwise.

We wish to compute

S1(Qr, L x) = ¢ ) x(w) + ¢ 7 (e, w)x(w).

weF weF

The first term in the above sum vanishes. If ¢,, = 0 (which holds for ¢™! — 1 possible nonzero
values of (¢1,---,¢p-1)) then 7(c,w) = 0 so S; = 0. As ¢, varies among the remaining ¢ — 1
nonzero possibilities the character 1)(w/c?,) varies over all nonzero characters of F', one of which
is y. So there are ¢ — 2 values of ¢, such that 1(w/c?)x(w) is nontrivial, which again gives
S1(Q1, Ly, x) = 0. This accounts for (¢ — 2)¢™ ! values of ¢. Thus, S;(Q1, Ly, x) = 0 for a total of
(g —1)(¢™ 1) — 1 nonzero values of c. If ¢,, equals the one remaining value where 1) (w/c2) = x(w)
then
S1(Q1, L1, x) = ¢V PP(Bai(e) /) > 1 =gt

weF

To determine the number of times each sign occurs, consider the equation B, i(c)/c? = u €
F. Then ¢(u) = +1 for ¢/2 values of u (including v = 0) and ¥ (u) = —1 for ¢/2 nonzero
values of u. Since B,,_1 is a Type I quadratic form, by Theorem 3.3.2 there will therefore be
(q/2)(q™ 2 — q™=Y/2=1) choices of (cy, - - -, ¢_1) Which give ¥(B,,_1(c)/c?) = —1. Similarly there
will be ™2 + (¢ — 1)g" V27 4 (g/2 = 1) (g™ — ¢ V21 = (¢/2)(¢™ % + ¢V choices
that give the sign +1, counting v = 0 and u # 0 separately. In summary,

0 for ¢m —q¢qm !t -1 choices of ¢
S1(Q1, L1, x) = —qtmt/2 for % (qm_1 — q(m_l)/2) choices of ¢
g™ th/2 for % (qul + q(m’l)/z) choices of c.
Therefore
0 for ¢" —g¢m ' -1 choices of ¢
S(Q,L,x) = —q"m=D2 for L (gt — ¢(m=/2) " choices of ¢
g"=(m=V2 for 1 (g™t 4 ¢™=D/2) choices of c.
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Case that ¢ is odd. As above, assume )7 : F™ — F' is a quadratic form of rank m, L(x) =
121 + -+ - + ¢y, is a linear mapping, and y : F' — C* is a nontrivial character. Then

Ql?Lla Z

weF

where N, is the number of solutions to the equation Q(z) + L(z) = w which by Theorem 3.3.4 is

N/, =

w

q" "+ n(w + R)n(A)g™= Y72 if m is odd
¢" '+ v(w+ R)n(A)g™?*  if m is even

where R = R(Q,c). First suppose that m is odd. Setting x = w + R, using n(0) = 0 and
Y wer X(x) = 0 gives

S1(Q1, Ln, x) = n(A)g" VP (=R) Y n(w)x

x#0

Using Theorem 3.2.17 for the Gauss sum, we conclude that |S1(Q1, Ly, x)| = ¢™~V/2¢'/2 = ¢m/2,
Next suppose that m is even. Using v(0) = ¢ — 1 and v(z) = —1 for x # 0 gives

S1(Q1, L1, x) = n(A)g"* 'x(—R) (Z v(z)x(z) + (¢ — 1))

x#0

= (A)g™* x( ( > x(@) +q—1>

zeF

from which we conclude that |S,(Q1, L1, x)| = ¢"/?> 1q¢ = ¢™/%. Since S(Q, L, x) = ¢""™S1(Q1, L1, X)

we obtain
0 for ¢ —q™ wvalues of ¢

|S(Q7L7X)| = { qn—m/2 for qm values of ¢
whether m is even or odd. This completes the proof of Theorem 13.5.5. O

13.5.d Other decimations, especially d = —

In this section we suppose the ground field F' = Fy = Z/(2) is the field with two elements. In a
remarkable paper, P. Lachaud and J. Wolfman made a tremendous advance in the computation of
cross-correlations [118]. Their result is based on the following simple observation. In this setting
E is degree n extension of the field Fy, so that |E| = 2",
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Consider again equation (13.2) for the cross-correlation. The unique nontrivial character y on
Fis x(u) = (—1)*. That is, x(0) =1 and x(1) = —1. Consider the set

V={(z,y) eExXE:y’—y=2a"— Azx}. (13.10)

So V is the set of solutions to the following “magic” equation: y? —y = 2% — Az, which turns out
to be intimately related to the cross-correlation, as we now explain.

If we fix z € E and if Tr(z? — Ax) = 0, then by Theorem 3.2.15 there are two solutions y € F
to the magic equation, that is, we obtain two points in V. If Tr(z? — Az) # 0, then there are no
solutions to the magic equation. So the number of points in V' is 2N, where N is the number of
I’s that occur in the sum (13.2). Moreover the number of —1’s that occur in the sum in equation
(13.2) is 2" — N. We conclude that

Coa(t) =N — (2" —N)—1=|V]—2"—1

where |V is the number of points in the set V, or equivalently, the number of solutions to the
magic equation. This converts the problem of determining (or estimating) the cross-correlation
into a “geometric” problem: that of counting (or estimating) the number of points in V.

In some cases, this number can be explicitly computed. Lachaud and Wolfman considered the
case d = —1, in which case equation (13.2) is known as a Kloosterman sum, and the set V in
equation (13.10) is an elliptic curve. The number of points in such an elliptic curve is known,
by deep number theoretic results of Honda and Tate [79],[181]. This gives explicit values for the
cross-correlation: numbers that had been earlier found in some low dimensional cases by laborious
computer experimentation.

13.6 The Diaconis mind-reader

The magician enters the room where his audience is seated in rows facing the stage. He has a
deck of cards bound with an elastic band, and he tosses the deck to someone in the audience.
“Take off the elastic band and cut the deck a few times,” he says, “then pass it to the person on
your left and have him cut the deck a few times.” The cardinal rule in magic, never to let your
audience handle the props, has already been broken. “Now take the card on top, pass the deck to
the person on your left, have him take the card on top, and so on. When the deck gets to the end
of the row, pass it forward to the next row and have each person in that row take a card, until
they’re all gone. You may look at your card but don’t show it to the person beside you.” There
is some rustling while the card dealing progresses. “Now I need five volunteers, who won’t be
upset if I read their minds,” he says. Lots of people raise their hands. The the magician picks five
(consecutive) people, and asks them to come to the front of the room. “I want you to think about
the card you're holding and T’ll tell you what it is. Concentrate on the card.” Silence. A long
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pause. “Think harder!” Silence. “OK, this isn’t working. Look at your card again, concentrate
on it, hold it against your forehead, and concentrate on it.” The magician’s face contorts with the
effort of trying to read the minds of these people, with no apparent success. “OK.,” he says again,
“I'm getting some interference from the black and red cards. You'll have to work with me on this.
Will the people holding red cards please just take one step forward, closer to me and then we’ll
try again.” The red cards move one step forward. “Mmmmmm,” says the magician, “Now I think
I'm getting it. Let’s see. You have the three of spades. You have the seven of clubs...” And sure
enough, he gets them all correct!

This wonderful magic trick, based on m-sequences, was invented by the famous magician,
mathematician, and statistician, Persi Diaconis. Here is how it works.

The trick can be performed with a “deck” of either 31 cards or 63 cards. In the latter case it
is necessary to borrow 11 cards from a second, identical deck. We will describe the 31 card trick.
The cards are pre-arranged according to a chosen m-sequence of period 31. The m-sequence is
generated by a LFSR with 5 cells. Each “state” of the shift register gets translated into a single
card, for example, by having the rightmost two bits determine the suit, and the leftmost three bits
determine the face value. If a red card represents a 1 and a black card represents a 0, then choose
the suits so that 01 and 11 are translated into red suits, while 00 and 10 are translated into black
suits. The leftmost 3 bits give a face value, 0 to 7, perhaps with a value of 0 representing a Queen.
When the five consecutive audience members stand at the front of the room and give away the suit
colors by stepping forward, the magician sees the “state” of the shift register and he can calculate
from this the value of the rightmost card. Then, he runs the shift register in his mind to generate
the next bit, and this allows him to calculate the second card from the right, and so on. Cutting
the deck creates a left shift of the m-sequence. It doesn’t matter how many times it is done, the
cards remain in the same cyclic order.

Here is a possible implementation of this scheme. For the suit bits (rightmost two bits) use:
00=¢&, 01 =0, 10 = &, 11 = <. So a row of five people with the second and fifth stepping
forward corresponds to 01001 or

010 || 01

which would be assigned to the rightmost person.
Choose a primitive element in Fs,, for example, a solution to 2° = 22+ 1. Here is the resulting
m-sequence and its translation into playing cards.

cooo001o01 01 1 101 1 000
Q QQ A 2 5 2 5 3 7 6 5 3 6 continued
O &6 0O &6 0300 68030 688
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1 111 1 0 0 1 1 01 0 0 1
4 Q A 3 7 7T 7T 6 4 A 3 6 5 2 4 A 2 4
OO0 00 6 &0 O 680 680 686868
The 01001 sequence considered above appears at the end of the second row. Having decoded
this as a 2Q for the rightmost person, it is a simple matter to run the shift register one step (adding
the rightmost 1 and the middle 0) to obtain the next bit, a 1. So the next card corresponds to

10100 or 5é, and so on.

The disadvantage of this scheme is the requirement that the deck have 2% — 1 cards. However,
the number 2 is a primitive root modulo 53, so it is possible to do the same trick with a deck of
52 cards, by replacing the (binary) LFSR with a (binary) FCSR having connection integer g = 53.
In this case, ¢ + 1 = 1101105 so the magician needs to know the colors for 6 consecutive cards,
and the shift register has 4 nonzero connections and an integer memory, making it a bit harder to
calculate.

13.7 Exercises

1. Let n =[], p; be the product of distinct odd primes p;. Let R = Z/(n). Let q(z) € R[z] with
q(0) = —1 and deg(q) > 1. Find an upper bound on the linear complexity of an LFSR sequence
with connection polynomial ¢(z) over R in terms of the multiplicative orders of x modulo ¢(z)
over the various Z/(p;). Under what circumstances is the upper bound reached?

2. What is the maximum cross-correlation between an m-sequence of period 255 and a proper
nonlinear decimation?
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Chapter 14 Related Sequences and their Correlations

In this chapter we briefly review some of the sequences that are related to m-sequences, many of
which have found applications in communications. See also Section 18.5, where the linear span of
sequences derived from m-sequences is discussed.

14.1 Welch bound

For applications to spread spectrum communications, one attempts to find a collection of shift dis-
tinct sequences with low pairwise cross-correlation values. For a given (maximal) cross-correlation,
there are theoretical limitations on the number of sequences in such a collection, the simplest of
which is the Welch bound.

Suppose we have a collection of n periodic sequences of elements in a finite field F', each with
the same period T. We can expand this set to include all the shifts of these sequences. If T is
the minimal period of each sequence and the sequences are pairwise shift distinct, then we obtain
a set of N = Tn vectors, commonly referred to as a signal set. Let us denote these vectors
a® a® ... a®™ Tet y : F — C* be a nontrivial character. Then the cross-correlation with
respect to y of the vectors a®™ and a®) (1 <wu,v < N) is the number

Cow = > x(a”)x(a”).

Then C,, = T. A good signal set is one for which the cross-correlations C,, are small, for u # v.

Theorem 14.1.1. Let a®),--- a®™) be a collection of N vectors in FT. Let x : F — C* be a
nontrivial character. Let Cyy = Cy) a0 and set Crax = max {|Cuy| : u # v}. Then

e o T -T)
max N_l

Proof. For notational convenience write x,ﬁ“) = X(a;u)) for 1 <u < Nand 1<k <T, so that
Coo = 25:1 x,&")i:,gv). Summing the squares of the C,, gives

N N
N(N=1)C +NT* > > > |Cul’

u=1 v=1
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by dropping the terms with ¢ # j. The result follows. O

If the N sequences in the preceding theorem consist of all possible shifts of a collection of n
periodic sequences (each with period T) then N = nT so

o T*(n—1) nT?

> ~ =T
max nT —1 nT

Thus, if n is even moderately large the signal set will contain pairs whose cross-correlation is
lower-bounded by approximately /7.

14.2 Families derived from a decimation

Let F =F, C E = Fn be finite fields, let & € E be a primitive element and let 2 < d < |E|—1 be
a decimation. It is possible to construct a family of pseudo-random sequences from the m-sequence
a = (TrE(a®), Tri(ab), TrE(a?), - - ) and its d-fold decimation b = (TrE(a?), Tre(ad), Tri(a??), - - )
by definining, for A, B € E the sequence S(A, B) whose i-th term is

S(A, B); = Triz(Aa® + Ba®) = Tri(Aa’) + Tri(Ba'). (14.1)

The sequence S(A, B) can evidently be generated as the termwise sum of the output sequences
from two shift registers, having connection polynomials hy(z) = —1 + hgl)m + oo+ APz and
ho(z) = =1+ h§2)$2 R respectively, such that « is a root of hi(z) and 8 = a? is a root
of ho(x). Here 1 <r < n, with » = n if and only if ged(d, g™ — 1) = 1. Figure 14.1 shows such an
arrangement. By Proposition 6.5.1 the same sequence can be generated by a single shift register
with connection polynomial hy(x)hs(z).

As A and B vary in E the resulting sequences S(A, B) are not all shift distinct. In Section
14.3 we see how to choose a collection of shift distinct sequences among the sequences S(A, B).
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Gp—1|An—-2 s ai agp

D

Figure 14.1: Gold sequence generator

14.3 Gold sequences

The family of (generalized) Gold sequences amounts to the construction in Section 14.2 in the case
of a quadratic decimation d = ¢' + ¢’ (or equivalently, d = 1 + ¢’~*). References for this section
include [51, 94].

Lemma 14.3.1. Suppose d = 1 + ¢' is a quadratic decimation. If n is even then assume further
that i # n/2. Then the sequences in the set

S =4{S(1,B): Be E}U{S(0,1)} (14.2)
are shift distinct. If d = 1+ ¢* is relatively prime to |E| — 1 then this coincides with the set
S ={S(A,1): Ae E}U{S(1,0)}

Proof. 1f S(A, B) and S(A’, B') are sequences of the form in equaton (14.1) and if one is a left
shift of the other, then setting S(A, B); = S(A’, B');4, gives

Tri(x(A - CA) +24B - C'B')) =0 (14.3)
forallz = o' € E, where C = a”. If d = 1+¢', then equation (14.3) may be written L(z)+Q(z) = 0

where L(z) = Tri(z(A — CA’) is a linear function and Q(z) = TrE(24(B — C¢B’) is a quadratic
form. If, moreover, i # n/2, then by Corollary 3.3.7, B — C¢B’ = 0 and A — CA’ = 0. It follows
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that S(1, B) and S(1, B’) are shift distinct whenever B # B’. Similarly, S(1, B) is shift distinct
from S(0, 1).

If d is relatively prime to ¢ — 1, then §; = S because both families contain S(0, 1) and S(1,0)
and if B # 0 then S(1, B) is a left shift of S(B~%,1). O

Let x : F© — C* be a nontrivial character. We wish to find the cross-correlation (with shift ?)
with respect to x of two sequences a = S(1, A) and b = S(1,B) in S;. It is

q"—2
Cha(t)+1 = Z X (TrE (aF — o+t 4 Aa® — Badk+h))
t=0
= > x(TF (z(1 = C) + 2(A - BC?))
z€E

where C' = o'. Let Q(x) = Tria((A — BC%2?) and L(z) = Tri(x(1 — C)). Then

Coalt) +1 =) Nyx(w) (14.4)

weF

where N, = |[{z € E: L(z)+ Q(z) = w}|. The numbers N, are not known in general, but if
d = 1+ ¢' is a quadratic decimation then the numbers N, were calculated in Theorem 3.3.2.
Equation (14.4) and Theorem 13.5.4 then give the following result.

Theorem 14.3.2. Let F = F, C E = Fyn be finite fields. Let d = 1+ ¢' be a quadratic deci-
mation. Let A,B € E and consider the Gold sequences a,b given by a, = Trp(a® + Aa®) and
b, = Tra(a® + Ba®™). Let x : F — C* be a nontrivial character. Then the possible values for the
cross-correlation Cp a(t) of these sequences with respect to the character x is given in Table 14.1,
where g = ged(n, i) and e = 1+ ¢7, where H = A — Ba® and where a = s* means that a € E is
the d-th power of some element s € E. O

14.4 Kasami sequences, small set

Let F =TF, C £ =Fgn C L =Fpm be finite fields, so that L is a degree two extension of . Let
a € F be a primitive element and let

d= (L[ =1D/(E][ 1) =1+¢™

Recall from Section 3.2.e that ¢ = N4(z) € E is the norm of = (for any z € L). Consequently, an
element H € L is actually contained in E' if and only if it is the d-th power of some element s € L.
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q even
Conditions Type Rank Values of Cp o + 1
n/geven | n/2g odd | H = 5% I n—2g {0, 4279}
H # 57 111 n {0, £¢"/?}
n/2g even | H = s¢ 111 n—2g {0, +£q279}
H # 54 I n {0, +£¢"?}
n/g odd IT n—g+1] {0, +qm9/2)
q odd
Conditions Type | Rank Values of |Cpa + 1]
n/g even | n/2g odd Z:é:;e n=-1|n-2g {0,q279}
otherwise |n=1 |n {()7 qn/2}
n/2g even | H = s° n=1 |n-—2g {0,q279}
H # s° n=-1|n {0,¢"%}
[y ol | | I (28

K(A); = Trk (Tré(o/) + Aadi))

Table 14.1: Cross-correlation for Gold sequences.

K(A); = Trk(af + Aa®)
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The small set of Kasami sequences is the collection of sequences IC(A) as A € L varies, where
TrE (Tré(o/) + AN (o))

for the various possible choices A € L. For any A € L there exists A € L such that Trk(4) = A.
Consequently the Kasami sequence can also be written

which is therefore a Gold sequence S(1, ﬁ), with n = 2m, g = m, and e = d. The cross-correlation
between any two such sequences therefore has values as described in Table 14.1 (where n/g = 2
is even and n/2g = 1 is odd). However Lemma 14.3.1 does not apply in this situation because
i = n/2. Instead, we have the following result.

Lemma 14.4.1. If A, A’ € E and A # A’ then the Kasami sequences K(A) and K(A’) are shift




Proof. Choose A, A’ € L so that Trk(A) = A and Trh(A') = A’ If K(A) coincides with the shift
by t of the sequence K(A’) then setting C' = o gives

Trh(ai(1 = C) + Aa® — AC%a®) =0
for all i. Therefore the function F(z) = L(z)+Q(z) is identically zero, where L(z) = Trix(z(1—C))

and Q(z) = Trk(z9(A — A'C?)). By Corollary 3.3.7 this implies that C' = 1, that i = n/2 (which
we already know to be satisfied), and that TrE(A A’C’d) = 0. But this implies that A = A". O

14.5 (Geometric sequences
In this section we fix a prime number p € Z and consider field extensions
F:]FPCL:F(]CK:F(]'"L

where ¢ = p° is some power of p. Let Trf : K — Land Tr{; : L — F denote the trace mappings. Fix
a primitive element o € K. This gives an m-sequence whose i-th term is Trjt (o') = Try (Tr} (o).

A geometric sequence [99] a is obtained by replacing the second function Trfp by some other,
possibly nonlinear function f: L — K, that is,
a; = [ (Tr(a)). (14.5)

This sequence may be interpreted as the result of applying a “nonlinear filter” to the output
of a maximal length shift register (of size m) over L. In other words, let q(z) € L[z] be a
primitive polynomial of degree m. Then the output sequence of the n-stage LFSR with connection
polynomial ¢(z) and entries in L is the sequence Trk (?) where a € K is a root of g(z). Then
apply the function f : L — F to this output, as in Figure 14.2.

We wish to calculate the autocorrelation and cross-correlations of such sequences. If g : L — F
is another (possibly nonlinear) function then a second geometric sequence b may be obtained by
starting with a (possibly different) primitive element 8 € K and setting b; = g(Tr¥ (8")). Since 3 =

4 (for some integer d, relatively prime to ¢™ — 1) we may write b; = g(Tr} (a®)), cf. Proposition
13.2.1. The underlying sequences Trk (o) and Trk (a®) are related by the decimation d. Recall
from Section 13.5.b that d is a linear decimation of it is a power of ¢ (meaning that the function
x — x? is linear over L) and that d is a quadratic decimation if d = ¢° + ¢' is a sum of two powers
of ¢ (meaning that the function z — 2¢ is a quadratic function as x varies in L.)

The auto- and cross-correlation functions of the sequences a and b will be written in terms of
two auxiliary quantities determined by the feed forward functions f and g. Let x : F' =F, — C*
be a nontrivial character. Recall (Section 11.3.a) that the cross-correlation of the functions f,g
with respect to the character x is the function

A) = x(g(w)x(f(Au))

uel
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out

Figure 14.2: Geometric sequence generator

for any A € F. Also define the imbalance of the function f to be Z,(f) = >, x(f(w)). Set
Co = x(f(0))x(¢(0))-

Theorem 14.5.1. (cf. [25]) Let a; = f(Tr¥(a?)) and b; = g(Trk (a®)) where d = ¢° is a “linear”
decimation. Let x : F'— C* be a non-trivial additive character. Then the autocorrelation function
(with respect to x) of a is

a1 ifAdL
Aa(T) o { qulcf’f(A) —1 ZfA e L

where A = a". The cross-correlation (with respect to x) of a and b is

_ [ 2(9)Z(f) - Co fAEL
Coa(T) = { e, 1(A) = Co ’ ifAeL

We remark that A = of € L if and only if 7 is a multiple of (|K|—1)/(|L|—1) = (¢™—1)/(¢—1).
Since the cross-correlation of the sequences a, b is ultimately described in terms of the cross-
correlation of the functions f, g this procedure can be iterated: the function f : L — F' could itself
be taken to be of the form f(z) = f'(Trk(x)) for some intermediate field £ and some function
f': E — F. This approach was used in the construction of cascaded GMW sequences [99]. A
similar approach may be applied to quadratically decimated geometric sequences [25].

Proof. We use the same technique that was used in Section 13.5.b. For u,v € L let

Qu ={zeK: Trf(z?) =v}
H, ={zeK: Trf(z)=u}
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Then H, is an (affine) hyperplane in K and @, is a hypersurface in K. Each A € K acts by
multiplication so

A'H,={A 'z e K: Tri(z) =v} ={ye K: Trf(Ay) =v}.

The cross-correlation with shift 7 is:

|K|-2

Coalr) = D X(o(Tr (@)X (Tr (a"7))
= D x(@(Tr @)X (T (Ax))) = Co

zeK

= ZZX ()|QuN AT H,| = Gy

vEL uelL

where A = a”. Here we have used the fact that if ¢ varies over 0 < ¢ < |K| — 2, then o' varies
over all nonzero elements of K. Since we assume d is a power of ¢ we have: Try (z4) = Tr} (2) so
the hypersurface @), = H, is a hyperplane. According to Lemma 13.5.2 the hyperplanes H, and
A~'H, are parallel if and only if A € L. If A ¢ L the 1ntersect1on H, N Hy-1, is a subspace of

dimension m — 2 in K which gives Cha = Z,(9)Z,(f)¢™ 2 — Co. If A € L then A'H, = Hy-,
and its intersection with H, is empty unless v = Au in which case the cross-correlation is
Coa(m) = x(g(u Au))r™=t — Cy. O
u€eL

14.6 GMW sequences

As in Section 14.5, consider fields
F=F,CL=F,CK=Fpm

and let @ € K be a primitive element. Fix an integer h, relatively prime to ¢ — 1. The GMW
sequence a (cf. [57, 175, 100]) based on the data («, h) is a geometric sequence in which the function

f:L— Fis f(x) = Trk(z"), that is,
a; = Trp (Trif (o)) . (14.6)

Theorem 14.6.1. The GMW sequence in equation (14.6) has full period, ¢™ — 1, and perfect
autocorrelation function. It is balanced with respect to any character. It is equidistributed to order
[K : L] =m. If h is a power of p then it is a shift-and-add sequence.
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Proof. Let x : FF — C* be a nontrivial (additive) character. According to Theorem 14.5.1 the
autocorrelation of a is determined by the imbalance and autocorrelation functions of f. The
imbalance is Z,(f) = > .. x(f(w)) = >, x(u"). Since h is relatively prime to ¢ — 1, the
elements u” exactly vary over the elements of L as u varies over the elements of L so Z,(f) = 0.
The autocorrelation function of f is

Crs(A) = D x(f(u)X(f(Au))

= 33 @)X()H, N A7 H,|

zeF yeF

where H, = {u € L : Tri(u) = 2} and similarly for H,. Using Lemma 13.5.2 as we did in Section
14.5, these are non-parallel hyperplanes unless A € F. If A ¢ F' this gives

Crp(A) =p) x(x)> X(y) =0

el yeF

while if A € F this gives 0 (because parallel hyperplanes do not intersect) unless y = Ax, in which
case it gives

Crp(A) =p ' Y x(@)x(Ax).

zeF

The function n(z) = x(z)X(Az) is an additive character n : F' — C*, which is non-trivial unless
A = 1. Hence ) _pn(x) = 0, which completes the proof that the autocorrelation function is
perfect.

To see that the GMW sequence a is equidistributed to order [K : L], we first observe that
the sequence y; = Tr} (') € L is equidistributed to order [K : L] since it is an m-sequence. It
follows that the sequence y = (y&, y%, - - ) is also equidistributed to order [K : L] since the function
y — y" is a permutation of the set L (and it takes 0 to 0). In fact, each block (21, -, z,) of size
m = [K : L] occurs exactly once in a single period of y (except for the all-zero block). Now let
b= (by,by, -+, by) with b; € F, be a block of size [K : L]. For each b € F there are |L|/|F| = p°~*
elements z € L such that Trk(z) = b. Consequently there are p"(¢~1 blocks (21, 22, - - - , 2 ) of size
m = [K : L], with z; € L such that (Trk(zy), Trk(22),---, Trk(zm)) = (b1, b, - -+, by). But each
such block (21, 22, -+ +, z,,) occurs once in the sequence y, unless it is the all-zero block. Hence the
block (b1, b, -+, by) occurs p™e=1 times in the sequence a, except for the all-zero block, which
occurs p™e=Y — 1 times.

Now suppose h is a power of p. To see that the sequence a is a shift-and-add sequence, consider
a shift 7 and let A = o™ € K. Assuming A # —1, there is a unique s (0 < s < p™ — 2) such that
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1+ A = a®. The sum of a plus its 7-shift is the sequence b = (by, by, - - ) where

bi=a;+air, = Trp ((Trg(a')") + Trg ((Tri (@"7))")
= Tk ((Trf(ai) + Trf(Aai))h)
= Tk ((Trf(asai))h)
= Qjys- o

14.7 d-form sequences

In this section we restrict our attention to characteristic 2. Let m,e > 1 and ¢ = 2°. Let
F=F,CL=F,CK=Fm
Let d > 1. Then a d-form on F, is a function H : K — L satisfying
H(az) = a®H(z)

for every a € L and z € K. For example, Tr¥ (z¢) is a d-form.
Let H(z) be a d-form and let @ € K be a primitive element. Let k& > 1. Then the sequence
A = agp,aq,- - defined by
a; = Tri(H(a")F)

is called a d-form sequence. The proof of the following theorem is outlined in the exercises.

Theorem 14.7.1. ([99]) Let Hy and Hy be two d-forms and let A7 = a), al,---, j = 1,2, be the
d-form sequences they define using the same k. For any 7 let

zr=|{x#0€ K: Hi(x)+ Hy(a"z) = 0}].
Then the cross correlation (with shift T) of A, A? is:

zr —(gm—1
Caspa(7) = 2 q(f : ). (14.7)

14.8 Legendre and Dirichlet sequences

Although they are not directly related to shift registers, the Legendre and Dirichlet sequences
are included here because they have ideal autocorrelation functions. Let p be a prime number.
A Dirichlet character modulo p is a (multiplicative) homomorphism ¢ : Z/(p)* — C*. Since
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zp_l = 1 for all x € Z/(p)*, such a character takes values in the set p,_; of roots of unity so
P(z) = ('), An example is the Legendre symbol or quadratic character

P(x) = (f) — { +1 ifxis a square

—1 otherwise.

It is customary to extend each Dirichlet character to all of Z/(p) by setting 1(0) = 0, but there
is no “correct” value for ¢ (0) and engineers often take 1(0) = 1 to obtain a sequence of +1
values. The Dirichlet sequence corresponding to a Dirichlet character v is the periodic sequence
¥(0),9(1),9(2),---. It is called a Legendre sequence or quadratic residue sequence if 1 is the
quadratic character (in which case we set 1(0) = 1). In either case, let us consider the autocorre-

lation A(7) with shift 7 £ 0 (mod p). (Note that A(0) = p.)

Proposition 14.8.1. Let ¢ be a non-trivial Dirichlet character. Let T # 0 (mod p). Set

B 0 if 1(0)
R=14(0) (v(r) +¢(=7)) = ¢ 2Re(¥(7)) if(0)
2iIm (¥(7)) if 1(0)

Then the autocorrelation with shift T of the resulting Dirichlet sequence is

0
Ly(-1) =
1,9 (— 1): ~1.

)

A(T)=—-1+R.

Proof. Let 7 # 0. Assuming (0) is real, the autocorrelation is

Zer = > W ((@+m)a) +(r)p(0) + (0)d(—7)

z#0,—T

= 3 w1 +a7r) +9(0) (¢(r) + B(-7)).

z#0,—T

As x varies within Z/(p)* the quantity y = 1+ z~'7 takes on all values except y = 1. Tt takes the
value y = 0 when x = —7. Hence,

=) Y +R=) ¢y -v(1)+R=-1+R

because for any group G and any nontrivial character ¢, > e Y¥(g) =0 and (1) = 1. O

We remark that the quadratic character satisfies ¢(—1) = —1 if and only if p =3 (mod 4), in
which case R = 0. This case was first described in [157].
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14.9 Frequency hopping sequences

Frequency hopping as a spread-spectrum technique is described in Section 11.3.e. The key require-
ment is the generation of pseudorandom sequences with small Hamming cross-correlation. In this
section we describe several methods of generating such sequences.

14.9.a The Lempel-Greenberger method

In [121], Lempel and Greenberger showed how to use an m-sequence to construct an optimal family
of sequences. Their method has since been applied in a variety of different situations, and it may
be described in general terms as follows.

Proposition 14.9.1. Let V' be a vector space over a finite field and let a = (ag, aq,---) be a shift
and add sequence (see Chapter 12) with period T and with entries in V', which do not all lie in
a proper subspace of V.. For any v € V let a+ v be the translated sequence (ag + v,a; + v, --).

Then any two such sequences a + v,a+ w are shift distinct (provided v # w) and their Hamming

cross-correlation is [T/|VIT o 7
Ham = T V Z . "
c <a+v»a+w>—{ [TV i e =w

Consequently the family of sequences a+ v (for different choices of v € V') constitute an optimal
frequency hopping family, with |V'| shift distinct members.

Proof. If the finite field in question has characteristic p, then V is also a vector space over the
prime field IF,. By Theorem 12.2.2, the period of a is p"” — 1 for some n. Moreover, there exists an
[F,-linear mapping T : F,» — V and there exists a primitive element 8 € F,» such that a; = T(5").
If v,w € V and v # w, then the sequences a + v,a + w are shift distinct. (Otherwise there exists
a shift 7 such that T(8° — 3°77) = w — v for all ¢ which implies that T" is a constant mapping, so
it is zero.)

Let v,w € V. The Hamming cross-correlation ijﬁfa +(7) with shift 7 is therefore equal to the
number of values of i (0 < i < p™ — 2) such that T(3* — "*7) = w — v. This is the number of
nonzero x € F,» such that T(Az) = w — v where A = 1 — 7. Since T is linear and the values
a; do not lie in a proper subspace, the mapping T is surjective. Consequently, if 7 # 0 then this
number is p"/|V| = [T/|V|] unless w — v = 0 in which case it is p"/|V| — 1 = |T/|V]]. O

14.9.b Examples of FH sequences
From Section 12.3 we obtain the following families with optimal Hamming correlations.

1. Let ¢ be a prime power and let 1 < 57 < r be integers. By taking windows of size j from an
m-sequence of degree m over F, we obtain a balanced shift and add sequence of period ¢" —1 over
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the alphabet V' = IFZ,, as described in Section 12.3.b. Applying Proposition 14.9.1 gives a family of
balanced FH sequences (over the same alphabet F' with the same period ¢™ — 1), which contains
|V| = ¢ shift distinct members. This family was originally described in [121].

2. Let F' C L C K be finite fields of characteristic p and let h be a power of p. Let 1 < j < [K : L.
By taking windows of size j in the GMW sequence

a; = Trk ((Trf(o/))h)

(as in Section 12.3.c) we obtain a balanced shift and add sequence of period |K| — 1 over the
alphabet V' = F7. Applying Proposition 14.9.1 gives a family of balanced FH sequences (also over
V') which contains |F|? shift distinct members.

3. Let F' be a finite field, let w(x), g(z) € Flz] be irreducible polynomials with deg(q) = kdeg(m)
for some k£ > 2 and assume that 7(x) is primitive modulo ¢(z). This gives rise to a maximal length
shift and add function field sequence (see Section 15.1.c) of period |F|4°8(¥) — 1 with symbols in
the field F(z)/(m(z)). As in Section 12.3.d taking windows of size j < k in this sequence gives
a balanced shift and add sequence of period |F|%9@ — 1 whose symbols lie in V = (F(x)/(x))’.
Applying Proposition 14.9.1 gives a family of sequences (with the same period, over the same
alphabet) containing |V'| = |F|74¢¢(™) shift distinct members.

4. Families of frequency hopping sequences may also be constructed from m-sequences over finite
local rings (see Section 14.10.c) as described in [185].

14.10 Maximal sequences over a finite local ring

Let R be a finite local ring (see Section 4.1) with maximal ideal m and residue field p: R — F =
R/m having ¢ = |F| elements. Consider a LFSR over R with (irreducible) connection polynomial
g(x) € Rz| of degree d. We are interested in the output sequences of such a shift register or
equivalently, sequences (of elements in R) that satisfy the linear recurrence defined by g(x). There
does not appear to be universal agreement as to the meaning of “m-sequence”, or “MP-sequence”
(maximal period) over R because the possible multiplicative orders of elements in finite rings
are not always known. We will consider two classes of sequences. The first, referred to as “m-

sequences” in [185] have period ¢? — 1. However, longer periods are possible. Sequences with the
greatest possible period (given the ring R and the degree d) are referred to as “MP-sequences” in
[117] and as “ML-sequences” in [32]. References for this section include [32, 116, 184, 185, 187].

341



14.10.a Generalities on LFSR sequences over a finite local ring

Let us assume that g(z) € R[] is a basic irreducible polynomial (meaning that p(g) is irreducible)
whose leading term is invertible in R (so that deg(g) = deg(u(g))). Assume g(0) = —1, and
consider a LFSR over R with connection polynomial g(z). Let d = deg(g) and let S be the unique
degree d Galois extension of R (see Theorem 4.4.1). Then, as in equation (4.6), we have a diagram

S —— K=S/Mm

lT’I’S/R lTT‘K/F

R —t— F=R/m.

Let ¢ = |F| and Q = ¢% = |K|. By equation (4.2), there exists j such that |R| = ¢/ and |m| = ¢/,
hence |S| = |R|? = Q7 and || = |m|¢ = QL.

Let o € S be a root of g(x). According to Proposition 6.6.5, for any initial state of the shift
register there exists a unique A € S such that the output sequence a = (ag, aj, - - ) is given by

an = Try(Aa™). (14.8)
Since the mapping ¢ : S — R™ = 3 of Section 6.6.b is a bijection, we see that

1. The period of the sequence a is equal to the (multiplicative) order of « and
2. A e M if and only if a,, € m for all n > 0.

It follows from point (1) that the greatest possible period for the sequence a is obtained when «
is a generator of the largest cyclic subgroup of the (multiplicative) group S* of invertible elements.
By Proposition 4.1.3, the group S* is the product of two subgroups,

S* 2 KX x (1+M), (14.9)

where K is cyclic of order @ — 1, and 1 + 90 has order 7! = ¢U=D?. Recall from Section 4.1
that the isomorphism in equation (14.9) is induced by a splitting ¢ : K* — S* of the short exact
sequence

1—-149M— 5 - KX —1.

Let Z C 1+9M be a cyclic subgroup of largest order. Then its order | Z| divides @7 so it is relatively
prime to @) — 1. Hence K* x Z is a cyclic subgroup of S* of largest order. By taking a € K* x Z
to be a generator, we will obtain a sequence a with period (¢ —1)|Z|, which is the largest possible.
On the other hand, sequences with period ) — 1, described in the next section, are sometimes
referred to as “m-sequences”.
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14.10.b m-sequences

If the reduction u(g) € Flx] is a primitive polynomial then p(«) € K is a primitive element so its
order in K* is @) — 1. It follows that the sequence a,, of equation (14.8) has a period which is a
multiple of @ — 1. However if a € t(K) then a9~! = 1 and we conclude that the sequence a,, has
period @ — 1.

Definition 14.10.1. A (generalized) m-sequence over R is a sequence of the form a,, = Tr3(Aa™")
where o € o(K) is a primitive element (Section 4.4.c) and where A € S is a unit.

By Lemma 4.4.7, such an element « is a root of a monic basic irreducible polynomial g(z) € R[z]
such that g(z) divides 97! — 1. So the m-sequences of degree d over R are precisely the output
sequences of linear feedback shift registers over R whose connection polynomial is primitive and
divides 2@~1 — 1.

14.10.c m-squences over polynomials rings

As in the preceding section, assume that R is a finite local ring with residue field F' = F, and S
is its Galois extension of degree d and residue field K = Fg. Identify F' with its image «(F) C R
consisting of all elements u € R such that u? = u, and similarly (K) = {v € K : v¥ =v}.

In this section we suppose that R is itself a polynomial residue class ring, say, R = L[¢]/(w(&))
where L = F, is a finite field and w(§) € L[] is an irreducible polynomial of degree m. By
Proposition 4.2.3, the ring R is local, with F' = L[¢]/(w(§)), and |F| = ¢ = ¢™. The maximal ideal
m C R is principal and is generated by w(§). That is, m = (w(§)).

Lemma 14.10.2. If R and S are polynomial residue class rings as in the preceding paragraph,
then the trace Ty : S — R takes 1(K) to «(F) and the resulting mapping is Tris : 1(K) — o(F).

Proof. Let v € 1(K). We need to show that (Trk(v))? = Trf(v). By Lemma 4.4.7 there exists a
primitive polynomial f(z) € R[z] whose roots are primitive elements of ¢(K) which are permuted
by elements of the Galois group Gal(S/R). Let a be such a root. Hence v = o' for some t.
Moreover, a? is also a root of f so there exists 7 € Gal such that a? = 7(«). Consequently

()" = (o)
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where the sum is over 0 € Gal(S/R). This shows that the trace takes ¢(K) to ¢«(F') and Lemma
4.4.3 shows that it agrees with the usual trace. [

As in equation (14.8) the output sequence of the LFSR is given by a; = Tr(Aa %) and Lemma
14.10.2 shows that if A € «(K) then a; € «(F') forms an m-sequence in the usual sense. However,
by choosing A € 1+t C S* we obtain |1+ 9| = |m|? shift distinct sequences with a; € R. These
sequences and their translates are proposed for applications in frequency hopping in [185], where
their Hamming cross-correlations are calculated.

14.10.d ML sequences over (alois rings

We continue to assume, as in Section 14.10.a that R is a finite local ring with residue field F' = F,
and S is its Galois extension of degree d and residue field K = [Fa. In this section we consider
the case that R = GR(p™,e) is the degree e Galois extension of Z/(p™) where p is prime, see
Section 4.5. Then |R| = p™® and F' = F,e. It follows that S = GR(p™, ed) and so, by Section 4.5
the multiplicative group 1+ 9t contains cyclic subgroups of order p¢~!. Therefore, by appropriate
choice of a (or equivalently, by appropriate choice of the linear recursion g(z) and of the initial
loading), the sequence a will have (minimal) period (Q — 1)p?~! = (p** — 1)p?~t. Such sequences
are referred to as “MP-sequences” or “ML-sequences” (maximal period, resp. maximal length) in
the literature. Techniques for finding such a polynomial g(x) are described in [187, 32] (for the
case e = 1), and [116, 117, 181] (in general).

14.11 Exercises

1. The purpose of this exercise is to prove Theorem 14.7.1. Assume the hypotheses of that theorem.

a. Let t = (¢ —1)/(¢ — 1), and for 0 < i < ¢™ — 1, let i = ig + ti; with 0 < iy < ¢ and
0<1u <qg—1. Let
fi) = (Hi(a"))* + (Ha(a™7))".
Show that
al + a2, = Tri(a® f(io)).
b. The cross-correlation is the sum over all 0 <7 < ¢™ — 1 of

(—1)% %,

We can sum separately over iy and ;. First fix ig with f(ig) # 0. What is the contribution
as i1 varies? Next fix ig with f(ig) = 0. What is the contribution from such terms?

c. Let w = |{ig : f(ip) = 0}|. Using part (b), show that Ca1 42(7) = quw —t.

d. Show that w = z; /(¢ — 1) and use this to complete the proof of equation (14.7).

344



e. Let m = 2¢ and let a € [F,. Show that
H,(x) = Trgg (az?*t + Trg;n(xQ))

is a 2-form (also called a quadratic form).
f. Let A and B be two sequences defined by 2-forms H, and Hy, as in part (e). It can be shown
that for any 7 we have

2 €T = LT =T - LT g - - 1)

Use this fact and equation (14.7) to show that Cy (1) € {—¢? — 1,—-1,¢% — 1}.
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Chapter 15 Maximal Period Function Field Sequences

In this section we develop the theory of AFSRs based on function fields. Such an AFSR is a
feedback-with-carry shift register, however the register contents and the multipliers are themselves
polynomials. That is, they are elements of the ring R = F[z], where F is a finite field. The ring
R is an integral domain whose fraction field is the field K = F(x) of rational functions f(zx)/g(z)
(cf. Section 3.5 and 5.2.d), whence the name “function field AFSR”. In Section 15.2 we consider
a more general setting in which the register contents and multipliers are taken from a ring R
whose fraction field is any global function field, that is, any finite extension of F'(x). Although
function field AFSRs are considered in Sections 8.3.b and 8.3.c, the present chapter may be read
independently.

15.1 The Rational function field AFSR

Let F be a finite field. Let 7 € F[z] be a polynomial. Define S C Fl[z] to be the collection of
all polynomials of degree less than deg(). It follows from the division algorithm (Theorem 5.5.3)
that the set S is a complete set of representatives for the quotient ring F|x]/(7). The set S is
closed under addition, but not under multiplication.

Let q(x) € F[z] be a polynomial, relatively prime to 7(z). For any u € F|x] let u € F[z]/(m)
and u € F[z]/(q) denote its image in the respective quotients. Recall from Theorem 2.2.15 that
coprimality of the polynomials 7(x) and ¢(x) is equivalent to the statement that ¢ € Flz|/(n) is
invertible, or that 7(z) € F[z]/(q) is invertible. By the division theorem, the polynomial ¢(z) has
a unique expansion,

1) = 0o(x) + u(@)T(2) + - + g(2) ()" (15.1)

such that ¢; € S. Consequently ¢ = ¢y, and we will sometimes denote this by ¢ (mod 7).

Definition 15.1.1. Fiz w(z) € Flz]. A function field sequence a = (ag,aq,---) (with a; €
Flz]/(m)) is the output sequence of an AFSR based on (F[z],m,S) with connection element q(x) €
Flx], relatively prime to w(x). (See Corollary 15.1.3 for an alternate characterization of function
field sequences.)

Note that if 7(z) = z, then a function field AFSR is an LFSR.

Let us take a few paragraphs to repeat the salient properties of AFSRs in the case of function
field AFSRs. The symbols a; in the sequence are elements of F'[z]/(7) which may be represented
by polynomials of degree less than deg(7), the collection of which is denoted by S. The sequence is
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generated by the finite state machine illustrated in Figure 8.1. The “multipliers” qo, ¢1," -, ¢m € S
are chosen so that go(z) is relatively prime to m(z), and the connection element is defined to

be g(z) = >, qi(z)m(z)". The state, written (ag,as,---,am—1;2m—1), consists of the loading
(ag,ay, -+, am_1), with a;(x) € S, and the memory z,_1 € F[z] with z,_1 a polynomial of any
degree.

Given the initial loading (ag, a1, - - -, am—1) with initial memory z,,_; € F[z], the next state is

computed from the linear recursion with carry (cf. equation (8.8)),

— QoQm + T2 = Zm_1 + Z GiC—i- (15.2)

i=1

In other words, set o(x) = zm_1(x) + >.°, ¢i(2)am—i(x) (= memory + feedback) € F[z]. Then,

as described in Definition 8.1.1, the next state is (aq, ag, - -+, Gm; 2m) With
am =00 (mod 7) and 2z, = o (div 7) (15.3)
where § = —G, ' € F[z]/(r), or by abuse of notation, § = —¢;' (mod 7).
To each state (ag,a, -+, am_1;2m—1) let us associate the polynomial
m—1

qu x)a;—( Yr(2) — 2z (@)7(2)™. (15.4)

=0

I
o

J
Theorem 15.1.2. The association {states} — Fx] in equation (15.4) is a one to one correspon-

dence. The output sequence a of the AFSR with initial loading (ag, a1, -, m_1; Zm—1) 1S precisely
seq, (u/q). In other words, it is the w-adic expansion of the fraction

ur) 5,
) _; i (15.5)

where q(x) is given by equation (15.1) and u(x) is given by equation (15.4). If u(x) € F[z] corre-
sponds to a given state (ag,ay, -+, am_1; 2m—1) then the polynomial u'(x) € Fx] that corresponds
to the succeeding state is

u = (u—apq)/m. (15.6)
Proof. The mapping {states} — F[z] is a bijection by Lemma 8.2.1. The output sequence coincides
with the m-adic expansion (15.5) by Theorem 8.2.2. If u/q is given by equation (15.5), then the
corresponding fraction for the succeeding state is

! u/q — ag

U
—=aF+art = n
q s
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Corollary 15.1.3. Every function field sequence a = (ag,aq,---) (with a; € Flz|/(7)) is the
coefficient sequence seq, (u/q) of the w-adic expansion of a fraction u(z)/q(z) such that q(z) € F|x]
is relatively prime to m(x).

15.1.a Periodicity

As in the preceding section, fix relatively prime polynomials 7(z), q¢(x) € F[z].

Proposition 15.1.4. Let u(z) € F[z|. The sequence a = seq,(u/q) is eventually periodic. It is
strictly periodic if and only if deg(u) < deg(q). In this case the memory z is bounded: deg(z) <
deg(m) — 1, and the (minimal) period of a is the multiplicative order of m modulo q. That is, it
is the smallest positive integer N such that ¥ =1 (mod q). (Equivalently, 7 = 1 in the finite
(multiplicative) group (F[z]/(q))* of invertible elements in Fx]/(q)).

Proof. The sequence a is the output sequence of an AFSR with connection element ¢. If u(x) €
F[z] represents a given state of the AFSR, then the succeeding state corresponds to the polynomial
u'(x) of equation (15.6) from which we see that

deg(u) < max{deg(u),deg(ao) + deg(q)} — deg(m)
< max{deg(u), deg(r) — 1+ deg(q)} — deg(m)}
= max{deg(u) — deg(m),deg(q) — 1}.

This shows that the degree of u(z) drops monotonically until it enters the range deg(u) < deg(q)
and it stays within that range forever after. So the sequence a is eventually periodic. In such
a periodic state, the memory z must satisfy deg(z) < deg(w), for suppose deg(z) > deg(m). Let
e = deg(m). Then the last term in equation (15.4) has degree > (m + 1)e while the double sum
has degree < (e — 1)+ (e — 1)+ (m —1)e = (m+ 1)e — 2. Consequently the leading terms of these
two polynomials cannot cancel, hence deg(u) = deg(zn™) > (m + 1)e. But this contradicts the
fact that
deg(u) < deg(q) < deg(gmm™) <e—1+me=(m+1)e— 1L

Now suppose that a is strictly periodic, say with period T. Summing the geometric series,

T—1 o) T—1 i
u . . o QT
R (E (liﬂ'l) 7TTZ — 2170 .
q ’ , 1—m

=0 i=1

The degree of the numerator in this last expression is strictly less than Te, the degree of the
denominator. Thus the degree of u is less than the degree of q. Moreover, the equation

T-1
u(l —71) = anﬂri
i=0
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implies that 77 =1 (mod ¢), so the multiplicative order N of 7 divides the period T of a.
Conversely, suppose that deg(u) < deg(q). Let N denote the multiplicative order of m modulo
q, so 1 — N = sq for some polynomial s. It follows that

u s
g 1—7N’

and deg(su) < Ne. Thus we can write

with b; € S. It follows that a; = b; 04 x for all j, so a is strictly periodic, of period N. In
particular, the minimal period of a divides V. n

15.1.b Algebraic model

As in the previous section we consider an AFSR based on polynomials 7(z), ¢(x) € F[z] which are
relatively prime to ¢ = > 1" ¢;7* and deg(q;) < deg(nm). If u € Flx] denote by @ € F[z]/(¢q) and
@ € Flz]/(m) its image in these two quotient rings. Let ¥ denote the collection of all (strictly)
periodic states of the AFSR. Let

A = {u(z) € Flz] : deg(u) < deg(q)} -

Then A is a complete set of representatives for the elements of F[x]/(q). Proposition 15.1.4 says
that the correspondence between states and polynomials induces a one to one correspondence

Yo A Flr]/(q).

In the language of Section 8.5, the sets V, and A coincide, and A satisfies the conditions (1) and
(2) of Theorem 8.5.1. Define ® : F[z]/(q) — F[x]/(m) to be the composition around the following

diagram.
A
|

- Flz]
Flel/(a) —— Flal/(m)

1%

Because the set A is closed under addition and multiplication by elements of F, the mapping &
is a F-linear homomorphism (®(au; + bug) = a®(uy) + bP(ug) for all a,b € F and all uy,uy €

349



Flz]/(¢q)) although it is not a multiplicative homomorphism. By abuse of notation we write
®(u) = u (mod 7) for any u € Flz]/(¢). Finally, define ¢ : F[z]|/(¢) — F[z]/(7) by

¢(a) = ¢~ (a) = gy (a).

Then ¢ is also F-linear.

Equation (15.6) says that the polynomial u € A corresponding to a given state and the poly-

nomial v’ € A corresponding to the succeeding state are related by: mu’ = u — agq. Reducing this
equation modulo 7 and modulo ¢ gives

o = 4

U

_/ I
u :71'1

Fla]/(x)
Flal/(q).

In other words, under the correspondence between states and polynomials, we find that

€
S

e the change of state operation 7 : ¥ — ¥ corresponds to the mapping o : Fx]/(q) — F[x]/(q)
defined by o(u) = 714, and
e the output mapping is given by ¢(i) = ¢ 'u (mod 7).

Thus we obtain an “algebraic model” for the AFSR, illustrated in Figure 15.1.

S A
Flz]/(q) - X
X QUT
Fla]/(n)

Figure 15.1: Algebraic model for AFSR

Here, OUT : ¥ — Fz|/(7) denotes the output function which assigns to a state (ag, as, - -,
Um—1; Zm—1) the contents ag of the rightmost cell. The mappings 7, o, ¢ are described above. Finally
the mapping i : F[x]/(q) — X is the correspondence given by equation (15.4). We immediately
obtain the following consequence.

Corollary 15.1.5. The coefficient a; in the output sequence a = seq.(u/q) of the AFSR whose
initial loading corresponds to u(x) € A is given by

a; = ¢(ur™") = gy *(ur " (mod q)) (mod 7) € Flz]/(). (15.7)

By abuse of notation this formula is sometimes written a; = ¢; ' (ur~* (mod ¢)) (mod 7).
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Corollary 15.1.6. Given any initial loading (ag,ay,- -, am—1) of the cells of the AFSR, there
exists a value z = z,_1 of the “memory” such that the output sequence is strictly periodic. If
qm € F (that is, if deg(qm) = 0) then this value of z is unique. In this case, z =0 if and only if

deg (7712_ aiqm_i_1> < deg(m) — 1. (15.8)

Proof. Given the initial loading (ag, a1, -+, am_1) let us consider the effects of different values
Zm—1 of the memory on the degree of the polynomial u(z) in equation (15.4). Let H(x) denote the
double sum in equation (15.4) and set e = deg(m). By the division theorem for polynomials, there
exists a unique polynomial z € F[z] such that

H(z) = z(x)n™ + J(z)

with deg(J) < deg(n™) = me < deg(q) since ¢, # 0. Taking this z = z,,_; for the memory gives a
state of the AFSR whose output sequence is the m-adic expansion of u/q, where u = H — zn™ = J
has degree < deg(q). So by Proposition 15.1.4 the output sequence is strictly periodic. This proves
that such a z always exists.

Now suppose ¢, has degree 0. Then deg(q) = em. We wish to prove that z is unique. Given
the initial loading (ag, a1, - - -, am—1) suppose there are two values, z # 2’ for the memory such that
the output sequence is strictly periodic. Let u,u’ be the corresponding polynomials from equation
(15.4). Then deg(u),deg(u’) < em by Proposition 15.1.4. However u — « = (2/ — z)7™ which has
degree > em and this is a contradiction.

Finally, suppose equation (15.8) holds. The terms of highest degree in the double sum H of

equation (15.4) are
m—1
! Z AiGm—i—1
i=0

which has degree

m—1

em — e + deg <Z aiQm—i—l) < em = deg(q)
i=0
by assumption. However the term z7™ has degree em. So any nonzero value for z will result in
deg(u) > deg(g) and the output sequence will fail to be strictly periodic, by Proposition 15.1.4.
The converse is similar. O]

15.1.c Long function field sequences

In this section we will show that there exist function field sequences a that are (punctured) de
Bruijn sequences. As in Section 15.1, fix a finite (Galois) field F' and a polynomial 7(z) € F[z].
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Definition 15.1.7. A function field sequence a = (ag, ay, - - ) (with a; € Fx]/(m)) with connection
element q(x) € F[z] is a (m,q)-adic -sequence if it is a (strictly periodic) punctured de Bruijn
sequence with period equal to |Flx]/(q)| — 1 = |F|d&@ — 1.

Proposition 15.1.8. Let m,q € F[x] and let a = seq,(u/q) be the output sequence of the AFSR
based on m with connection element

q=qQ+qam+ -+ " (15.9)

where deg(q;) < deg(m), and with initial loading corresponding to u(x) € F|x], cf. equation (15.4).
Then a is a (m,q)-adic {-sequence if and only if the following four conditions are satisfied.

1. The polynomial q(x) € F|x] is irreducible (so F|x]/(q) is a field).

2. The element 7 = m (mod q) € F[z]/(q) is a primitive element (which is not the same as
being a primitive polynomial in F[z]).

3. deg(qm) = 0 or equivalently, q,, € F' or equivalently, deg(q) = m deg(m)

4. u € A, that is, deg(u) < deg(q).

Assuming these conditions, then for any other nonzero u' € A the sequence a’ = seq.(u'/q) is a
shift of the sequence a.

Proof. First, suppose a is a (7, ¢)-adic ¢-sequence. Then a is (strictly) periodic so condition (4)
holds. According to Proposition 15.1.4 the period of the sequence a is the multiplicative order of
7w modulo ¢. This will be maximal if F/[z]/(q) is a field and if 7 is a primitive element in this field,
whence conditions (1) and (2). To obtain a punctured de Bruijn sequence we will also need to have
a sequence of period |F[z]/(m)|™ — 1 for some m, which implies that |F[z]/(¢q)| = |F[z]/(7)|™ so
mdeg(m) = deg(q). Consequently the m-adic expansion (15.9) of ¢ has m terms and deg(gq,,) = 0,
which is condition (3).

Conversely suppose 7,q, and u are chosen so as to satisfy the above conditions. Then the
resulting sequence a is periodic and has period |F[z]/(q)] — 1 = |F|*" — 1 where e = deg(m). We
need to show that it is a punctured de Bruijn sequence. Suppose a block b = (bg, by, -, by_1)
of length m occurs in a after some number of iterations. Consider the state of the AFSR at this
point. The values by, by, - - -, b,,_1 are the contents of the registers. By Corollary 15.1.6 there is a
unique value z for the memory such that the output of the AFSR with this initial loading b and
initial memory z is a strictly periodic sequence. Since the sequence is, in fact, periodic from this
point, the memory must have this value z. It follows that the block b can occur at most once in any
period of a — otherwise the sequence would repeat upon the next occurrence of b, and its period
would be less than |F'|*™ — 1. However, there are |F'|*™ possible blocks b, and the block (0,0,---,0)
cannot occur in a (otherwise a would consist only of zeroes). Consequently every nonzero block b
of length m occurs exactly once in a single period of a.
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Finally, each nonzero polynomial v € A corresponds to a (periodic) initial loading of the shift
register. But A contains |F|™ — 1 elements, which coincides with the period of a. Hence every
nonzero initial stae gives rise to a shift of the same sequence. O]

Remark In Section 15.1.b we described an algebraic model for the AFSR in terms of the mapping
¢ : Flz|/(q) — F[z|/(m) which is the composition

(mod )

Flzl/(q) — A Flal/(m)

Suppose, as above, that ¢(x) is irreducible of degree m deg(7), and that 7 is primitive modulo g.
Suppose the field F' = F,a has characteristic p. We may consider F'[x]/(7) to be a vector space V'
over F, and F[z]/(q) to be a field L. Then ¢ : L — V is linear over F' D F, (cf. Section 15.1.b); it
is surjective; and it has the kernel property of Section 12.4 with respect to the primitive element
7. For if u(x) € A (that is, if deg(u) < deg(q)) and if u € N, ©'Ker(¢) then ¢p(r~'u) = 0
for 0 < i < m — 1 which implies that the output sequence of the AFSR (whose initial loading
corresponds to u) begins with m zeroes. But u corresponds to a periodic state, so the output
is always zero, hence u = 0. It then follows from Theorem 12.4.1 that the output sequence is a
punctured de Bruijn sequence, giving an alternate proof of Proposition 15.1.8.

Theorem 15.1.9. Every (7, q)-adic (-sequence a satisfies the shift-and-add property and has ideal
autocorrelations.

Proof. The sequence a is the coefficient sequence a = seq, (u/q) of the m-adic expansion of some
fraction u(x)/q(x) where deg(u) < deg(q). According to the preceding proposition, for any integer
7, the 7-shift a, of a is the coefficient sequence for some fraction v'(z)/q(x) where deg(u') <
deg(q). To verify the shift-and-add property, let ¢,d € F' and set v(z) = cu(x) + du'(z). Since
deg(v) < deg(q) the coefficient sequence for v(z)/q(x) (which is ca+ da.) is a shift of the sequence
a. Therefore a satisfies the shift-and-add property. Since a is a de Bruijn sequence, it is also
balanced. It follows from Proposition 12.1.3 that a has ideal autocorrelations. O]

15.1.d Relation with m-sequences

The (7, ¢)-adic ¢-sequences shares many of the properties of m-sequences. In this section we show
that, except in trivial cases, such a sequence a is never an m-sequence, and we give sufficient
conditions to guarantee that a cannot be obtained from an m-sequence by a linear change of
variable.

Recall that the field F' = [F,« was fixed at the beginning of this chapter. As in the previous
section we fix m(z),q(x) € Flz| relatively prime, of degrees e and g = em respectively, with ¢
irreducible and with 7 primitive modulo ¢. Let a = aj,as,--- denote the resulting (7, ¢)-adic
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(-sequence. It has period |F|™ — 1. Its entries are in the ring F[z]/(7), which may be considered
as a vector space over F' with p elements. Finally, write ¢ = > ;" ¢;7* (with deg(¢,,) = 0). The
sequence a is, up to a shift, given by a; = ¢(7 %) where ¢ : F[x]/(q) — F[z]/(x) is the F-linear
mapping described in Section 15.1.b.

If m(x) = x then F[z]/(7) = F, the mapping ¢ : F[z]/(q) — F is a F-linear surjective mapping,
and the resulting sequence a is an m-sequence (over F'). Every m-sequence occurs this way, as a
(7, q)-adic (-sequence by taking ¢(z) to be the corresponding primitive polynomial, and 7(z) = x.
The following theorem is proven in [61].

Theorem 15.1.10. Let F' = Fpa be the field with |F| = |Flz]/(n)| and let & = (a9, y, - --) be an

m-sequence with period p™™ = |Fz]/(q)| — 1 of elements a; € F. If deg(m) > 2 then there does
not exist any set theoretic mapping v : Flz|/(7) — F such that ¢¥(a) = a.

In other words, the (m,g)-adic ¢-sequence a and the m-sequence a are not isomorphic, even
after a possible left shift. They are shift distinct even after an isomorphism (cf. Section 5.1.b).

In [56], Gong, Di Porto, and Wolfowicz constructed pseudo-noise sequences by applying an
invertible I, linear map to each element in an m-sequence over F,r. In particular, each such
sequence is isomorphic to an m-sequence. According to Theorem 15.1.10, if deg(m) > 2 then no

(7, q)-adic f-sequence can be obtained by the method of Gong et al.

15.1.e Existence

It is not immediately apparent that (7, ¢)-adic f-sequences that are not m-sequences are abundant.
In order to find such sequences we fix the field F' = F,. and search for a pair of polynomials
m,q € Flz| such that ¢ is irreducible and 7 is primitive modulo ¢. In order to get a de Bruijn
sequence we will also require that g = deg(q) is a multiple of e = deg(w). To guarantee that the
resulting sequence is not an m-sequence we also require that ¢ = ;" ¢;7* with at least one ¢; of
degree greater than 0.

First recall the theorem of Pappalardi and Shparlinski [155]: Let F be an algebraic closure of
F. Suppose 7 is not an mth power of a function h € F[z], for any m which divides |F|9 — 1. Then
the number N(7, F,g) of irreducible polynomials ¢ € F[z]| of degree g for which 7 is primitive
satisfies

M—-1
N(m, F,q) — oM -1) < 3eg '2"M=Dy/ M
g

where M = |F|9, ¢ denotes Euler’s ¢ function and v(n) denotes the number of distinct prime
divisors of n. This implies the existence of many pairs (7, ¢) such that 7 is primitive mod ¢. For
example, if F' =T, and g = 13 it says that for any e < 42 there exists m with deg(7w) = e and 7
primitive mod q. If g > 75, then for every divisor e of g there exist polynomials 7 of degree e that
are primitive mod g.
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In fact, primitive polynomial pairs (7, q) are considerably more abundant than the above esti-
mates predict. By computer search we have found the following for F' = F, : Fix g < 22. Suppose
7w € Flx] is a polynomial of degree e < g and suppose 7 is not a power of a polynomial = # h"
where n divides g. Then there exists an irreducible polynomial ¢ of degree g such that 7 is primi-
tive mod ¢ unless m = % + x and g = 6. In other words, there is a single unacceptable pair (7, g)
in this range! (In this case, the above estimate says |N(m, F,g) — 6] < 64 so N = 0 is, indeed, a
possibility.)

A class of examples which may be easily analyzed is the following. Let ¢(z) € F[z] be a
primitive polynomial of degree g = me. Let 7(z) = z°. Then 7 is primitive modulo ¢ if and only
if e is relatively prime to |F[z]/(q)| — 1 = |F|? — 1. This is satisfied, for example, if g is relatively
prime to |F|?9 — 1. For example, if FF = Fy and m(z) = 22 we may take ¢ to be any primitive
polynomial of even degree. If such a ¢ contains any terms of odd degree then some ¢; has positive
degree, so the resulting (7, ¢)-adic (-sequence a is not an m-sequence. If F' = Fy and 7(z) = 23
we may take ¢ to be any primitive polynomial whose degree is an odd multiple of 3. If such a ¢
contains any terms of degree not divisible by 3, then some ¢; has positive degree, so the sequence
a is not an m-sequence.

15.1.f Examples

In this section we let p = 2 and d = 1. If deg(m) = 1, then we obtain m-sequences. The case
m(x) = x is the standard analysis of m-sequences by power series. The case m(x) = = + 1 is
equivalent by a change of basis.

Suppose that 7 has degree 2. Then for any choice of ¢ we obtain sequences with elements in
H =TFyz]/(7) = {0,1,2,2+1}. If 7(x) = 2> +2x+1, which is irreducible over Fy, we have H = F,
but for all other 7s of degree two the ring H is not a field. If we let n(z) = 22 + z + 1 and use
the connection element ¢(z) = z* + 23 + 1 = 7% + 27 + z, then it can be shown that 7 is primitive
modulo ¢ and one period of the (7, ¢)-adic {-sequence a we obtain is (possibly a left shift of)

1,1,2,0,1,0,z,z,z+ 1,2+ 1,1,z + 1,0,z + 1, x. (15.10)

All other (7, ¢)-adic ¢-sequences obtained by different choices of 7 of degree 2 and ¢ of degree 4
with 7 primitive modulo ¢ are obtained from the sequence (15.10) by some combination of shifts,
reversals, and permutations of the alphabet {0,1,x,z 4+ 1}.

However, the sequence with one period equal to

1,1,2,1,0,z+ 1,2+ 1,1, 24+ 1,0,z,z, 2+ 1, 2,0

is an m-sequence over [y, and all other m-sequences of span 2 over F, are obtained from this
sequence by some combination of shifts, reversals, and switching x and x + 1. This illustrates the
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fact that the new set of sequences is disjoint from the set of m-sequences. In fact there is no set
theoretic isomorphism ¢ : F; — F, so that ¢(a) is an m-sequence, for the sequence a contains a
string x,0, 1,0,z and there is no string of the form a, b, ¢, b, a in any of these m-sequences.

15.2 Global function fields

15.2.a /(-Sequences and randomness

Recall from Section 8.3.c the setup for an AFSR based on a global function field. In this case the
ring R is of the form R = F[zy,---,x,]/I where F' = F, is a finite field with r = p” elements, p
prime and [ is an ideal such that R has transcendence degree one over F,. Fix 7 € R and assume
that K = R/(m) is finite.

An AFSR based on (R, 7, S) involves a choice S C R of a complete set of representatives for
R/(m). Such a choice is also needed in order to obtain unique m-adic expansions of fractions

u
2
— =ag+ a4 apm’ + -

where a; € S, u,q € R and, q and 7 are coprime. The coefficient sequence ag, ay, - - - is denoted
seq, (u/q). It is the output sequence of an AFSR with connection element ¢. Fix such an element
q € R and let V,, denote the set of v € R such that seq, (u/q) is (strictly) periodic.

In Section 8.3.c we considered three hypotheses on a complete set of representatives S for R/(m)
and connection element ¢ which we now recall.

H1: The set S is closed under addition and contains F'.
H2: Every v € R is a finite linear combination v = vy + vy + - - - + v’ with v; € S.
H3: There exists £ so that elements of V, are distinct modulo ok

A necessary condition for the sequence a = seq, (u/q) to have maximal length is that 7 should
be primitive (mod ¢) and in particular that R/(q) is a field. The rings R/(7) and R/(q) are also
vector spaces over I of some dimension, say, e and g respectively. If 7 is primitive (mod ¢) then
the period of a is 79 — 1. If a is also a punctured de Bruijn sequence of some span, m, then each
nonzero sequence of length m occurs once in each period of a, hence the period of a is (r¢)™ — 1.
It follows that g = em.

Definition 15.2.1. Let w,q € R be coprime, ¢ =Y ;" | ¢;1" —qo with ¢, # 0, |R/(7)| =r¢, S C R,
and suppose hypotheses H1 and H2 hold. Let |R/(q)| = 9, and let R/(q) be a field. Let u € R
(u # 0) and let a = (ag,a1,---) = seq,(u/q) be the nonzero periodic output sequence from an
AFSR with connection element q. Then a is periodic with minimal period r9 — 1 if and only if =
is primitive modulo q, in which case a is called a (7, q)-adic f-sequence.
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Theorem 15.2.2. Suppose a is a (m,q)-adic (-sequence, hypotheses H1, H2, and H3 hold, and
Gm € F. Then the following hold.

1. a 1s a punctured de Bruign sequence. Thus the number of occurrences of a sequence b of
length t < m in a period of a is 7™ if b # (0,---,0) and is r*™™ Y — 1 otherwise (see
Section 11.2.d).

a has the shift and add property (or SAA — see Chapter 12).

a 15 balanced.

a has the run property (see Section 11.2.D).

a has ideal autocorrelations (see Section 11.5.a).

Proof. Properties (3), (4) and (5) follow from properties (1) and (2).
It suffice to prove property (1) when ¢ = m. Since ¢,, € F,. and Hypothesis H2 holds, we have

[R/(q)] = [S]™ = ™.

Thus a has period 7" — 1. The various shifts of a plus the all-zero sequence give r“" periodic
sequences corresponding to elements u/q. Thus,

Vol = 7.
We have seen in the proof of Theorem 8.5.6 that the elements of V, are distinct modulo ¢, so
[Vl <re™.

Thus,
Vol =" = |R/(7™)].

By Hypothesis H3, the elements of V, are distinct modulo 7™, so V; is a complete set of represen-
tatives modulo 7.

The set of occurrences in a of a block b of m elements corresponds to the set of shifts of a that
begin with b. By the above, every nonzero u/q with u € V, occurs as a shift of a, so the set of
occurrences in a of b corresponds to the set of nonzero u/q, u € V,, that begin with b. We claim
that the u/q are distinct modulo 7™, so that each nonzero b occurs once. Suppose not, so that
u/q =v/q (mod 7™) for some u # v € V. Then u = v (mod 7™) since ¢ is invertible modulo r,
and hence also modulo 7. But by Hypothesis H3 the elements of V, are distinct modulo 7. It
follows that a is a punctured de Bruijn sequence.

Furthermore, if u,v € V,, then u + v € V. The shifts of a account for all the u/q with
u # 0 € V, so the SAA property follows. m
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15.3 Exercises

1. Let R = Folz], 7 = 2% and S = {a + bx : a,b € Fy}. Consider function field AFSRs in
this environment. The sequences generated by these AFSRs have elements in K = R/(m) =
{a +bx : a,b € Fy}, with multiplication in K defined by (a + bx)(c + dx) = ac + (ad + be)zx. Let
g=7*+axm+1=2*+2%+1 and let a be a sequence with minimal connection element q.

a. Prove that a is an /-sequence.

b. Prove that there is no one to one correspondence between K and [, that maps a into an
m-sequence, into the sequence in equation 15.10, or into a decimation of the sequence in
equation 15.10.

2. Let R = Fyfz,y]/(2® + 4?) (the cuspidal cubic). Let 1 =z and ¢ = 2’y + v+ 1 =yr? + 7 + 1.

a. Show that R/(m) = {a + by : a,b € Fy}, so |R/(7)| = 4 and we can take S = {a + by : a,b €
F,} C R.

b. Determine |R/(q)|. (Hint: learn about Grébner bases.)

c¢. What is the period of a sequence with minimal connection element ¢? Is this sequence an
(-sequence?
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Chapter 16 Maximal Period FCSR Sequences

A maximal period LFSR sequence is called an m-sequence. By analogy, we refer to a maximal
period FCSR sequence as an f-sequence. These sequences exhibit many of the same desirable
statistical properties as m-sequences. As we see in Chapter 19, like m-sequences, they are crypto-
graphically weak.

16.1 /-Sequences

By Corollary 5.4.5, the maximum possible period for an N-ary FCSR with connection integer ¢ is
T = q — 1. This period is attained if and only if ¢ is prime and N is a primitive root modulo ¢.
In this case, for any initial loading of the register, the output sequence will either degenerate into
all Os or all (N — 1)s, or else it will eventually drop into the big set of periodic states (see Section
7.3). An FCSR sequence with connection integer ¢ corresponds to a cyclic subset of the group of
invertible elements, or units, Z/(q)* C Z/(q) (consisting of numbers relatively prime to ¢). So a
necessary condition for the existence of a maximal length FCSR sequence is that Z/(q)* should
be a cyclic group. Recall from Section 2.2.d that the multiplicative group Z/(q)* is cyclic if and
only if g = p™, 2p™, 2, or 4, where p is an odd prime.

If ¢ is an odd prime power, then reduction modulo ¢ gives an isomorphism Z/(2¢q)* = Z/(q)*
so we may restrict to the case that ¢ is a power of an odd prime.

Definition 16.1.1. An (-sequence (or “long” sequence) is a periodic sequence a which is obtained
from a FCSR with connection integer q such that ¢ = p" is a power of an odd prime and the period

of a is 9(g).

According to Theorem 7.4.2, this occurs if and only if N is a generator of Z/(q)*, that is, N
is a primitive root modulo q. According to Theorem 7.4.1, if a = (ag, ay, - - -), then there exists an
integer h with 0 < h < ¢ so that the equality

—:a0+a1N+a2N2+~~-
q

holds in Zy (the N-adic numbers). That is, the sequence a = seqy(—h/q) is the coefficient
sequence of the N-adic expansion of —h/q. It is explicitly given by

a; = N~'h (mod ¢) (mod N).
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Every N-ary f(-sequence with connection integer ¢ is a left shift of this one. Since N is primitive
(mod ¢), the elements N~'h € Z/(q) account for all the invertible elements in Z/(q). This gives a
one to one correspondence between N-ary f-sequences with connection integer ¢ and elements of
Z/(q)*

It is interesting to note that if ¢ is the connection integer of a binary /-sequence and ¢ # 3,
then the integer sequence of memory values for the FCSR with connection integer ¢ has the same
period as the ¢-sequence. This was proved by Tian and Qi [130].

Arithmetic codes. By Theorem 5.4.4 and Corollary 5.4.5, the /-sequence a is the reverse of the
“decimal” expansion (with base N),

h
—=b N '+ N2+ bgN 34 ..
q

of the fraction h/q (see, for example, [111] Section 4.1, ex. 31). This binary expansion is called
a 1/q-sequence in [13], any single period of which is a codeword in the Barrows-Mandelbaum
arithmetic code [5, 126]. They have been studied since the time of Gauss [19].

Shift and add. In Theorem 12.6.2 it was shown that an N-ary sequence satisfies the arithmetic
shift and add property if and only if it is an /-sequence with prime connection integer ¢, for which
N is primitive.

Existence. The question of the existence, even of binary f-sequences, with arbitrarily large
period is subtle. Heilbronn (revising Artin’s conjecture) conjectured, and Hooley [30] proved, that
if an extension of the Riemann hypothesis to the Dedekind zeta function over certain Galois fields
is true, then the number N(n) of primes ¢ < n such that 2 is primitive mod ¢ is:

Nn)=A  — +o(%(nn()”)>,

where A (= .3739558136 to ten decimals) is Artin’s constant. In other words, 37.4% of all prime
numbers are conjectured to have this property. There are efficient techniques for finding large
primes ¢ for which N is a primitive root (see [27]) which are currently implemented in popular
software systems such as Maple, Mathematica, and Pari. For example, an FCSR based on the
prime number

g=228 195 49t 92

needs only 2 bits of extra memory and has maximal period T'= ¢ — 1.
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To construct an N-ary (-sequences based on a connection integer ¢ = p' (p an odd prime) it is
necessary to find such numbers ¢ for which V is a primitive root. The search for such pairs is not
as difficult as it may seem at first glance because, according to Proposition 2.2.12, the number N
is primitive mod ¢ = p’ if and only if it is primitive mod p?.

One can ask about the abundance of primes p for which N = 2 is a primitive root modulo p?.
All of the primes p listed in Table 16.1 have this property. In fact Hardy and Wright pointed out
that the condition that p? divides 2P~ — 1 holds for only two primes p less than 3- 107 [75, p. 73],
and by computer search E. Bombieri has extended this limit to 2 - 101° [15]. (The two primes are
1093 and 3511.) In both cases 2 is not primitive modulo p. Thus for a large number of primes,
we need only check the primitivity of N modulo p. In fact, it is not known whether there are
any primes p such that 2 is primitive modulo p but not modulo p?, though there is no compelling
reason to believe there are no such primes.

Other long sequences. There is another case in which large periods can be obtained. Suppose
that ¢ is a prime number such that ¢ = 2p + 1 with p a prime number. Then sequences generated
by an FCSR with connection integer ¢ will have period T > (¢ — 1) /2, which is half the maximum
possible period. (This is because Fermat’s congruence states that, if = is not a multiple of ¢, then
7' =1 (mod q), so ord,(2) divides g—1 = 2p and hence is equal either to 2, which is impossible;
to p; or to ¢ —1.) It is apparently easier to check whether (¢ —1)/2 is prime than it is to determine
whether 2 is a primitive root modulo ¢. It was conjectured by Hardy and Littlewood [74], and
is widely believed by number theorists, that the number of primes P(n) less than n of the form
2p + 1, p prime, is asymptotically given by

P(n) ~ ¢y -

In?(n)’

where ¢y (= .0330080908 to ten decimal places) is a constant.

16.2 Distributional properties of /-sequences

In this section we show that ¢-sequences are close to being de Bruijn sequences: the number of
occurrences of any two blocks can differ at most by 2. If the connection integer ¢ is prime then
this difference can be at most 1 so the ¢-sequence is equidistributed to all orders.

Theorem 16.2.1. Let a be an N-ary (-sequence based on a connection integer ¢ = p* with p an
odd prime. Then the number n(b) of occurrences of any block b of size s within a single period of
a1s
ny <n(b) <n;+1 ift=1
ng—mng—1<nb)<n —ny+1 ift>2
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where

ny = {%J = U\?/ZJ and ng = V};:J )

Proof. The set of left shifts of a corresponds to the set of rational numbers —u/g, such that
0 < u < q and w is invertible mod ¢. Thus the number of occurrences of a length s block b in a
equals the number of v with 0 < u < ¢, p not dividing u, and the first s elements in the N-adic
expansion of —u/q equal to b. Two rational numbers —u;/q and —us/q have the same first s
elements in their N-adic expansions if and only if —u;/q¢ = —uy/q (mod N*®), which holds if and
only if u; = uy (mod N?¥) because ged(q, N) = 1. Thus we want to count the number of u with a
given first s elements in their N-adic expansions, 0 < u < ¢, and u not divisible by p.

Let N” < ¢ < N™L. If s > r, then there is either no such u or there is one such u, so the result
follows. Thus we may assume s < r.

We first count the number of v with the first s elements in their N-adic expansions fixed and
0 < u < ¢, ignoring the divisibility condition. If b = by, - - -, bs_1, let b = Zf;é b;N*. Let

r s—1
q= Z N and ¢ = ZqiNi.
i=0

i=0
If b < ¢/, then every choice of B with
~ q
0<MB<§iM:Nﬂ—J
< <> q e

=5

gives a unique u = b+ N°B < ¢ in the right range. There are n; + 1 such choices. If b > ¢/, then
every choice of B with

' ) q
0< N*B < iM:Nﬂ—ﬁ

gives a unique u = b+ N°B < ¢ in the right range. There are n; such choices. In summary,
H{u=0b (mod N°): 0 <wu < p'} € {ny,n +1}.

If ¢ is prime this completes the proof.

If g =p', t > 2, is a prime power, consider those u for which 0 < u < ¢ and p divides u. That
is, u = pv for some v, and 0 < v < ¢/p = p'~t. As above, u; = pv; and uy = pv, have the same
first s elements in their N-adic expansions if and only if the same is true of v; and vy. Therefore,
if r=p~! (mod N) then the number of u values that are divisible by p is

Hu=b (mod N*): 0 <u < p'} —[{v=rb (mod N¥) : 0 < v <p' '}
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which is in the set
{nl,nl -+ 1} — {TLQ,TLQ + 1} = {n1 — Ng — 1,7L1 — Ng, M1 — N9 -+ 1} ]
It is easy to find examples for which all three numbers occur.

Proposition 16.2.2. If a is an N-ary (-sequence based on a connection integer ¢ = p*, with p an
odd prime, or if a is the d-fold decimation of such an (-sequence, where d is odd, then

Uiy(g-12 =q— 1 —a;.

This holds even for AFSRs based on R = Z and m = N. That is, we may allow ¢ #
—1 (mod N).

Proof. First consider the case of an N-ary f-sequence a. Its period is T = ¢(q) = p* — p'~!, which
is even. Since N®@ =1 (mod ¢q) we have:

PINT = 1) = (NT2 - 1)(NT/2 4 1).

The GCD of these two factors is 1 if N is even and is 2 if N is odd. Since p is odd, p' divides one
of the factors. By the primitivity of N modulo ¢, p* cannot divide the first factor, hence it divides
the second factor. It follows that N7/2 = —1 (mod ¢) so also

o’/? = —1 (mod )

where 0 = N=! (mod ¢). By Theorem 8.5.1, here is an integer B such that a; = —¢~*(B -
o' (mod ¢)) (mod N). Thus

tirr/s = —¢ (—=Ba' (mod g)) (mod N) = —¢ (g — (Bo' (mod g))) (mod N) =¢—1—a,
Now let b be the d-fold decimation of a, where d is odd. Then
bi = Gia =q—1— Garrp =q— 1 —a@rr/20a = ¢ — 1 = biyry. O

If a = (ag,ay,---) is a periodic N-ary sequence and if x : Z/(N) — C* is a character, then the
imbalance with respect to x was defined in Section 11.2.a to be the sum Z(a) = 3" x(a;) where
T is the period of a. The sequence is balanced if |Z(a)| < 1.

In the special case of binary (-sequences more is true (see also Lemma 19.2.4).

Corollary 16.2.3. If a is a binary (-sequence based on a connection integer ¢ = pt, with p an odd
prime, or if a is the d-fold decimation of such an (-sequence, where d is odd, then the second half
of each period of a is the bitwise complement of the first half. In particular, the number of zeroes
and the number of ones in a single period of a are equal, so a is balanced.
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Theorem 16.2.4. Fiz a primitive character x : Z/(N) — C*. Let a be an N-ary (-sequence
based on a connection integer ¢ = qo (mod N), 0 < qo < N. If q is prime, then

|sin((go — )7/N)|

A
12(a) [sin(r/V)
< min(gp—1,N — gy + 1)
N
< —.
- 2

If g =p" is a power of a prime number p with t > 2 and q/p = ¢}, (mod N), 0 < ¢, < N, then
|sin((go — D)m/N)| | |sin((gp — 1)7/N)|
|sin(m/N)| |sin(m/N)|
min(go — 1, N — go + 1) + min(gy — 1, N — gg + 1)
N.

|2 (a)|

IAIA

If N =2, then Z(a) = 0.

Proof. In all cases, since qq is invertible mod N, there is a b € {1,2,---, N — 1} so that bN =
1 (mod q). Since a is an ¢-sequence, N is primitive modulo g.

Assume ¢ is prime. Then in the algebraic model for the FCSR, the state goes through all
(1,b,0* (mod q),---,b9? (mod ¢)). By primitivity, this is a permutation of (1,2,3,---,¢—1). So

Z(a) = z_: ¢ (16.1)

T
= ]
n=1 n=1

q0—1
-5
n=1
This gives

[l — " V2] [sin((go — 1)m/N)]
V2 —¢2 sin(n/N)|

qo—1 __
12(a)] = ]<< 1\

¢—1
Let x be a positive real number. Then sin(xmw/N) = sin((N — z)r/N). By calculus we see that

for any x > 0
|sin(xm/N)| .
R/ N —
|sin(7/N)| — min(z, z);
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and the result follows.

Now suppose ¢ = p*, with ¢t > 2 and p prime. Then the estimate on the sum in equation (16.1)
still works, but to get Z(a) we have to subtract off the terms with p|n. The same bound as above
applies to this sum (with ¢ replaced by ¢/p). Thus if ¢/p = ¢, with 0 < ¢, < N, then

go—1 q5—1
Z@)] = [d =)
n=1 n=1
go—1 g1
< Do+ Do
n=1 n=1

sin(go = Vm/N)| _ Jsin((gs — 1)m/N)]
[sin(r /) [sin(x /)|

(note that (? is a primitive Nth root of one). The result follows from this.
If N =2, then in any ¢-sequence 0 and 1 occur equally often, so |Z(a)| = 0. O

In particular, this tells you how to make the imbalance small: pick ¢ so that min(go—1, N—go+1)
is small (in the prime case) or min(|qgy — ¢4, N — |q0 — ¢q5|) is small (in the prime power case).

Qi and Xu have also considered the balance of large segments of binary ¢-sequences [161]. For
any finite sequence a’ of length 7" and s € {0, 1}, let N(a', s) denote the number of times s occurs
in a’.

Theorem 16.2.5. Let a = ag,ay,--- be a binary (-sequence with connection integer ¢ = p°¢, p
prime. Let a’' = a;,---,a;4n_1. Then for s € {0,1} we have

‘N(a’, s) — g‘ < %ql/z In(q) In(p) + O(¢"*In(q)).

If N is small this says nothing, but if N is close to the period ¢(q), it says the deviation from
the average is approximately the square root of V.

16.3 Arithmetic correlations

The ordinary autocorrelations of /-sequences seems to be quite difficult to compute, although Xu
and Qi have been able to do so for some special shifts [192]. Instead we consider the arithmetic
version of the autocorrelation. Recall from Section 11.3.c that the arithmetic cross-correlation
(with shift 7) of two N-ary sequences a, b is

Can(T) = Z(a— 7)),
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where a,b”) € Zy, a = seqy(a), b” = seqy (b)), and Z is the imbalance (see Definition 11.2.1)
with respect to a primitive character y : Z/(N) — C*. Denote the arithmetic autocorrelation by

A (m) =Clu (7).

In this section we consider the arithmetic cross-correlations of an /-sequence and its decimations.
Throughout this section we assume that the connection integer ¢ = p' is a power of an odd prime
p such that N is a primitive root modulo ¢q. Thus a is an ¢-sequence and a = seqy(—u/q) is
the (coefficient sequence of the) N-adic expansion of a fraction —u/q with 0 < u < ¢ and u not
divisible by p.

Theorem 16.3.1. Let a be an N-ary (-sequence based on a prime connection integer ¢ = qo (mod N)
with 0 < qo < N. Let 7 be an integer that is not a multiple of the period ¢ — 1. Then
|AL(7)] < min(go — 1, N — qo + 1) < N/2. If N =2, then AZ(r) = 0.

Proof. Set a = seqy(—u/q) as above. By an argument similar to the one in Section 11.3.d, the
arithmetic autocorrelation of a with shift 7 is the imbalance of the (periodic part of the sequence
of coefficients of the N-adic expansion of the) rational number

(u—N""u) (mod q) (u— NT""u) (mod q)

q q

’

where the reduction modulo ¢ is taken in the range [—(¢— 1), 0]. Since ¢ is prime, this is again the
rational number corresponding to an f-sequence. The result then follows from Theorem 16.2.4. [

For the remainder of the section, we treat only binary sequences, so N = 2. Recall from Section
13.2 that if a is a sequence and d # 0 is an integer, then the sequence, b is a d-fold decimation of
a if for every 7, we have b; = a4;. Let F, be the family of all d-fold decimations of a, where d is
relatively prime to the period of a.

The following is a remarkable fact about binary ¢-sequences.

Theorem 16.3.2. Suppose that a is a binary (-sequence based on a connection number q = p
with p prime. If ¢ and b are sequences in F,, then the arithmetic cross-correlation of ¢ and b
with shift T is zero unless T =0 and b = c.

The remainder of this section consists of a proof of Theorem 16.3.2. If a € Z,, then denote by
a the complementary 2-adic integer. That is, replace each 1 by 0 and each 0 by 1 in the 2-adic
expansion of a. Then a +a = —1 € Z,.

Proposition 16.3.3. Let d > 0 be relatively prime to the period T = p' — p'~! of a. Let b be a
d-fold decimation of a. Ezpress b = seqy(—g/q') as the 2-adic expansion of a fraction —g/q’, with
q,q relatively prime. Then ¢ divides 27/% + 1.
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Proof. Let b € Zs be the 2-adic number associated to b. By Proposition 16.2.2,
~b—1=b=2a+2T%

for some ordinary integer z (in fact, 0 < z < 27/2). Tt follows that
QT2+ 1)b=—(z+1)

and therefore
272+ 1)g = ¢ (z + 1).

The result follows since g and ¢’ are relatively prime. O]

Proof of Theorem 16.5.2. Let T = p'—p'~!. Let b and c have associated 2-adic numbers b = —g/r
and ¢ = —h/s, respectively, with ged(g,r) = ged(h, s) = 1. The shift of ¢ by 7 corresponds to a
2-adic integer 27 7¢ + x for some ordinary integer . The arithmetic cross-correlation of b and ¢
with shift 7 is the number of zeros minus the number of ones in one length 7" period of

—(gs — 27""hr + ars)

u=b— 2" "c+ )=
s

€ Zs.

If b is a shift of ¢ with shift 7, then v = 0 and the result follows.

Suppose ¢ is not a shift of b with shift 7. Let u = ug,uy,--- = seqy(u). It suffices to show
that any period of u has the same numbers of zeros and ones. Let u = —f"/¢’ with ged(f',¢') = 1.
Then ¢ = lem(r, s), so by Proposition 16.3.3, ¢’ divides 2772 + 1. Moreover f’ is nonzero. In a

single period of u we have .
u; = (B-27" (mod ¢')) (mod 2)

for some B. Thus
Uirrsa, = (B-27FT/2 (mod r)) (mod 2)

= (B-27"-2772 (mod r)) (mod 2)
= (=B-27" (mod 7)) (mod 2).

Since ¢’ is odd, for any y # 0 the parity of —y (mod ¢’) is the opposite of the parity of y. Thus
U412 is the complement of u;. These elements occur in pairs in u (since T is a period of u), so u
is balanced. O]

It is then interesting to ask whether all such decimations are distinct.

Conjecture 16.3.4. If ¢ > 13 is prime, 2 is primitive modulo q, and a is an (-sequence based on
q, then every pair of allowable decimations of a is shift distinct.
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This conjecture is false if we allow ¢ = 3, 5, 11, or 13. If Conjecture 16.3.4 holds for a prime g,
then the set of distinct decimations a[d] with d relatively prime to ¢— 1 consists of ¢(¢— 1) distinct
elements with ideal arithmetic correlation The famous result of Hooley [30] implies that under the
extended Riemann hypothesis, 2 is primitive for a set of primes of positive relative density, so
there would be an abundance of large families with ideal arithmetic correlations.

The conjecture can be restated in very elementary terms as follows. Let ¢ > 13 be a prime
number such that 2 is primitive mod ¢q. Let E be the set of even integers 0 < e < g—1. Fix A with
1 < A< q—1. Suppose the mapping x — Az? (mod q) preserves (but permutes the elements
within) the set F. Then d =1 and A = 1. The equivalence between these two statements follows
from the fact that a[d] and a[e] are shift distinct if and only if a and a[h] are shift distinct, where
h=de ! (mod q—1).

Conjecture 16.3.4 has been verified for all primes ¢ < 8,000, 000, in fact even without assuming
2 is primitive modulo ¢q. The conjecture has only been partially proven in general.

Theorem 16.3.5. ([50, 65]) Suppose either d = —1 (or, equivalently, d = qg—2) or ¢ =1 (mod 4)
and d = (q+1)/2. Then the decimation ald] is shift distinct from a.

In 2004, Goresky, Klapper, Murty, and Shparlinski used exponential method to get some partial
results — the conjecture holds for sufficiently large connection integers of a certain form [60].
This approach was improved on by Bourgain, Cochrane, Paulhus, and Pinner [19] using recent
developments in methods of estimating exponential sums.

Theorem 16.3.6. ([19]) Conjecture 16.3.4 holds for any prime q > 2.26 - 10°.

Finally, Xu and Qi have considered the generalization to the case when ¢ is a nontrivial prime
power, using purely algebraic methods.

Theorem 16.3.7. ([195]) Conjecture 16.3.4 holds if ¢ = p* > 13, e > 2, p prime, and 2 primitive
modulo q.

We omit the proofs of these theorems.

16.3.a Computing arithmetic cross-correlations

If b = seqy(b) and ¢ = seqy(c) are two periodic sequences associated to b,c € Zy, then the
sequence seqy (b — ¢) may not be strictly periodic (although it is eventually periodic). Thus,
computing the arithmetic cross-correlation of two sequences appears to be problematic. How
many coefficients of the difference must be computed before we reach the periodic part?

Proposition 16.3.8. Let b = seqy (b) and ¢ = seqy(c) be periodic N-ary sequences with period
T, associated to b,c € Zy. Then the sequence d = seqy(b— c) is strictly periodic at least from the
T'th symbol.
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Proof. The strict periodicity of b and c¢ implies that there are integers ¢, ¢, h and r such that
b=-g/q,c=—h/r,0<g<gq,and 0 <h <r. Thus

ha —
hoc=2"9"
qr

We have —qr < —gr < hq — gr < hq < rq. If hq — gr <0, then b — ¢ is strictly periodic and we
are done. Otherwise
hq — gr — qr
qr
and —qr < hq — gr — qr < 0. Therefore the sequence u = seqy (u) is strictly periodic, where

b—c=1+

hq — gr — qr
UYy=——"
qr

If every element of uis N — 1, then u = —1 and b — ¢ = 0. Otherwise, there is an ¢ < T" such that
0 <wu; <N —2. When we carry out the addition 1+ u, there is no carry beyond the ith position.
It follows that the coefficients of b — ¢ = 1+ u are identical to those of u from the 7 4 1st coefficient
on. This proves the proposition. O

Consequently, the arithmetic cross-correlation of b and ¢ can be computed by computing the
first 27T coefficients of the difference b — ¢, and finding the imbalance of the last T of these 27T
coefficients. This is a linear time computation in 7" (although not easily parallelizable as is the case
with standard cross-correlations). Furthermore, if we let ¢ denote the N-adic number obtained by
replacing each coefficient ¢; of c by N —1 —¢;, then —c = ¢+ 1. We can compute b —c as b+ ¢+ 1.
If the carry from computing the first T" coefficients of b+c+1 is 1, then b+¢+1 is strictly periodic,
so the first T' coefficients suffice. Otherwise, the periodic part is exactly the first T coefficients of
b+ ¢. Thus if we want to avoid storing b and ¢, we can simultaneously compute the arithmetic
cross-correlation based on the first T coefficients of b + ¢ + 1 and b + ¢ as the coefficients arrive,
and use the former if there is a carry from the first T" coefficients, and the latter otherwise.

16.4 Tables

We list in tabular form all prime connection integers ¢ giving ¢-sequences for N = 2 with log,(q) <
13. For N = 3,5,6,7,10, we list all such ¢ less than 10,000. For N = 4, there are no prime
integers ¢ such that 4 is primitive — such a ¢ must be odd, and, since 4 is a square, its order is
at most (¢ — 1)/2. Similarly, N = 8 is not primitive unless gcd(3,q — 1) = 1, when 8 is primitive
if and only if 2 is primitive. Similarly, 9 is primitive modulo a prime ¢ if and only if ¢ — 1 is odd
and 3 is primitive modulo q.
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Length

Values of ¢ giving binary ¢-sequences

© 00 O Ui W N

—
o

11

3

5

11, 13

19, 29

37, 53, 59, 61

67, 83, 101, 107

131, 139, 149, 163, 173, 179, 181, 197, 211, 227

269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509

523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787
797, 821, 827, 829, 853, 859 , 877, 883 , 907, 941, 947, 1019

1061, 1091, 1109, 1117, 1123, 1171, 1187, 1213, 1229, 1237, 1259, 1277, 1283, 1291,
1301, 1307, 1373, 1381, 1427, 1451, 1453, 1483, 1493, 1499, 1523, 1531, 1549, 1571,
1619, 1621, 1637, 1667, 1669, 1693, 1733, 1741, 1747, 1787, 1861, 1867, 1877, 1901,
1907, 1931, 1949, 1973, 1979, 1987, 1997, 2027, 2029

2053, 2069, 2083, 2099, 2131, 2141, 2213, 2221, 2237, 2243, 2267, 2269, 2293, 2309,
2333, 2339, 2357, 2371, 2389, 2437, 2459, 2467, 2477, 2531, 2539, 2549, 2557, 2579,
2621, 2659, 2677, 2683, 2693, 2699, 2707, 2741, 2789, 2797, 2803, 2819, 2837, 2843,
2851, 2861, 2909, 2939, 2957, 2963, 3011, 3019, 3037, 3067, 3083, 3187, 3203, 3253,
3209, 3307, 3323, 3347, 3371, 3413, 3461, 3467, 3469, 3491, 3499, 3517, 3533, 3539,
3547, 3557, 3571, 3581, 3613, 3637, 3643, 3659, 3677, 3691, 3701, 3709, 3733, 3779,
3797, 3803, 3851, 3853, 3877, 3907, 3917, 3923, 3931, 3947, 3989, 4003, 4013, 4019,
4021, 4091, 4093

Table 16.1: Values of ¢ Giving Rise to Binary ¢-sequences for Length < 11.

1. Find an odd prime power ¢ such that 2 is primitive modulo ¢ and an integer s so that the
numbers of occurrences of subsequences of length s in the binary f-sequence with connection

16.5 Exercises

integer g vary by 2.

2. Let a be an N-ary (-sequence with prime connection integer gq. Assume that ¢ = 1 (mod N)

(so that now we are considering sequences generated by AFSRs).

a. Prove that Z(a) = 0.
b. Use part (a) to prove that AZ(7) = 0 for all 7 such that ¢ — 1 does not divide 7.
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Length

Values of ¢ giving binary ¢-sequences

12

13

4009, 4133, 4139, 4157, 4219, 4229, 4243, 4253, 4259, 4261, 4283, 4349, 4357, 4363,
4373, 4397, 4451, 4483, 4493, 4507, 4517, 4547, 4603, 4621, 4637, 4691, 4723, 4787,
4789, 4813, 4877, 4933, 4957, 4973, 4987, 5003, 5011, 5051, 5059, 5077, 5099, 5107,
5147, 5171, 5179, 5189, 5227, 5261, 5309, 5333, 5387, 5443, 5477, 5483, 5501, 5507,
5557, 5563, 5573, 5651, 5659, 5683, 5693, 5701, 5717, 5741, 5749, 5779, 5813, 5827,
5843, 5851, 5369, 5923, 5939, 5987, 6011, 6029, 6053, 6067, 6101, 6131, 6173, 6197,
6203, 6211, 6229, 6269, 6277, 6299, 6317, 6323, 6373, 6379, 6389, 6397, 6469, 6491,
6547, 6619, 6637, 6653, 6659, 6691, 6701, 6709, 6733, 6763, 6779, 6781, 6803, 6827,
6329, 6869, 6883, 6899, 6907, 6917, 6947, 6949, 6971, 7013, 7019, 7027, 7043, 7069,
7109, 7187, 7211, 7219, 7229, 7237, 7243, 7253, 7283, 7307, 7331, 7349, 7411, 7451,
7459, TATT, 7499, 7507, 7517, 7523, 7541, 7547, 7549, 7573, 7589, 7603, 7621, 7643,
7669, 7691, 7717, T757, 7789, 7829, 7853, 7877, 7883, 7901, 7907, 7933, 7949, 8053,

8069, 8093, 8117, 8123, 8147, 8171,

8179

8219, 8221, 8237, 8243, 8269, 8291, 8293, 8363, 8387, 8429, 8443, 8467, 8539, 8563,
8573, 8597, 8627, 8669, 8677, 8693, 8699, 8731, 8741, 8747, 8803, 8819, 8821, 8837,
8861, 8867, 8923, 8933, 8963, 8971, 9011, 9029, 9059, 9173, 9181, 9203, 9221, 9227,
9283, 9293, 9323, 9341, 9349, 9371, 9397, 9419, 9421, 9437, 9467, 9491, 9533, 9539,
9547, 9587, 9613, 9619, 9629, 9643, 9661, 9677, 9733, 9749, 9803, 9851, 9859, 9883,
9901, 9907, 9923, 9941, 9949, 10037, 10067, 10069, 10091, 10093, 10099, 10133, 10139,

10141, 10163, 10181, 10253, 10259,
10499, 10501, 10589, 10613, 10667,
10859, 10861, 10867, 10883, 10891,
11069, 11083, 11093, 11131, 11171,
11549, 11579, 11587, 11621, 11677,
11867, 11909, 11933, 11939, 11981,
12203, 12211, 12227, 12251, 12253,
12413, 12437, 12491, 12539, 12547,
12739, 12757, 12763, 12781, 12821,
13037, 13043, 13109, 13147, 13163,
13451, 13469, 13477, 13523, 13613,
13829, 13859, 13877, 13883, 13901,
14173, 14221, 14243, 14341, 14387,
14621, 14627, 14629, 14653, 14669,
14813, 14821, 14827, 14843, 14851,
15013, 15053, 15061, 15077, 15083,
15187, 15227, 15259, 15269, 15299,
15581, 15629, 15661, 15667, 15683,
15859, 15907, 15923, 15971, 16067,
16333, 16339, 16349, 16363, 16381

10267, 10301,
10691, 10709,
10909, 10949,
11197, 11213,
11699, 11717,
11987, 12011,
12269, 12277,
12589, 12611,
12829, 12899,
13187, 13229,
13619, 13627,
13907, 13931,
14389, 14411,
14699, 14717,
14867, 14869,
15091, 15101,
15331, 15349,
15731, 15739,
16069, 16139,

10331,
10723,
10973,
11261,
11779,
12043,
12301,
12613,
12907,
13291,
13691,
13933,
14419,
14723,
14891,
15107,
15373,
15749,
16187,

10357, 10427,
10733, 10789,
10979, 10987,
11317, 11437,
11789, 11813,
12107, 12149,
12323, 12347,
12619, 12637,
12917, 12923,
13331, 13339,
13709, 13723,
13997, 14011,
14461, 14533,
14741, 14747,
14923, 14939,
15131, 15139,
15413, 15427,
15773, 15787,
16189, 16229,

10459, 10477,
10837, 10853,
11003, 11027,
11443, 11483,
11821, 11827,
12157, 12197,
12373, 12379,
12653, 12659,
12941, 12979,
13397, 13411,
13757, 13763,
14051, 14107,
14549, 14557,
14771, 14797,
14947, 14957,
15149, 15173,
15443, 15461,
15797, 15803,
16253, 16301,

Table 16.2: Values of ¢ Giving Rise to Binary /-sequences for Length 12 and 13.
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Length

Values of ¢ giving trinary ¢-sequences

Tk W N

5,7

17, 19

29, 31, 43, 53, 79

89, 101, 113, 127, 137, 139, 149, 163, 173, 197, 199, 211, 223, 233

257, 269, 281, 283, 293, 317, 331, 353, 379, 389, 401, 449, 461, 463, 487, 509, 521, 557
569, 571, 593, 607, 617, 631, 641, 653, 677, 691, 701

739, 751, 773, 797, 809, 811, 821, 823, 857, 859, 881, 907, 929, 941, 953, 977, 1013
1039, 1049, 1061, 1063, 1087, 1097, 1109, 1123, 1193, 1217, 1229, 1231, 1277, 1279,
1291, 1301, 1327, 1361, 1373, 1409, 1423, 1433, 1447, 1459, 1481, 1483, 1493, 1553,
1567, 1579, 1601, 1613, 1627, 1637, 1663, 1697, 1699, 1709, 1721, 1723, 1733, 1747,
1831, 1889, 1901, 1913, 1949, 1951, 1973, 1987, 1997, 1999, 2011, 2069, 2081, 2083,
2129, 2141, 2143, 2153

2213, 2237, 2239, 2273, 2309, 2311, 2333, 2347, 2357, 2371, 2381, 2393, 2417, 2467,
2477, 2503, 2539, 2549, 2609, 2633, 2647, 2657, 2659, 2683, 2693, 2707, 2719, 2729,
2731, 2741, 2753, 2767, 2777, 2789, 2801, 2837, 2861, 2897, 2909, 2957, 2969, 3041,
3089, 3137, 3163, 3209, 3257, 3259, 3271, 3307, 3329, 3331, 3389, 3391, 3413, 3449,
3461, 3463, 3533, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3617, 3643, 3677, 3701,
3727, 3761, 3797, 3821, 3823, 3833, 3917, 3919, 3929, 3931, 3943, 3989, 4001, 4003,
4013, 4027, 4049, 4073, 4133, 4157, 4159, 4217, 4219, 4229, 4231, 4241, 4243, 4253,
4289, 4327, 4337, 4349, 4363, 4373, 4397, 4409, 4421, 4423, 4447, 4457, 4481, 4493,
4507, 4517, 4519, 4567, 4603, 4637, 4639, 4649, 4651, 4663, 4673, 4723, 4759, 4793,
4817, 4831, 4877, 4889, 4903, 4937, 4973, 4987, 4999, 5009, 5021, 5023, 5081, 5119,
5189, 5237, 5261, 5273, 5297, 5309, 5333, 5347, 5381, 5393, 5407, 5417, 5419, 5431,
5441, 5443, 5477, 5479, 5503, 5563, 5573, 5647, 5657, 5669, 5683, 5693, 5717, 5741,
5779, 5801, 5813, 5827, 5849, 5861, 5897, 5923, 5981, 6007, 6029, 6053, 6089, 6113,
6151, 6163, 6173, 6197, 6199, 6221, 6257, 6269, 6317, 6329, 6343, 6353, 6367, 6379,
6389, 6427, 6449, 6451, 6473, 6547

6569, 6571, 6607, 6619, 6653, 6689, 6691, 6737, 6761, 6763, 6823, 6833, 6857, 6869,
6871, 6907, 6917, 6977, 7001, 7013, 7039, 7109, 7121, 7159, 7193, 7207, 7229, 7243,
7253, 7349, 7411, 7433, 7457, 7459, 7517, 7529, 7541, 7577, 7603, 7649, 7673, 7699,
7723, 7759, 7793, T817, 7829, 7867, 7877, 7879, 7901, 7927, 7937, 7949, 8009, 8059,
8069, 8081, 8093, 8117, 8167, 8179, 8237, 8263, 8273, 8287, 8297, 8311, 8369, 8419,
8429, 8431, 8443, 8467, 8537, 8539, 8563, 8573, 8597, 8599, 8609, 8623, 8647, 8669,
8693, 8719, 8731, 8741, 8753, 8837, 8839, 8849, 8861, 8863, 8887, 8923, 8969, 8971,
9007, 9029, 9041, 9043, 9067, 9091, 9127, 9137, 9151, 9161, 9173, 9187, 9199, 9209,
9257, 9281, 9283, 9293, 9319, 9377, 9391, 9403, 9413, 9461, 9463, 9473, 9497, 9511,
9521, 9533, 9547, 9629, 9631, 9643, 9677, 9679, 9689, 9739, 9749, 9787, 9811, 9833,
9871, 9883, 9907, 9929, 9967

Table 16.3: Values of ¢ Giving Rise to Trinary f-sequences for ¢ < 10, 000.
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Values of ¢ giving 5-ary ¢-sequences

7,17, 23

37, 43, 47, 53, 73, 83, 97, 103, 107, 113

137, 157, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 317, 347, 353,
373, 383, 397, 433, 443, 463, 467, 503, 523, 547, 557, 563, 577, 587, 593, 607, 613, 617
647, 653, 673, 677, 683, 727, 743, 757, 773, 787, 797, 857, 863, 877, 887, 907, 937, 947
953, 967, 977, 983, 1013, 1033, 1093, 1097, 1103, 1153, 1163, 1187, 1193, 1213, 1217
1223, 1237, 1277, 1283, 1307, 1327, 1367, 1373, 1427, 1433, 1483, 1487, 1493, 1523,
1543, 1553, 1567, 1583, 1607, 1613, 1637, 1663, 1667, 1693, 1697, 1733, 1747, 1777
1787, 1823, 1847, 1877, 1907, 1913, 1933, 1987, 1993, 1997, 2003, 2017, 2027, 2053,
2063, 2083, 2087, 2113, 2143, 2153, 2203, 2207, 2213, 2237, 2243, 2267, 2273, 2293,
2297, 2333, 2347, 2357, 2377, 2383, 2393, 2417, 2423, 2437, 2447, 2467, 2473, 2477
2503, 2543, 2557, 2617, 2633, 2647, 2657, 2663, 2677, 2683, 2687, 2693, 2713, 2753,
2767, 2777, 2797, 2833, 2837, 2843, 2887, 2897, 2903, 2917, 2927, 2957, 2963, 3023,
3037, 3067, 3083

3163, 3167, 3187, 3203, 3217, 3253, 3307, 3323, 3343, 3347, 3373, 3407, 3413, 3433,
3463, 3467, 3517, 3527, 3533, 3547, 3557, 3583, 3593, 3607, 3613, 3617, 3623, 3643,
3673, 3677, 3697, 3767, 3793, 3797, 3803, 3833, 3847, 3863, 3907, 3917, 3923, 3943,
3947, 4003, 4007, 4013, 4027, 4057, 4073, 4093, 4127, 4133, 4153, 4157, 4177, 4217
4253, 4273, 4283, 4297, 4337, 4357, 4363, 4373, 4307, 4423, 4457, 4463, 4483, 4493,
4507, 4517, 4523, 4547, 4567, 4583, 4597, 4603, 4637, 4643, 4673, 4703, 4733, 4787
4793, 4813, 4817, 4877, 4903, 4933, 4937, 4957, 4967, 4973, 4987, 4993, 5003, 5087
5147, 5153, 5237, 5273, 5297, 5303, 5323, 5333, 5347, 5387, 5393, 5413, 5417, 5437
5443, 5477, 5483, 5507, 5527, 5557, 5563, 5573, 5623, 5647, 5653, 5657, 5693, 5717
5737, 5807, 5813, 5843, 5867, 5897, 5903, 5923, 5927, 5987, 6007, 6037, 6043, 6047
6053, 6113, 6133, 6143, 6173, 6197, 6203, 6217, 6247, 6257, 6263, 6277, 6317, 6323,
6353, 6367, 6373, 6473, 6547, 6563, 6577, 6607, 6637, 6653, 6673, 6703, 6737, 6763,
6303, 6827, 6833, 6857, 6863, 6907, 6917, 6947, 6967, 6977, 6983, 6997, 7013, 7027
7043, 7057, 7103, 7127, 7187, 7193, 7213, 7237, 7247, 7253, 7283, 7297, 7307, 7393,
7417, 7433, TABT, TART, T517, 7523, 7547, T573, 7577, 7583, 7607, 7643, 7673, 7703,
7727, TT57, 7793, T817, 7823, 7867, 7873, 7877, 7883, 7907, 7927, 7937, 7963, 7993,
8017, 8053, 8087, 8117, 8123, 8147, 8237, 8243, 8273, 8287, 8297, 8353, 8363, 8377
8387, 8423, 8447, 8513, 8527, 8537, 8543, 8573, 8597, 8623, 8627, 8647, 8663, 8677
8693, 8707, 8713, 8737, 8747, 8753, 8783, 8303, 8807, 8837, 8863, 8367, 8893, 8923,
8963, 9007, 9013, 9043, 9067, 9127, 9137, 9173, 9187, 9203, 9227, 9257, 9277, 9293,
9323, 9337, 9343, 9377, 9413, 9433, 9437, 9467, 9473, 9497, 9533, 9587, 9613, 9623,
9643, 9677, 9733, 9743, 9767, 9787, 9803, 9817, 9833, 9857, 9883, 9887, 9907, 9967

Table 16.4: Values of ¢ Giving Rise to 5-ary f-sequences for ¢ < 10, 000.
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Length

Values of ¢ giving 6-ary ¢-sequences

11, 13, 17

41, 59, 61, 79, 83, 89, 103, 107, 109, 113, 127, 131, 137, 151, 157, 179, 199

223, 227, 229, 233, 251, 257, 271, 277, 347, 367, 373, 397, 401, 419, 443, 449, 467
487, 491, 521, 563, 569, 587, 593, 613, 641, 659, 661, 683, 709, 733, 757, 761, 809,
823, 827, 829, 853, 857, 881, 929, 947, 953, 967, 971, 977, 991, 1019, 1039, 1049,
1063, 1069, 1091, 1097, 1117, 1163, 1187, 1193, 1213, 1217, 1237, 1259, 1279, 1283,
1289

1303, 1307, 1327, 1361, 1381, 1409, 1423, 1427, 1429, 1433, 1451, 1471, 1481, 1499,
1523, 1543, 1549, 1553, 1567, 1601, 1619, 1621, 1663, 1667, 1669, 1759, 1789, 1811,
1831, 1861, 1879, 1889, 1907, 1913, 1979, 1999, 2027, 2029, 2053, 2081, 2099, 2129,
2143, 2153, 2221, 2243, 2267, 2269, 2273, 2293, 2297, 2389, 2393, 2411, 2417, 2437
2441, 2459, 2503, 2531, 2551, 2557, 2579, 2609, 2633, 2657, 2699, 2729, 2749, 2767
2777, 2791, 2797, 2801, 2819, 2843, 2887, 2897, 2917, 2939, 2963, 2969, 3011, 3041,
3061, 3079, 3083, 3089, 3109, 3137, 3203, 3209, 3229, 3251, 3253, 3257, 3271, 3299,
3301, 3319, 3323, 3329, 3347, 3371, 3391, 3449, 3463, 3467, 3469, 3491, 3517, 3539,
3583, 3593, 3617, 3659, 3709, 3733, 3761, 3779, 3803, 3823, 3833, 3847, 3853, 3929,
3943, 3947, 3967, 4001, 4019, 4049, 4073, 4091, 4093, 4139, 4211, 4217, 4231, 4241,
4259, 4283, 4289, 4327, 4337, 4409, 4423, 4447, 4451, 4457, 4481, 4519, 4523, 4547,
4549, 4567, 4597, 4621, 4639, 4643, 4649, 4663, 4673, 4691, 4721, 4759, 4783, 4787,
4789, 4793, 4813, 4909, 4931, 4933, 4937, 4951, 4957, 5003, 5009, 5051, 5077, 5081,
5099, 5101, 5147, 5153, 5167, 5171, 5273, 5297, 5387, 5393, 5407, 5413, 5417, 5437
5441, 5483, 5507, 5527, 5557, 5581, 5623, 5647, 5651, 5653, 5657, 5701, 5791, 5821,
5839, 5843, 5867, 5897, 5939, 5987, 6007, 6011, 6037, 6089, 6113, 6131, 6133, 6151,
6199, 6229, 6247, 6257, 6277, 6299, 6323, 6353, 6367, 6373, 6421, 6449, 6473, 6491,
6521, 6569, 6607, 6637, 6659, 6661, 6689, 6703, 6709, 6737, 6761, 6779, 6803, 6827
6829, 6833, 6857, 6871, 6899, 6947, 6971, 6977, 6991, 7001, 7019, 7039, 7043, 7069,
7121, 7187, 7193, 7207, 7283, 7307, 7309, 7331, 7333, 7351, 7433, 7451, 7457, TAT7,
7481, 7499, 7523, 7529, T547, 7549, 7573, T577, T591, 7621, 7643, 7649, 7669, 7687
7717

7793, 7817, 7907, 7927, 7933, 7937, 7951, 8009, 8081, 8101, 8123, 8147, 8167, 8219,
8243, 8263, 8273, 8287, 8291, 8293, 8297, 8317, 8369, 8387, 8389, 8461, 8513, 8527
8537, 8581, 8599, 8609, 8623, 8627, 8629, 8647, 8677, 8699, 8719, 8747, 8753, 8819,
8839, 8863, 8941, 8963, 8969, 9013, 9041, 9059, 9103, 9133, 9137, 9157, 9161, 9181,
9203, 9209, 9227, 9257, 9281, 9323, 9343, 9349, 9371, 9377, 9421, 9463, 9467, 9473,
9491, 9497, 9511, 9521, 9539, 9587, 9613, 9631, 9661, 9689, 9781, 9803, 9833, 9851,
9857, 9901, 9923, 9929, 9949, 9967

Table 16.5: Values of ¢ Giving Rise to 6-ary f-sequences for ¢ < 10, 000.
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Length

Values of ¢ giving 7-ary f-sequences

11, 13, 17, 23, 41
61, 67, 71, 79, 89, 97, 101, 107, 127, 151, 163, 173, 179, 211, 229, 239, 241, 257, 263,
269, 293

347, 349, 359, 379, 397, 431, 433, 443, 461, 491, 499, 509, 521, 547, 577, 593, 599,
601, 631, 659, 677, 683, 733, 739, 743, 761, 773, 797, 823, 827, 857, 863, 907, 919,
929, 937, 941, 967, 991, 997, 1013, 1019, 1049, 1051, 1069, 1097, 1103, 1109, 1163,
1181, 1187, 1193, 1217, 1237, 1249, 1277, 1283, 1301, 1303, 1361, 1367, 1433, 1439,
1451, 1471, 1523, 1553, 1601, 1607, 1609, 1613, 1619, 1637, 1667, 1669, 1693, 1697,
1721, 1747, 1753, 1759, 1787, 1831, 1889, 1949, 1973, 1993, 2003, 2011, 2027, 2039,
2083, 2087, 2089, 2111, 2141, 2143, 2179, 2207, 2251, 2273, 2281, 2309, 2339, 2341,
2357, 2393

2447, 2459, 2477, 2503, 2531, 2543, 2591, 2593, 2609, 2621, 2647, 2671, 2677, 2693,
2699, 2711, 2729, 2731, 2777, 2789, 2843, 2851, 2879, 2897, 2917, 2957, 2963, 3041,
3119, 3121, 3169, 3181, 3203, 3209, 3253, 3271, 3299, 3343, 3371, 3449, 3457, 3467,
3511, 3517, 3533, 3539, 3541, 3571, 3607, 3617, 3623, 3673, 3701, 3719, 3739, 3767,
3769, 3793, 3797, 3803, 3821, 3853, 3931, 3943, 3989, 4019, 4049, 4073, 4093, 4127,
4133, 4139, 4157, 4177, 4211, 4243, 4261, 4271, 4273, 4289, 4297, 4327, 4373, 4400,
4447, 4457, 4463, 4493, 4513, 4519, 4523, 4547, 4549, 4597, 4603, 4637, 4643, 4663,
4691, 4721, 4793, 4799, 4801, 4831, 4877, 4889, 4943, 4951, 4967, 4973, 4999, 5081,
5107, 5119, 5147, 5197, 5231, 5279, 5281, 5297, 5303, 5309, 5333, 5381, 5387, 5393,
5399, 5417, 5437, 5449, 5471, 5477, 5483, 5501, 5503, 5557, 5623, 5639, 5651, 5669,
5717, 5779, 5783, 5791, 5801, 5807, 5813, 5857, 5867, 5869, 5897, 5903, 5923, 5953,
5981, 5987, 6043, 6053, 6089, 6091, 6121, 6143, 6173, 6199, 6203, 6211, 6221, 6229,
6257, 6287, 6311, 6317, 6323, 6343, 6367, 6379, 6389, 6397, 6473, 6481, 6491, 6529,
6547, 6563, 6569, 6619, 6653, 6659, 6679, 6703, 6709, 6733, 6737, 6763, 6781, 6791,
6827, 6899, 6911, 6949, 6959, 6967, 6977, 6983, 7013, 7039, 7043, 7069, 7079, 7127,
7129, 7151, 7207, 7211, 7213, 7219, 7229, 7237, 7247, 7321, 7331, 7349, 7351, 7369,
7433, 7459, TA81, TAS7, 7489, 7499, 7517, 7537, 7547, 7549, 7573, T577, 7583, 7603,
7639, 7649, 7741, 7789, 7817, 7823, 7829, 7853, 7873, 7879, 7883, 7901, 7907, 7919,
7937, 7963, 8053, 8059, 8069, 8081, 8087, 8161, 8171, 8209, 8219, 8221, 8237, 8243,
8273, 8293, 8329, 8377, 8387, 8423, 8467, 8501, 8563, 8573, 8581, 8609, 8647, 8663,
8669, 8693, 8741, 8747, 8753, 8803, 8807, 8831, 8837, 8863, 8893, 8999, 9001, 9011,
9029, 9049, 9059, 9133, 9151, 9161, 9173, 9227, 9257, 9283, 9311, 9319, 9337, 9341,
9397, 9403, 9413, 9419, 9431, 9479, 9497, 9533, 9587, 9649, 9677, 9721, 9733, 9739,
9749, 9767, 9811, 9833, 9839, 9871, 9907, 9923, 9929

Table 16.6: Values of ¢ Giving Rise to 7-ary f-sequences for ¢ < 10, 000.

375




Length | Values of ¢ giving 10-ary f-sequences
1 17, 19, 23, 29, 47, 59, 61, 97
2 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367,
379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647,
659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983
3 1019, 1021, 1033, 1051, 1063, 1069, 1087, 1091, 1097, 1103, 1109, 1153, 1171, 1181,

1193, 1217, 1223, 1229, 1259, 1291, 1297, 1301, 1303, 1327, 1367, 1381, 1429, 1433,
1447, 1487, 1531, 1543, 1549, 1553, 1567, 1571, 1579, 1583, 1607, 1619, 1621, 1663,
1697, 1709, 1741, 1777, 1783, 1789, 1811, 1823, 1847, 1861, 1873, 1913, 1949, 1979,
2017, 2029, 2063, 2069, 2099, 2113, 2137, 2141, 2143, 2153, 2179, 2207, 2221, 2251,
2269, 2273, 2297, 2309, 2339, 2341, 2371, 2383, 2389, 2411, 2417, 2423, 2447, 2459,
2473, 2539, 2543, 2549, 2579, 2593, 2617, 2621, 2633, 2657, 2663, 2687, 2699, 2713,
2731, 2741, 2753, 2767, 2777, 2789, 2819, 2833, 2851, 2861, 2887, 2897, 2903, 2909,
2927, 2939, 2971, 3011, 3019, 3023, 3137, 3167, 3221, 3251, 3257, 3259, 3299, 3301,
3313, 3331, 3343, 3371, 3389, 3407, 3433, 3461, 3463, 3469, 3527, 3539, 3571, 3581,
3593, 3607, 3617, 3623, 3659, 3673, 3701, 3709, 3727, 3767, 3779, 3821, 3833, 3847
3863, 3943, 3967, 3989, 4007, 4019, 4051, 4057, 4073, 4091, 4099, 4127, 4139, 4153,
4177, 4211, 4217, 4219, 4229, 4259, 4261, 4327, 4337, 4339, 4349, 4421, 4423, 4447,
4451, 4457, 4463, 4567, 4583, 4651, 4673, 4691, 4703, 4783, 4793, 4817, 4931, 4937,
4943, 4967, 5021, 5059, 5087, 5099, 5153, 5167, 5179, 5189, 5233, 5273, 5297, 5303,
5309, 5381, 5393, 5417, 5419, 5501, 5503, 5527, 5531, 5581, 5623, 5651, 5657, 5659,
5669, 5701, 5737, 5741, 5743, 5749, 5779, 5783, 5807, 5821, 5857, 5861, 5869, 5897
5903, 5927, 5939, 5981, 6011, 6029, 6047, 6073, 6113, 6131, 6143, 6211, 6217, 6221,
6247, 6257, 6263, 6269, 6287, 6301, 6337, 6343, 6353, 6367, 6389, 6473, 6553, 6571,
6619, 6659, 6661, 6673, 6691, 6701, 6703, 6709, 6737, 6779, 6793, 6323, 6829, 6833,
6357, 6863, 6869, 6899, 6949, 6967, 6971, 6977, 6983, 7019, 7057, 7069, 7103, 7109,
7177, 7193, 7207, 7219, 7229, 7247, 7309, 7349, 7393, 7411, 7433, 7451, 7457, 7459,
7487, 7499, 7541, T577, 7583, 7607, 7673, T687, 7691, 7699, 7703, 7727, 7753, 7793,
7817, 7823, 7829, 7873, 7901, 7927, 7937, 7949, 8017, 8059, 8069, 8087, 8171, 8179,
8219, 8233, 8263, 8269, 8273, 8287, 8291, 8297, 8353, 8377, 8389, 8423, 8429, 8447
8501, 8513, 8537, 8543, 8623, 8647, 8663, 8669, 8699, 8713, 8731, 8741, 8753, 8783,
8807, 8819, 8821, 8861, 8863, 8887, 8971, 9011, 9029, 9059, 9103, 9109, 9137, 9221,
9257, 9341, 9343, 9371, 9377, 9421, 9461, 9473, 9491, 9497, 9539, 9623, 9629, 9697
9739, 9743, 9749, 9767, 9781, 9811, 9817, 9829, 9833, 9851, 9857, 9887, 9931, 9949,
9967

Table 16.7: Values of ¢ Giving Rise to 10-ary ¢-sequences for ¢ < 10, 000.
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Chapter 17 Maximal Period d-FCSRs

In this chapter we investigate the distribution properties (Section 17.2) and correlation properties
(Section 17.3) of maximal period d-FCSR sequences. As in Chapter 9, we assume we are given
integers N > 2 and d > 1 such that the polynomial z¢ — N is irreducible over the rational numbers
Q. Let m € C be a root of this polynomial in an extension field of Q. In this chapter we consider
maximum period AFSRs based on the ring

The fraction field of R is

d—1
F:Q[W]:{Zami:aie(@}:{%:aER,bGZ}.

=0

The algebra in this ring is somewhat more complicated than that of Z, and is not completely
understood. For example, R may not be a UFD and it may not be integrally closed. The group
of units in R may be infinite. A complete characterization of the cases where R is a Euclidean
domain is not known, even when d = 2.

A d-FCSR is an AFSR based on R, w, and S ={0,1,---, N — 1}.

17.1 Identifying maximal length sequences

By Lemma 3.4.8, if ¢ € R is a non-unit, then the absolute value [N (¢)| is equal to the number of
elements in the quotient ring R/(q).

Theorem 17.1.1. The mazimum period for a periodic sequence generated by a d-FCSR with
connection element q is [NG(q)] — 1.

Thus the largest possible period for an ¢-sequence occurs when R/(q) is a field. Table 17.1
gives a list of all such connection elements and the resulting periods for N = 2, d = 2, and length
at most 11.

More generally, we consider sequences for which the period is the cardinality of the group of
units in R/ (7).
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¢,N§ () giving binary 2-(-sequences

5+ 2m,17),(5+ 3w, 7)

T+ 17,47),(9+ 17, 79), (7 + 2w, 41), (11 + 37, 103), (7 + 4w, 17), (13 + 47, 137),
11+ 77,23), (13 + 67,97), (134 77, 71)

13 + 87, 41)

15 + 47, 193), (17 + 57, 239), (21 + 47, 409), (19 + 77, 263), (23 + 27, 521),

29 + 3,823), (23 + 57, 479), (29 + 47, 809), (29 + 67, 769), (20 + T, 743),

15+ 8,97), (21 + 87,313), (21 + 117, 199), (23 + 87, 401), (23 + 97, 367),

25 1 97, 463), (27 + 111, 487), (29 + 117, 599), (23 + 137, 191), (23 + 147, 137),
29 1 147, 449)
23 1 167,17), (

(

(

(

(

(

(

(

(

(

(

( 25 + 17, 47), (27 + 197, 7), (29 + 187, 193), (29 + 207, 41)
(33 + 1, 1087), (37 + 2, 1361), (31 + 4, 929), (33 + 5, 1039), (37 + 67, 1297),

(39 + 4, 1489), (45 + 41, 1993), (31 + 10, 761), (35 + 111, 983), (33 + 13, 751),

(31 + 147, 569), (37 + 147, 977), (43 + 117, 1607), (45 + 11, 1783), (39 + 147, 1129),
(47 + 1, 2207), (49 + 1, 2399), (53 + 2, 2801), (47 + 67, 2137), (53 + 4, 2777),

(51 + 7, 2503), (53 + 7, 2711), (55 + 1, 3023), (61 + Trr, 3623), (47 + 8, 2081),

(49 + 97, 2239), (53 + 107, 2609), (47 + 13, 1871), (49 + 13, 2063), (53 + 12, 2521),
(53 + 147, 2417), (55 + 8, 2897), (61 + 8, 3593
(

(

(

(

(

(

(

(

(

(

(

(

61 + 147,3329), (31 + 167, 449), (31 + 177, 383

), (55 + 147, 2633), (61 + 127, 3433),
, ), (31 + 18, 313), (37 + 167, 857),
35+ 197, 503), (37 + 197, 647), (31 + 217, 79), (37 + 207, 569), (35 + 237, 167),

37 + 227, 401), (37 + 237, 311), (39 + 167, 1009), (45 + 197, 1303), (45 + 237, 967),
39 + 257, 271), (45 + 317, 103), (47 + 167, 1697), (49 + 177, 1823), (53 + 16m, 2297),
51 + 197, 1879), (53 + 18, 2161), (53 + 197, 2087), (47 + 207, 1409),

51 + 237, 1543), (55 + 177, 2447), (55 + 187, 2377), (61 + 167, 3209),

61 + 197, 2999), (59 + 237, 2423), (61 + 227, 2753), (61 + 237, 2663),

49 + 25, 1151), (47 4 267, 857), (49 + 297, 719), (47 + 307, 409), (53 + 30, 1009),
53 + 317, 887), (55 + 247, 1873), (57 + 297, 1567), (61 + 28, 2153), (59 + 31, 1559)
53 + 32m, 761), (53 + 357, 359), (55 + 32, 977), (59 + 35, 1031),

61 + 34, 1409), (55 + 387, 137), (61 + 367, 1129), (61 + 407, 521), (61 + 427, 193),
61 + 437, 23)

11

Table 17.1: Values of ¢ Giving Rise to binary 2-f-sequences for Length < 11.

Definition 17.1.2. A d-(-sequence (or simply an (-sequence if the context is clear) is a periodic
sequence a which is obtained from a d-FCSR with connection element q such that the period of a
is the cardinality of the multiplicative group of R/(q).
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By Theorem 9.4.2, there is an exponential representation
a; = (ur™" (mod q)) (mod =), (17.1)

for an /-sequence a, where the reductions modulo ¢ are taken in the fundamental half-open par-
allelepiped P as in Section 9.4. Thus a is an f-sequence if and only if 7 is primitive in R/(q).
Different choices of u with u € P give different left shifts of the same sequence.

It follows from Theorem 3.4.9 and the Chinese Remainder Theorem (Theorem 2.2.18) that, as
with /-sequences in the FCSR case, if ¢ is the connection element of a d-f-sequence, then ¢ = ur?
where v is a unit and r is any irreducible factor of ¢. This holds regardless of whether R is a UFD.
Moreover, irreducibility of r € Z[r] can be guaranteed by requiring that n = N{(r) is a prime in
Z. 1t follows that Q = Ng(q) = n!, so by Proposition 9.3.2,

Zln]/(q) = Z/(Ng(q)) = Z/(n").

The group of units Z[r]/(¢)* in this ring is cyclic (see Section 2.2.d) and has order

d(n') =n'"t(n —1).

Thus such a ¢ is the connection element of a d-f-sequence if and only the n'~'(n — 1) different

powers of m exactly account for the elements in Z[r|/(q)*.

17.2 Distribution properties of d-/-sequences

We have seen in Theorem 16.2.1 that if a is an N-ary ¢-sequence based on a prime connection
integer ¢, then the numbers of occurrences of any two n-element patterns differ at most by one.
The difference is at most 2 if the connection integer ¢ is a power of a prime. In this section we
consider the same question for the d-f-sequences of Definition 17.1.2. As in Section 9.2 suppose
that ¢ — N is irreducible over Q and that ¢ € Z[r] is invertible modulo 7. Assume that ¢ = r!
for some r € Z[r] such that N (r) is prime, and that the image of 7 in Z[r]/(q) is primitive. Let

Q=N{(q) e Z.
17.2.a Reduction to counting lattice points

In this section we show that the number of occurrences of an s-element pattern in an f-sequence
is equal to the number of points in a certain integer lattice in a certain hypercube.

First observe that determining the distribution of occurrences of s-element patterns in a single
period of a is equivalent to determining the distribution of occurrences of length s element patterns
as the first s elements of left shifts of a. Every left shift of a is the coefficient sequence of the
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m-adic expansion of an element of the form u/q for some u. Moreover, the shift corresponding to
u/q begins with the s-element pattern b if and only if

u

bo + by + bom? + - bl = . (mod 7°).

In Section 9.4 we analyzed the periodicity of d-FCSR sequences. Recall that
d—1
Py = {Zvicpﬂ v, €EQand — 1<y < 0} C Q[n]
i=0
is the open parallelepiped for ¢, and
Ao(q) = Py N Z[x].
The following theorem follows from Corollary 9.4.3.

Theorem 17.2.1. Suppose that q € Z[r] is invertible modulo T, Ng(q) is prime, and w is primitive
modulo q. Let a be an (-sequence with connection element q. Then the m-adic expansion of v/q is
a left shift of a if and only if v € Ay(q).

Suppose that q € Z[r] is invertible modulo w, q = ur', Ng(r) is prime, and 7 is primitive
modulo q. Let a be an (-sequence with connection element q. Then the m-adic expansion of v/q is
a left shift of a if and only if v € Ao(q) — rDo(q/r).

Thus by Theorem 17.2.1, determining the distribution of occurrences of s-element patterns in
a single period of a is equivalent to determining the distribution of elements

s—1
b= b b e{0,1,--- N—1},
=0

where each such element is counted once for every v € Ag(q) with

=b (mod 7°).

| S

But ¢ is invertible modulo 7%, so multiplying by ¢ modulo 7° is a permutation. Since our goal is
just to determine the set of these multiplicities, we can simply determine for each b the number of
v € Ag(q) with v = b (mod 7°).

For v € Ay(q), we have

v=Y vn'q€ L], (17.2)
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with —1 < v; < 0. Recall that by Lemma 9.3.1 § = @)/q is in R. Multiplying equation (17.2) by
0, we find that

d—1
v = vaiQ € Z[r],
i=0

so that v; = z;/Q for some integers z;, i = 0,---,d — 1 with —N < z; < 0. Thus for fixed b, we
want to find the number of solutions to the equation

R.
—

Zi
Zr'¢g=b (mod 7°),
ol ( )

with z; € Z and —Q < z; < 0. Equivalently, we want the number of w € Z[r] such that

i
gM

d—
Zalqg = b+ mhw,
ZOQ

for some z; € Z with —(Q) < z; < 0. Multiplying by § again and dividing by 7°, we see that this is
the same as the number of w € Z[r] such that

for some z; € Z with —(Q) < z; < 0.

Lemma 17.2.2. Suppose that (¢) = (') and the norm of r is prime. For every w € Z[r| there
are elements k € Z and y € Z[r| so that wo = kd + y@Q.

Proof. This is equivalent to showing that there exist elements y € Z[r| and k € Z so that w =
k + yq. This follows from the fact that Z[r]|/(q) is isomorphic to Z/(Q) when (q) = (r') and the
norm of r is prime. O]

Note that it is this step in our analysis that depends on the special form of ¢. It follows that
it suffices for us to count the number of pairs k € Z,y € Z[r| such that

=L b
Z —17qu = — +kd+yQ, (17.3)
im0 " T

for some z; € Z with —Q) < z; < 0. If s is a multiple of d, then this is the number of points kéd +y(Q)
in a real hypercube with faces parallel to the coordinate planes each of whose edges have length
Q/N*/¢ and whose vertex with minimal coordinates is b /7.
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17.2.b When d =2

In this section we apply the results of Section 17.2.a to the case when d = 2. We show that the
number of occurrences of each s-tuple, s even, differs from the average number of occurrences by
at most a small constant times the square root of the average number of occurrences.

Since d = 2 we have ¢ = qo + 17, qo, 1 € Z, and 6 = £(qo — 1 7). Let s be even and let

Q

= NPz e R>Y.

a

Let B be an a by a square with sides parallel to the axes. We want to bound the cardinality of
the set W of points in B of the form k(qo, —q1) + (Qwo, Qw1 ), with k, wg, w; € Z. Let us assume
that ¢; < 0. The case when ¢; > 0 is similar. For fixed w = (wp,w;) € Z?, let L,, be the real line

Lw = {k(Qm _QI) + Q”LU ke R}
Then W is the union over all w of the set of points

k(qo, —q1) + (Quo, Quy) € Ly, N B.

That is, W is a union of line segments. The number of lattice points on each such segment is
approximately the length of the segment divided by the (constant) distance between consecutive
lattice points. Alternatively, it is approximately the variation in the second coordinate along the
segment divided by the variation in the second coordinate between two consecutive lattice points.
The error in this estimate is at most one per line segment. Thus we can bound the size of W by
the following steps:

1. Find numbers mg and m; so that the sum of the variations in the second coordinates along
the segments is between mg and m;.

2. The variation in the second coordinate between consecutive lattice points is |q|.

3. Bound the error: the actual number of lattice points on a segment whose second coordinate
varies by c is greater than (¢/|g1|) — 1 and at most (¢/|q|) + 1.

4. Let ¢ be the number of segments. Then the total number of lattice points is at least
(mo/|q1|) — € and at most (m/|q1|) + £

The slope of the segments is positive, so there are three types of lines: (a) those that start on
the left hand vertical side of B and end on the upper horizontal side; (b) those that start on the
lower horizontal side and end on the upper horizontal side; and (c) those that start on the lower
horizontal side and end on the right hand vertical side. We can count the number ¢ of segments by
counting the z-intercepts and y-intercepts. The z-intercept of a line L,,, w = (wp,wy), is a point
k(qo, —q1) + Q(wo, wy) such that Qu; — kg = 0. That is, ¥ = Qw;/q;. The intercept is the x
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coordinate, Q(qow; + q1wy)/q1. But qo and ¢y are relatively prime, so as we let w vary all possible
numbers of the form Qe/q; in the range of the z-coordinates along the length a side of B occur as
intercepts. Thus the number of z-intercepts is between aq;/Q — 1 and aq;/Q + 1. Similarly, the
number of y-intercepts is between aqy/Q — 1 and aqo/Q + 1. That is

al(qo + q1) a(go +¢1)

—2<t< + 2.

Next we want to bound the sum of the variations in the second coordinates along the segments.

For a lower bound, let
r_ La’ql|J Q
a = _
Q g1

be the largest integral multiple of @)/|g;| that is less than or equal to a. We can shrink B slightly
to obtain an a’ by a rectangle B’ and just measure the parts of the segments in B’. Every segment
of type (a) in B’ matches up with a segment of type (c) in B’ so that the sum of the differences in
the second coordinate along the two segments is exactly a. If we call these combined segments and
the segments of type (b) super segments, then the number of super segments in B’ is the number of
z-intercepts in B’ and each super segment varies in its second coordinate by a’. Thus the number
of super segments is at least

a _ %J aa|l | _ ol
{@/mJ‘{@ = Tt

and the sum of the variation in the second coordinates is at least

o alq| . Qlq1 Q

Mo = Ns/2 a= Ns - Ns/2®

It follows that the number of lattice points in B is at least

m_, ., @ _ 622 _ allol +al)
a1 Ns  N*2|q Q
_ Q@ _|QO‘+|QI‘_2
Ns Ns/2|q1| Ns/2

Next we show that we can choose the connection element ¢ so the error term is bounded. For
any v we have vu/vqg = u/q, so we can multiply v and ¢ by a unit and leave the number of lattice
points unchanged. For general N and ¢, the best we can do is guarantee that |ql,|q:1| € O(Q),
which results in a useless bound. We can do better when N = 2.
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Proposition 17.2.3. Suppose that N = 2. Let ¢ = qo + (17 € R with qo and ¢, relatively prime.
Let Q = |2 — 2¢3| be the absolute norm of q. Then there is a unit v in R such that vq = g + ¢} 7
with |qo] < |gi] < Q2.

Proof. The product of the elements 1 + 7 and 1 — 7 is —1, hence they are units. We have

(1—=7)(qo+am) =q0 —2q1 + (@1 — qo)7
and
(1+7m)(g +qm) =qo+ 2q1 + (¢1 + qo)7.

Suppose that |q| > |¢1|. Then by checking the four possible cases, we find that multiplying g by
either 1 + 7 or 1 — 7 gives an element r = 1o + r7 with |ro| < |¢|. After finitely many such
multiplications we must obtain an element ¢'q, + ¢;7 with |g)| < |¢}|. But then @ = |¢/ 3 — 243 =
1¢2 + (7 — q’g)| > ¢'3, as desired. ]

Thus we may assume that ¢ has the form in the proposition. Also, we have |q;| > (Q/2)/2.

Lemma 17.2.4. If (Q/N)/? < || < QY% and Q = |g3 — Nqi|, then (Q/|q|) + |ao| + |au| <
(NY2 (N = D)Y2+1)QY2. If N =2, then this can be improved to (Q/|q1]) + |qo| + |q1| < 3QY2.

Proof. We have |q;| < Q/2,

and
0] = [(NgF — Q)] <|(NQ — Q)"?| = (N —1)"/2¢"/2,
from which the first statement follows. The second statement is left as an exercise. O]

It follows from Lemma 17.2.4 that if (Q/N)Y? < |q1| < Q*/2, then

Q_ W+ (N-DV2+1)QV2

mOZ ﬁ_ 25/2 2.

If N = 2, then it follows from Proposition 17.2.3 and Lemma 17.2.4 that

Q 3@1/2

mo 2 5_ 2s/2

— 2.

A similar derivation of an upper bound gives the following theorems.
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Theorem 17.2.5. Suppose that q € Z[r] is invertible modulo T, Ng(q) is prime, and w 18 primitive
modulo q. Let a be an (-sequence defined over Z|x|, 7> = N, whose connection element ¢ = qo+q 7
has absolute norm Q. If s is even, then the number K of occurrences of any s-tuple in one period
of a satisfies

Q Q 90| + a1
K- 9.
’ Ns| — NS/2‘Q1‘ + Ns/2 +
If (Q/N)Y2 <|qi| < QY2, then
Q (N1/2+(N—1)1/2—|—1)Q1/2

If N =2, then

1/2
K—% §3<%) + 2.

Theorem 17.2.6. Suppose that q € Z[r] is invertible modulo 7, for some unitu in R and qo,q1 € Z
we have ¢ = wrt = qo +qm, T = Ng(r) 1s prime, and w is primitive modulo q. Suppose also that
for some unit v’ in R and q,q; € Z we have u'r'™' = gj+q\7. Let a be an (-sequence defined over
Zlr], 7> = N, whose connection element q has absolute norm Q. If s is even, then the number K
of occurrences of any s-tuple in one period of a satisfies

‘K_@<1—1/T>‘< Q ol tlal QT g+ g

4.
Ns - Ns/2|q1| + Ns/2 + Ns/2|qi| + Ns/2 +

If(Q/N)"2 < || < QY? and (Q/(TN)'* < |qi| < (Q/T)"?, then

+ 4.

‘ Q(1—1/T) ‘ (N2 4 (N —1)Y2+1)QV2(1 4 1/TYV?)
K — <
Ns — Ns/2

If N =2, then

QL-1/T)| _ QV*(1+1/T"?)
‘K — 5 <3 5o/ +4.
Proof. In this case K = Ag(q) —rAo(¢'). Here we have used the fact that multiplying a connection
element by a unit has no effect on the set of sequences generated by AFSRs with the connection

element. O]

In fact, it is likely that in general the error is much smaller than this since this analysis assumes
the maximum possible error along every line segment.
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For N > 2, this bound is not in general very good since |g;| may be close to 7. Thus Theorem
17.2.5 tells us that to obtain nearly uniform distributions, we should choose a connection element
g with (Q/N)"* < |q| < Q"

When d > 2, a similar analysis can be tried. However, the results are not as good for two
reasons. First, the errors are larger — it is possible to give a heuristic argument that the error
estimates from this approach will be at best O((Q/N*)(@=1/4) Second, the difference between the
degree of F' over Q and the rank of the unit group is larger, so it is harder to find a connection
element equivalent to ¢ whose components are small.

17.3 Arithmetic correlations

Let a = ag, a1, -+ be an N-ary sequence and let a be the associated m-adic number. Let 7 be a
nonnegative integer. As before, if b = by, by, ... is another N-ary sequence, denote by b” the shift
of b by 7 steps, that is, b7 = b;,.,. If b is the 7-adic integer corresponding to b, let b(™) denote the
m-adic integer corresponding to b”.

Because of Lemma 5.5.6 we can generalize the notion of arithmetic cross-correlation from
Section 11.3.c to the setting of d-FCSRs as follows. As before, we let ¢ be a primitive Nth root of
unity in the complex numbers. We let x be the character of Z/(N) defined by x(u) = ¢*. If ais
eventually periodic and for each v = 0,1,---, N — 1, u, is the number of occurrences of u in one
complete period of a, then the imbalance is

Z(0) = 2(2) = 3 pmx(u).

Definition 17.3.1. Let a and b be two eventually periodic N-ary sequences with period T. Let
a and b) be the m-adic numbers whose coefficients are given by a and b”, respectively. Then the
sequence of coefficients associated with a — b\ is eventually periodic and its period divides T. The
shifted d-arithmetic cross-correlation (or just the arithmetic cross-correlation when d is clear from
the context) of a and b is

C(T) = Z(a—b7). (17.4)

When a = b, the arithmetic cross-correlation is called the d-arithmetic autocorrelation (or just
the arithmetic cross-correlation) of a and is denoted AW (T).

The sequences a, b (of period T') has ideal d-arithmetic correlations if,

() | T ifa=Db"
Can(7) _{ 0 otherwise
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for each 7 with 0 < 7 < T. A family of sequences has ideal d-arithmetic correlations if every pair
of sequences in the family has ideal d-arithmetic correlations. Now we focus on the binary case,
N = 2.

If a = ag,aq,---is asequence and k # 0 is an integer, then recall that the sequence b = by, by, . ..
is the k-fold decimation of a if b; = ay; for every 7. Let a be a d-f-sequence. Let F, be the family
of all k-fold decimations of a, where k£ > 1 is allowed to vary over all integers which are relatively
prime to the period of a.

Theorem 17.3.2. Let 7@ = 2. Let a be a d-(-sequence with connection integer q € Z[r|. Suppose
that (q) = (r*) for some r € Z[x] such that n. = N{(r) is prime. Suppose also that

ged(d, ¢(Ng(q))) = 1.
Then the family Fa has ideal d-arithmetic correlations.

The remainder of this section consists of a proof of Theorem 17.3.2. Let ) = Ng(q) = 4nt.
We first need a constraint on the sequences that can occur as d-f-sequences.

Proposition 17.3.3. Under the hypotheses of Theorem 17.3.2, the second half of one period of a
is the bitwise complement of the first half.

Proof. We have
Zl7]/(q) = Z/(Q),
via an isomorphism ¢ : Z/(Q) — Z[r]/(q). Therefore

719D =1 (mod q).

That is,
q|ﬂ_nt*1(n—1) 1= (ﬂ_ntfl(n—l)/Q o 1)(7Tnt*1(n—1)/2 + 1)

These two factors differ by 2, which is a power of 7, so r can only divide one of them. Thus ¢
divides exactly one of them. Since 7 is primitive modulo ¢, ¢ cannot divide the first factor, hence
it divides the second factor. It follows that

7#@/2 = _1 (mod q).
Let m = ¢~!(r). Note that @ (mod 2) = 1. By Corollary 9.5.2 we have
2m @72 (mod Q)) (mod 2)

g2 =
= (—zm™" (mod Q)) (mod 2)
= (@~ (#m™" (mod Q))) (mod 2)
= 1—((zm™ (mod Q)) (mod 2))
= 1—uq
for some integer z. O
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The above property extends to decimations of d-f-sequences.

Lemma 17.3.4. Let a be a binary sequence of even period T whose second half is the complement
of its first half. Let k > O be relatively prime to T, and let b be a k-fold decimation of a. Then
the second half of one period of b is the complement of the first half.

Proof. Note that k must be odd and a; =1 — a;7/2. Thus we have

by = ayg=1— aipsr)2
= 1 —=agsr/or =1 = biyry2. O
Lemma 17.3.5. Let T' be an even integer. Let b = by, by, ... be a strictly periodic sequence with

period T such that the second half of each period is the bitwise complement of the first half and let

Then

nl/2 41
for some v € Z[x].

Conversely, if b = by, b, ... is the m-adic expansion of a w-adic integer w/(77/? + 1) with
eventual period dividing T, ged(T,d) = 1 and w ¢ {0, (x7/2 +1)/(x — 1)}, then the second half of
each T bit period of b is the bitwise complement of the first half.

Proof. 1f a is a m-adic number, then we let a be the complementary m-adic number. That is, we
replace each 1 by 0 and each 0 by 1 in the m-adic expansion of a. For the first part, we have

b+b = 1+m+7°+---
—1
m—1
= —(l+a4+7m2+--+77

since 1@ = 2. Therefore

—(l+7r+7m 44 —b = b

for some ¢ € Z[r]. Solving for b we have

—c—1-m—-- =7

b= 7l/2 41 ’

388



as claimed. Now consider the converse. We first reduce to the case when b is strictly periodic. We

can write
w

7-(-T/Q + 1
with ¢ € Z[r], k a positive integer, and 7 a m-adic integer with strictly periodic m-adic expansion.
Since the m-adic expansion of v is periodic, we can write v = u/(7? — 1) for some u € Z[r]. Thus

(w — (@™ + 1) (772 = 1) = 7*u. (17.5)

:c+7rk7

In particular, 7% divides the left hand side of equation (17.5). It follows that 7 divides w — c(77/2 +
1), since 77/2 — 1 is congruent to —1 modulo 7. Note that this requires a careful argument since
Z[r] may not be a unique factorization domain. By induction, 7% divides w — ¢(77/2 4+ 1). Thus
we can write w — (/2 4+ 1) = 7*z for some z € Z[n]. Therefore

B z
= nl/2 41
and we may assume that b is strictly periodic.
Let
so (T2 +1) = 7?/2 11 =27/2 4-1. Then
w B wit
rf/2+1 27241

. Vo U1 o Vd—1 d—1

B EE e
for some integers vy, vq, ...,v4_1. Since b is strictly periodic, we have

—2"? +1)<wv; <0

for all j.

We claim that if any of the v; is zero, then they all are, and that if any of the v; is —(2772 1-1),
then they all are. For any 7 we have

Uj - i
211 = Zbdi+j2 :
i=0

Fix a particular 5. Since T and d are relatively prime, we can choose n, m € Z so that nT'+j = md,
and we can assume that n and m are nonnegative. Then by the fact that b is periodic with period
dividing T, for every i

baivj = bditnT+j
= bd(i+m)-
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It follows that

Uj - i

oT/2 4 1 - Zbd(i+m)2
i=0

= 27 b2

_ —dm Vo .
()

where c is an ordinary integer between 0 and 2™ — 1. That is, 2%™v; = vy — (27/2 4 1)c. It follows
that if 27/2 + 1 divides one of v; and vy, then it divides the other. If vy = 0 and v; = —(27/2 4 1),
then ¢ = 2% which is impossible. If vy = —(27/2 + 1) and v; = 0, then ¢ = —1, which is also
impossible. The claim follows.

Now, by hypothesis the v; are not all zero and are not all —(27/2 +-1). Hence by the above
claim, none is zero and none is —(27/2 + 1). In particular there is an exponential representation
for vo/(27/2 + 1), bg; = (=162~ (mod 27/2 + 1)) (mod 2). Since d is odd,

biivr2 = bau+t)2)
= (=127 T2 (mod 27/? +1)) (mod 2)
= (1927 (mod 272 + 1)) (mod 2)
- 1 - bdi'
Now let m be arbitrary and pick ¢ and k£ so m = id + kT and ¢ > 0. Then

bnsr/2 = bigerreT)2
= bid+1)2
= 1—bia
= 1 —=bmir
— 1—by,

which proves the lemma. O

Theorem 17.3.2 is an immediate consequence of the following computation.

Theorem 17.3.6. Let the hypotheses be as in Theorem 17.53.2. Let d and d' be relatively prime to
d(Q) with 1 < d,d < ¢(Q). Let b and c be d and d'-fold decimations of a, respectively. Then the
d-arithmetic cross-correlation of b and c with shift T is

2 ={ 59 S

0 otherwise
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Proof. Let T = #(Q). Let b and c have associated m-adic numbers b = u/(77/? 4 1) and ¢ =
v/ (777 + 1), respectively, with u,v € R. These elements have this form by Lemma 17.3.5. The
shift of ¢ by 7 corresponds to a m-adic integer 77 "¢ + e for some e € Z[r]. The d-arithmetic
cross-correlation of b and ¢ with shift 7 is the number of zeros minus the number of ones in one
length T period of

u— 71l — e(n?/? + 1)

(. T—T —
b—(m" Tc+e) ]

def w
nl/2 41
“or

If c is a shift of b with shift 7, then w = 0 and the result follows.

Suppose c is not a shift of b with shift 7. Let f be the sequence associated to f. It suffices to
show that any period of f is balanced. The element w is nonzero and by Lemma 5.5.6 the coefficient
sequence of w/(77/2+1) € Z, has eventual period dividing 7. The theorem then follows from the
second part of Lemma 17.3.5. n

Remark. It is not in general true that the coefficient sequence of a m-adic integer of the form
w/(77/2 + 1) has eventual period dividing 7. For example, if we take w = —77/2 — 1, then the
period is d. However, the m-adic integer w/(7?/2 + 1) that arises in the preceding proof is the
difference of two m-adic integers whose coefficient sequences have period dividing 7T'.

17.4 Exercises

1. Prove the second statement in Lemma 17.2.4.

2. Find the distribution of 2-tuples and 3-tuples in the sequences studied in exercises 9.7.1 and
9.7.2. Is this consistent with what you would expect?

3. Let R = Z[r] with 72 = 2 and S = {0,1}. Let ¢ = 5+ 27. Show that any nonzero periodic
sequence with minimal connection element ¢ is an ¢-sequence of period 16. Describe the distribution
of 4-tuples in such a sequence.

4. Let R = Z[r] with 72 = 3. Find a connection element for a 3-ary 2-f-sequence with period 22 in
this setting. Note that 3 is not primitive modulo 23 in Z, so there is no period 22 3-ary ordinary
(-sequence.
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Chapter 18 Register Synthesis and LFSR Synthesis

18.1 Sequence generators and the register synthesis problem

If F is any class of sequence generators, then, loosely speaking, the register synthesis problem for
F is the problem of finding the smallest generator in F that outputs a sequence a given only
a prefix of a. In order to analyze the complexity of synthesis algorithms it is necessary to have
precise understandings of the concepts of a class of generators and the size of a generator and of
what it means for a register synthesis algorithm to be successful.

Recall from Section 5.1.c that a sequence generator F' = (U, %, f, g) is a discrete state machine
with output, consisting of a set U of states, an alphabet ¥ of output values, a state change function
f U — U and an output function g : U — 3. For a given initial state ug € U, such a sequence
generator determines an infinite sequence F'(ug) = (ag, a1, - - +) of elements of X, defined recursively
by a, = g(u,) and u,41 = f(uy,) for n = 0,1,---. If the set of states U is finite then the output
sequence is eventually periodic.

Let us say that a class F of sequence generators is a set of generators that share a common
alphabet Y. We usually ask that the class F have a notion of the size of each generator F' € F, a
real number which reflects the number of symbols used to represent a state of F'. If a is a (finite
or infinite) sequence over an alphabet ¥ and if F is a class of sequence generators with alphabet
> then the F-span of a is

M (a) = inf size(F)

reF

where the infimum is taken over all sequence generators F' that output the sequence a.

Definition 18.1.1. A register synthesis algorithm for a class F of sequence generators with output
alphabet 3 is an algorithm A which, given a finite string b with symbols in 3, outputs a sequence
generator F' € F and a state sy of F' such that b is a prefiz of F(s).

The Berlekamp-Massey algorithm is a register synthesis algorithm for the class of linear feed-
back shift registers (LFSRs). For this class, the size function is simply the number of cells in the
shift register. Several register synthesis algorithms are also known for the class of FCSRs. These
ar described in the next few chapters.
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18.2 LFSRs and the Berlekamp-Massey algorithm

18.2.a Linear span

In this section we consider sequences and shift registers over a field F'. Let a = (ag,aq,---) be a
sequence (with a; € F') and suppose that it can be generated by a LESR. The linear span or linear
complexity, A(a), is the number of cells in the shortest LFSR that generates a. (So A(a) = A\”(a)
is the F-span of a where F is the class of linear feedback shift registers over the field F.) If no
LFSR can generate a (i.e., if a is not eventually periodic), then A(a) = occ.

Proposition 18.2.1. Let a be a sequence with m = A(a) < co. Then the LFSR of length m that

generates a is uniquely determined by any string of 2m consecutive symbols ay, agi1, -, Agpsom—1-
Proof. For convenience we may take £ = 0. We search for feedback coefficients qi,qs, -+, ¢m SO
that
Am = (10m—1 + G20m—2 + ** + @mao
Um+1 = Q1Q;m  +Q0p-1+ -+ gy
Umt2 = (10mi1 + G2, + 0+ a2

and so on. This is an infinite collection of linear equations in m unknowns, so we will need at least

m of these in order to determine ¢i,qs, - -, ¢n. Therefore we will need to use the 2m coefficients
ag, a1, -+, asm_1- These m equations will have a unique solution if and only if the determinant of
the coefficient matrix

Am—1 Am—2 st Qo

A, Qm—1 AT

a2m—-1 A2m-2 " am-1
is nonzero, or equivalently, if the rows Ry, Rs, - - -, R, of this matrix are linearly independent. But

suppose a relation of linear dependence exists, say ¢iRy + coRo + - -+ + ¢u R,y = 0. If ¢, # 0 we
may solve for R,, as a linear combination of the other rows, R,, = ¢{Ry_1+ ¢ Rm 2+ +q,, 1 R1
whence

Amp—1 = qiamfz + qéamfs +oeee q;nflao
Ay = qiam_l + q;am—Q 4+ 4 C];n_1a1
U1 = @y 4 G 1+ -+ 4, 109

(and so on). This is a linear recurrence of length m — 1 for the sequence a, contradicting the
minimality of m. If ¢,, = 0 then the same argument applies to the last nonzero coefficient ¢,
giving a linear recurrence of length £ — 1 < m for the sequence a. [
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18.2.b The Berlekamp-Massey algorithm

In this section we study the register synthesis problem for linear feedback shift registers over a
field F'. Given a sequence a = (ag, aq,---) with (finite) linear span m, the algorithm determines
the list of coefficients ¢, - - -, g, for the smallest linear feedback shift register that generates a (or,
equivalently, the smallest linear recurrence satisfied by a.) It does so using only 2m terms in the
sequence which (according to Proposition 18.2.1) is optimal.

The algorithm was first discovered in 1968 by Berlekamp [0] as a decoding algorithm for BCH
codes. Massey [133] then reformulated Berlekamp’s algorithm as a tool for cryptanalyzing stream
ciphers. It was later discovered ([147], [191], [26], [35]) that this algorithm essentially computes the
continued fraction (see Section 5.7.b) expansion of the power series associated to a. The algorithm
runs in quadratic time in the length of its input because it is adaptive: when a new symbol of the
sequence a is discovered, the algorithm updates the current guess (for the smallest LESR) at low
cost, rather than starting over from the beginning. Such a strategy is a great advantage from the
cryptanalytic point of view, and it is a common one for register synthesis algorithms, see Section
19.3 and Chapter 20.

The Berlekamp-Massey algorithm can most easily be described in terms of the power series
model (see Section 6.4) for LFSR sequences. Let a(z) = Y ;o a;z" be the generating func