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Abstract

Automating tools for geo-locating and geo-orienting
static cameras is a key step in creating a useful global imag-
ing network from cameras attached to the Internet. We
present algorithms for partial camera calibration that rely
on access to accurately time-stamped images captured over
time from cameras that do not move. To support these algo-
rithms we also offer a method of camera viewpoint change
detection, or “tamper detection”, which determines if a
camera has moved in the challenging case when images are
only captured every half hour. These algorithms are tested
on a subset of the AMOS (Archive of Many Outdoor Scenes)
database, and we present preliminary results that highlight
the promise of these approaches.

1. Introduction

There is a large and growing global imaging network that
comprises tens of thousands of cameras connected to the In-
ternet. Some of these cameras are part of large, coherent
sensor networks [1, 2], while a broader and more diverse
set can be discovered by searching the Internet [3]. To inte-
grate these cameras into a useful imaging system, one basic
requirement is to determine the location and calibration of
these cameras. Since there are many cameras, and since
cameras may be replaced, moved, changed and re-purposed
at the whim of whomever owns the camera, it is important
that this process is automatic.

A recent study has found that there are important simi-
larities in images taken by nearly all static outdoor cameras.
In particular, the PCA decomposition of images from each
camera creates image components (which are scene depen-
dent), and coefficients (whose daily pattern of variation are
nearly independent of the scene) [9]. In this work we pro-
pose to use these regularities to support partial camera cal-
ibration. Additionally, since these statistics rely on the fact
that the camera does not move, we also present a novel, ro-

Figure 1. We show how to geo-locate and geo-orient a static cam-
era using natural cues from the diurnal cycle.

bust, and efficient mechanism for the rather prosaic task of
determining whether a camera has moved (as opposed to be-
coming partially occluded by a spider, seeing an unusually
bright sunset, etc.). This problem is challenging when there
is a need for high accuracy and when there is a long gap
(tens of minutes) between consecutive images, as is often
then case in remote sensing image capture.

The camera calibration approach is based on three steps.
First, we find a sequence of images where the camera has
not moved. Second, we implement a recently reported al-
gorithm to compute a “canonical day” decomposition (sim-
ilar to a PCA decomposition, but consistent across multiple
cameras). This decomposition supports automatic camera
geo-location, as well as robust and automatic sky segmen-
tation. Third, we use a graphics tool which creates a full
hemispherical sky intensity map for a given geo-location
and time of day. An efficient optimization process searches
to find the orientation of the camera relative to this hemi-
sphere which maximizes the correlation between the sky
pixels in the image and the predicted sky intensity.

This preliminary work has several limitations. First, we



optimize only over the camera orientation and the field of
view, rather than the complete calibration matrix. Thus, our
algorithm is more “camera orientation” rather than camera
calibration. Second, we use the recently published AMOS
dataset [9] which includes camera location information for
some cameras, but camera calibration and camera orienta-
tion for none. Thus, we provide qualitative results for just
a few cameras for which the scene provided cues that allow
us to estimate the true camera orientation by hand.

2. Related Work
Camera calibration has a long history in the Computer

Vision literature. Finding the extrinsic calibration (the po-
sitions and orientations) of cameras in a network has been
extensively studied in the case where there are feature corre-
spondences between multiple cameras [11, 4]. Larger scale
camera localization is less well studied, but has been ad-
dressed by matching features in the image to features com-
puted from a digital elevation map [18, 7, 17].

In distributed camera networks, distributed calibration
algorithms have been proposed and implemented [8, 12],
and different types of correspondence cues such as object
tracks [13], and timing correlations of when objects enter
and exit the camera views [19]. These allow inference of
camera locations when the camera fields of view do not
overlap, but require that the cameras are nearby and see the
same objects.

Aside from work to be discussed later [10], previous
work on global camera geo-location using natural scene
variations is based on explicit measurements of the sun po-
sition [6], which was followed by work in computing abso-
lute camera orientation [20]. These techniques require the
sun to be in the field of view and accurate camera calibra-
tion to determine the angle of the sun.

3. Consistent Natural Variations for Sky Seg-
mentation

The consistent causes of image variations in static out-
door cameras are the diurnal cycle and the weather. Re-
cently, it was found that even if cameras view different
scenes, there are consistent patterns to how these images
vary over time. In particular, the PCA decomposition of
images from each camera creates image components (which
are scene dependent), and coefficients (whose daily pattern
of variation are nearly independent of the scene) [9]. Creat-
ing methods that use these coefficients to annotate cameras
and scenes eliminates any camera- specific feature specifi-
cation.

The data from each camera can be summarized as a data
matrix I ∈ Rp×T where each column is an image of p pix-
els of the same scene at time t. Singular Value Decom-
position decomposes this matrix as I = UΣV T, where the
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Figure 2. The first three canonical component coefficients learned
from the AMOS dataset.

columns ofU are the principal components and the columns
of V (we use the first three columns for all experiments) are
the time-series of principal component coefficients. A large
scale statistical study of 538 natural outdoor scenes [9] finds
that the matrix of components U and singular value matrix
Σ are scene dependent but the matrix of coefficients V is
much less so. Figure 2 shows examples of coefficient tra-
jectories (i.e, the leading columns of V ) for a single day for
several different cameras.

This previous work determined a diurnal “canonical co-
efficient basis” V ′ which is consistent across all outdoor
cameras and remains nearly optimal at encoding scene vari-
ations. Here we use this natural diurnal basis to construct
the corresponding diurnal components for each image data
set. In particular, we decompose the images for each cam-
era k as Ik = UkΣkV ′

T. By forcing each camera to use the
same coefficients over the day, the components are read-
ily comparable. This allows the use of a simple threshold
(and the same threshold for all cameras) to classify pixels as
sky when its value in this first diurnal component is much
stronger than its value in subsequent components. While
segmenting sky is not a particularly challenging task, it is
important that it is robust and automatic. For the purpose of
detecting camera orientation, it is only necessary that the set
of pixels labeled sky are correct — if some pixels are sky
but are labeled otherwise this results only in a slight loss of
data. In any case, our initial result are encouraging; Fig-
ure 3 shows our pixel classification on four representative
cameras.



Figure 3. Automatic segmentation of the sky based on canonical
components.

4. Camera Motion Detection (Tamper Detec-
tion)

Detecting a change of camera viewpoint is a critical pre-
processing step to our geo-localization and geo-orientation
algorithms. They both require images from the same view-
point. In our problem domain, very low-frame rate image
sequences, existing methods of detecting camera tamper-
ing [16] are insufficient. The key challenge in detecting
camera viewpoint change for very low-frame rate video is
that a useful algorithm must be invariant to many factors,
such as weather, lighting, and activity in the scene.

Mutual information provides an efficient metric for the
difference between image frames that is, at least, par-
tially invariant to these factors. However, changes between
frames, especially around dawn and dusk, may be too dras-
tic to have high mutual information between consecutive
frames due to the extremely low frame rate (1 frame per 30
minutes) of the data. To minimize the effect of such lighting
changes, we do not directly compare consecutive images;
instead, we compare each image with an image captured at
the same time on the previous day.

The mutual information between pairs of images cap-
tured at the same time on consecutive days is highly de-
pendent on the time of day the images were captured. For
example, images captured during the night are often domi-
nated by noise and therefore have low mutual information.
To reduce the number of false positives we normalize the
current mutual information by the expected mutual infor-
mation learned from previous days. We normalize by treat-
ing the mutual information as a Gaussian random variable
conditioned on the time of day and computing the z-score

Figure 4. The normalized mutual information score from each im-
age to an image from the same time the previous day, for 10000
images taken over approximately 200 days. For image indices
whose score falls below the -1 threshold SIFT and RANSAC are
used to compute a homography with the previous frame. When
this motion is small, the index is marked with a circle and consid-
ered not to have moved, when the homography corresponds to a
non-trivial motion, the index is marked with a diamond and corre-
sponds to a viewpoint shift.

zt of the mutual information of the new image pair. We es-
timate the distribution parameters using the most recent 10
days of images.

We compute a moving average z̄t of the z-scores for an
entire day to further reduce the chance that a spurious low
z-score will result in a possible camera shift. We note that
if a viewpoint shift occurs the z-scores will be low for a
full day following the change. The smoothing process will
not hide true viewpoint shifts. We consider a smoothed z-
score z̄t below -1 (i.e., low mutual information) to reflect
a candidate viewpoint shift. After non-minima suppression
the remaining candidate image pairs are passed to a more
computationally expensive image alignment process to de-
termine if they are true viewpoint shifts.

We compute SIFT features on each candidate image and
the immediately preceding frame. We then use RANSAC to
compute the homography between the image pair. If the dif-
ference between the homography and the identity transform
is small (i.e., it corresponds to a maximum pixel motion of
less than 2 pixels) then we do not consider this candidate
pair a true viewpoint shift, otherwise we do. Note that if
the image change is dramatic, such as having no overlap
between the two images, the chance of the best RANSAC
result being similar to the identity matrix is negligible.

Viewpoint shift detection results generated using this
procedure are presented in Figure 4. Tests were performed
on a set of 10000 images from 200 days from AMOS cam-
era 4. This set of images contains significant non-motion-
related image changes (e.g., snow and stray reflected light).
Examples of successes and failures are shown in Figure 5.



Figure 5. (top) Example pair of subsequent images where the al-
gorithm correctly detected a viewpoint shift. (middle) Example
pair of images where the normalized mutual information score
was low, but the SIFT feature matching indicated that there was
no camera motion. (bottom) this pair of images is representative
of the failures of this algorithm observed in these 10000 frames.
These were incorrectly marked as a viewpoint shift, in part because
the reflection off the window through which the camera views the
scene.

This algorithm is intended to detect viewpoint changes in
cameras that are mostly static. A limitation of the algorithm
presented is that if more than one viewpoint change takes
place during a single day, then it will most likely only detect
one of the changes. We feel that this is not a significant
hindrance because any camera that moves that often is not
sufficiently passive to work with our geo-localization and
geo-orientation algorithms.

5. Camera Localization

Our method for camera orientation requires an estimate
of the geo-location of the camera. We implement a re-
cently reported method for camera localization [10]. This
algorithm creates a synthetic daylight map over the entire
earth, where intensities correspond to the amount of sun-
light (see Figure 6 for an example). These images are gen-
erated by thresholding the solar zenith angle z for a given
time and location. Pixels intensities are as follows: black
if z > 100, white if z < 90, and varying linearly between
the thresholds. These synthetic daylight maps are created
for the times when each image is captured. The correla-
tion between the synthetic images and the first canonical
coefficient trajectory is computed. Examples of correlation
maps generated using this method are shown in Figure 6. A

(a)

Figure 6. A single synthetic day-night satellite image (top), and the
correlation of the first canonical PCA coefficient with pixels from
a sequence of such images. The region with the highest correlation
corresponds to the location of the camera (white dot).

related method which uses satellite imagery instead of the
synthetic daylight imagery was reported to give better ac-
curacy [10], but we found fewer large errors in correlations
with synthetic daylight images.

6. Camera Orientation
Given the location of the camera and time-stamped im-

ages from the camera it is possible to geo-orient the camera.
We determine the azimuth angle (degrees eastward from the
north) by comparing the sky pixels (see Section 3) of many
images from the camera with predictions of sky luminance
based on an analytical model.

We choose the simple analytical model of sky lumi-
nance [14]) that has been adopted as an International Com-
mission on Illumination (CIE) standard [5]. The model pre-
dicts the luminance Lv of a sky position on a clear day:

Lv = Lz
(0.91 + 10e−3γ + 0.45 cos2 γ)G(θ)

(0.91 + 10e−3θs + 0.45 cos2 θs)G(0)
(1)

where G(θ) = 1− e−0.32/cosθ. The parameters specify the
angular positions of the sun and sky relative to the camera
and are illustrated in Figure 7. The sun position is specified
by the azimuth θs (degrees eastward from north) and zenith
angles φs (angle from vertical). The sky direction is spec-
ified by the zenith angle θ and the angular distance γ from
the sun direction.

Given a time-stamped image, we generate a synthetic sky
luminance map for comparison. The synthetic sky lumi-
nance map, an array where every element corresponds to
the luminance Lv of a sky direction, is generated as fol-
lows. We first compute the direction of the sun [15] using
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(b) Synthetic Luminance Map

Figure 7. (a) An illustration of the parameters of the analytical sky
luminance model described in Section 6 (Figure from [14]). (b) An
example synthetic sky luminance map generated by the analytical
model.

the camera location and an image time stamp. Next, given
the sun direction, we generate a sky luminance map (az-
imuth range [0, 360), sampled every 0.3 degrees, and zenith
range [60, 90], sampled every 0.3 degrees) using Equation
1.

For each hypothesized focal length, we re-sample the im-
age to a size so that each pixel corresponds to a subtended
angle of 0.3 degrees (the same as the generated the sky lu-
minance image). We then create a correlation map using
normalized cross-correlation (NCC), to score every possi-
ble potential location of the image on the sky map. This
gives a score between -1 and 1 of how similar the sky pixels
from the image are with a given sky position. This score
needs to be computed and averaged for images at several
different times of day. We use the azimuth angle of the sky
luminance map element with the maximum NCC score (av-
eraged over many images) as the estimate of the camera
orientation.

To evaluate this method we estimated the orientation of
a small set of cameras (from the AMOS data set, cameras 4,
330, 652. An image from Camera 4 is shown in this paper
in Fig 5, images from camera 652 are shown Figure 1). The
results are within 5 degrees in azimuth angles from hand-
crafted estimates based on explicit reasoning about the sun
position and matching image features to satellite imagery.

Although automatic techniques for determining if im-
ages from static cameras have clear skies exist [9], we man-
ually chose a single day with mostly clear skies. For each

Figure 8. These images show the scores obtained by our camera
orientation estimation procedure. The color reflects how likely the
camera is pointing in a given direction (white means more likely).
The top two images are for the same eastward facing camera. The
top was estimated using images with the sun in the field-of-view
and the bottom without those images. The second from the bottom
is a southward facing camera that never directly views the sun. The
bottom image sees a large portion of the sky and directly views the
sun.

camera approximately 30 images are compared to a corre-
sponding synthetic sky map. Figure 8 shows the average
NCC scores computed over all azimuth and zenith values.
Because the sun provides such a strong cue (whether or not
its explicit position is calculated), we compare results for
camera 4 (top), and camera 4 limited to images that don’t
show the sun (Figure 8, second from the top).

To simplify and make efficient our optimization, we
make several assumptions about the camera calibration.
First, we assume that the camera has square pixels, no ra-
dial distortion, and the principle point occurs in the middle
of the image. Furthermore, we recognize that mapping the
image (as a rectangle) onto the sky-luminance image (cal-
culated in azimuth zenith coordinates) is geometrically in-
correct, Since most images have only a slow gradient across
the image, we believe the speed benefits of computing the
NCC score with a convolution outweighed the loss in accu-
racy, although this is a subject of further investigation.

In addition to geometric calibration the radiometric cali-
bration is also important. The cameras we use are not under
our control, therefore we do not have access to the radio-
metric calibration. The use of NCC to compute similarity
between sky pixels and orientations provides some robust-
ness to automatic exposure correction. Full knowledge of



the radiometric calibration would improve the accuracy of
our results.

7. Discussion

This paper presents preliminary results for an algorithm
that computes the orientation of an outdoor camera based
solely on image data. This includes an algorithm for cam-
era tamper detection (detecting changes in image orienta-
tion), which is a necessary precursor to algorithms that ex-
ploit regularities in scene appearance over long time peri-
ods. When cameras are static, the proposed algorithm in
this paper and recent previous work suggest it is possible
to robustly geo-locate a camera to within 50 miles and geo-
orient a camera to within about 5 degrees.

Within the domain of geo-orienting a camera, existing
data sets do not yet support quantitative evaluation of these
algorithms. Further research should also be directed to the
stronger geometric constraints available from image gradi-
ents (rather the whole image cross-correlation). These may
provide enough data to support effective estimation of the
focal length, and may be naturally combined to simultane-
ously solve for geo-location and geo-orientation.
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