
A Model for Intransitive Preferences

Sam Saarinen
University of Kentucky

Lexington, KY
samuel.saarinen@uky.edu

Craig Tovey
Georgia Tech
Atlanta, GA

ctovey@isye.gatech.edu

Judy Goldsmith
University of Kentucky

Lexington, KY
goldsmit@cs.uky.edu

Abstract

It is known that humans form non-transitive preferences. We
propose to model human preferences as a complete weighted
directed graph where nodes are objects of preference, and an
edge leading from one node to another has weight equal to
the probability that the destination node will be preferred (or
chosen) from the pair connected by the edge. We also propose
that the most preferred object(s) might be modeled as the one
that wins in a round-robin tournament played amongst the
nodes. We discuss computations using this model and intro-
duce a polynomial-time algorithm to bound the probability
of selecting an object from a pool of objects with symmetric
preferences.

Introduction
We consider a probabilistic model of round-robin tourna-
ments, or equivalently, Copeland voting, where the set of
candidates equals the set of voters. We assume that the win
probabilities for each game or pairwise vote are independent
of all other win probabilities for other games. In particular,
we do not assume that votes arise from voters’ ranked order-
ings of candidates. We can treat such “games” as pairwise
preferences, without assuming any form of transitivity.

Nontransitive Preferences
In 1969, Tversky pointed out that economic theories that
depended on a notion of cardinal utility to define choices
among alternatives assumed (and were equivalent to the as-
sumption, when the set of alternatives was finite) that pref-
erences were transitive (Tversky 1969). He presented argu-
ments for the reasonableness of intransitive preferences, and
more importantly, provided empirical evidence that Harvard
undergraduates held intransitive preferences over gambles.
He also discussed a stochastic model of preferences, where
a is said to be preferred to b if the probability over time that
a is preferred to b is > 1/2. He attributed the intransitive
preferences to multi-criteria reasoning, where the evaluated
criteria might vary from comparison to comparison.

Regenwetter and Dana offer another explanation of appar-
ently intransitive preferences: that people may hold several
rational preference orders, and choose among those orders

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Regenwetter, Dana, and Davis-Stober 2011). The choice of
order may depend on factors outside the model — when it’s
rainy, I prefer soup, when it’s sunny, I prefer salad. They re-
fer to “latent mental states” to describe internal factors. They
found that the data collected from the subjects of Tversky’s
study and approximately 20 others were consistent with their
preferences being a mixture (i.e., a probabilistic distribution)
over linear preferences.

Probabilistic Tournaments
A round-robin tournament is one in which each team plays
each other team. The winner is any team who wins the max-
imum number of games. This corresponds to a Copeland
election in which the voters are exactly the candidates. Note
that there may be a unique winner, or there may be a set of
co-winners, teams who win the same maximum number of
games.

Consider the setting in which the teams are known, and
their pairwise probabilities of winning are also known.
The problem of computing the probability of a given team
winning the tournament was introduced by Mattei, et al.
(Mattei, Goldsmith, and Klapper 2012), in the context of
studying the complexity of computing winners and opti-
mal bribery schemes for probabilistic models of elections
(Binkele-Raible et al. 2013). They observed that the brute-
force calculation of the probability of a team (say, University
of Kentucky) winning a round-robin tournament involved
evaluating the probabilities of every possible “scenario” of
wins and losses, and adding up the probabilities of the sce-
narios in which the University of Kentucky wins at least as
many games as any other team. This brute-force algorithm
puts the calculation in the complexity class #P.1 However, it
is not clear that this problem is complete for #P, nor has it
been proven hard for NP.

Consider a tournament in which A beats B and C but
loses to D; B beats C and D, and C beats D. Then A and

1We can think of the class NP as languages corresponding to
nondeterministic polynomial time Turing machines; for a given NP
TM N , the languageL(N) is the set of strings nondeterministically
accepted by N . The corresponding #P function counts the number
of nondeterministic computations of N(x). It is known that #SAT
is ≤P

m-complete for #P, and for every L in the polynomial hierar-
chy, L ≤P

T #SAT .

B are co-winners of the tournament. In actual sports tour-
naments, there would be a play-off; in other settings, there
may be another mechanism for determining a unique winner
in such cases. For the purposes of this paper, we do not insist
on unique winners.

Hazon, et al. (2008; 2012) considered a somewhat differ-
ent probabilistic model of elections, closer to Regenwetter
and Dana’s model, in which voters have probability distri-
butions over linear orderings of the candidates. In this set-
ting, they were able to show that it is #P-complete to cal-
culate the winner of a Copeland election. Crucially, another
difference is that they did not restrict their attention to tour-
naments; the number of voters could be different from the
number of teams/candidates. Thus, neither their result nor
their proof has been useful for determining the complex-
ity of our problem (evaluating the probability that a given
team wins a round-robin tournament). However, like us, they
considered Monte Carlo approximations of winner probabil-
ities.

Michel Regenwetter has pointed out that we can view our
model of probabilistic round robin tournaments as probabil-
ity distributions over deterministic round robin tournaments,
a.k.a., complete nontransitive preferences. Because we as-
sume each game or match-up is independent of all others
in the tournament, there is a one-one correspondence be-
tween determinizations of the edges and possible tourna-
ment graphs; the product of the probabilities associated with
each deterministic edge is the probability of that determin-
istic tournament graph, given the probabilistic tournament
graph that defines the probability distribution.

A New Model of Preferences
We model deterministic pairwise preferences as graphs, as
follows. The objects in question are the nodes of the graph,
and directed edges indicate the preference: the edge points
to the more preferred object. We model probabilistic pref-
erences as probability-weighted graphs, where a weight on
a directed edge indicates the probability that the preference
is aligned with that edge. Between each pair of connected
nodes, there will be two edges, with the condition that the
sum of the weights of these edges is 1, and each weight is
nonnegative.

We assume all pair-wise match-ups have known probabil-
ities (through either learning or elicitation). This will make
our graph a complete directed graph. In this model of pref-
erences, the most-preferred object corresponds to the most
likely victor(s) of a round-robin tournament. Note that when
n, the number of objects, is 2, this reduces to the known-
probability case.

Computing Tournament Probabilities
Given the model introduced in the previous section, we be-
come interested in a means of evaluating the probability of
a given team winning a round-robin tournament.

Enumerative Solution
For small values of n, the likelihood that any given team is
the winner of a round-robin tournament can be computed by
enumeration.

Without loss of generality, index the teams from 1 to n.
Initialize the probability that each team wins to 0. Iter-
ate through all possible round-robin tournament outcomes.
Compute each outcome’s probability as the product of the
probabilities of each game’s outcome, since games are in-
dependent. Add the outcome’s probability to the probability
for each team that wins in that tournament outcome.

Even with constant-time multiplication at the requisite
precision, a naive implementation of enumeration would
take θ(n22(n

2)) arithmetic operations, because each of the
2(n

2) possible tournament outcomes has a probability equal
to the product of

(
n
2

)
= θ(n2) terms.

It is possible to reduce the naive time bound by enumer-
ating the possible tournament outcomes with a Gray code,
which is a sequence such that each outcome in the sequence
differs from the next by reversing the outcome of one game.
If a game outcome is reversed from i beats j to j beats i, then
the probability of the next tournament outcome differs from
that of the present outcome by a factor of pj,i

pi,j
(provided that

each of pi,j and pj,i are nonzero), where pi,j is defined as
the probability that i is preferred over j. Thus, except for the
first ones, each probability and each Copeland score calcula-
tion takes only O(1) arithmetic operations. However, updat-
ing team probabilities can still take Ω(n), giving an order n
reduction in computation time. However, this does nothing
to reduce the number of cases which must be enumerated.

The enumerative algorithm has the advantage of being ex-
act (given sufficient numerical precision). Unfortunately, it
is impractical for even very small tournament sizes (such as
10 teams).

Monte Carlo Evaluation
Another approach to evaluating the probability that a given
team wins a round-robin tournament with probabilistic
games is to randomly sample tournament events. For a fixed
number of samples, or until some end condition is met, each
game is randomly assigned a victor according to the proba-
bility that either team wins. The winners of the tournament
event are noted, and each winner is credited with one ‘sam-
ple’. After sampling has finished, the probability that each
team wins the entire tournament is given by the ‘samples’
they won divided by the total number of sampled events.

This approach has the advantage of having controlled
costs in terms of time, and statistically converging to the
actual probabilities in the limit. However, it is also non-
deterministic. In many high-stakes situations, it may be
preferable to have an exact range, rather than to have a prob-
ability whose accuracy varies with the whim of a pseudo-
random generator.

Further, there are cases when such a sampling approach
will (for practical sample sizes) give an inaccurate expecta-
tion for tournament outcomes. For example, consider a tour-
nament composed of 1 team with a very high probability of
winning each of its games, and a large number of other teams
with symmetric probabilities of beating each other (each has
1
2 probability of beating the other in a match-up). In such
a situation, there may be a non-negligible probability that
some team other than the first team wins the entire tourna-

ment, and yet the probability of any one of the other teams
winning is very small. In such a situation we could expect
a Monte Carlo evaluation to return values which correctly
predict that the first team may not win, but that do not reflect
the fact that all of the remaining teams have equal probabil-
ity among themselves (by symmetry) of winning the tourna-
ment.

Recursive Evaluation
The methods presented so far have been bottom-up, deal-
ing with cases and then finding outcomes. Is it possible to
approach this problem with a top-down method? That is,
what if we consider outcomes, and then explore the relevant
cases?

Let us make several observations. First, any proper subset
S of the n teams may be thought of as playing a round-
robin sub-tournament amongst themselves, after which the
rest of the games in the full tournament are played. Second,
if |S| = n − 1, then the single team not in S, say t∗, has
exactly 1 game with each of the elements in S, and no game
with itself. Third, if t∗ wins more games than the winner(s)
of the sub-tournament, or wins as many games including all
those against sub-tournament winners, then t∗ is a winner of
the entire tournament.

Denote the teams by the integers 1, . . . , n.
For t∗ 6∈ S ⊂ {1, . . . , n}, let W (t∗, S) be the probability

that t∗ wins a round-robin tournament consisting of teams
t∗
⋃
S.

Then W (t∗, S) =
∑|S|

g=d(|S|)/2e V (t∗, S, g) where
V (t∗, S, g) is the probability that team t∗ wins in a tourna-
ment of teams t∗

⋃
S and wins exactly g games. Let B ⊆ S

and L = S \ B partition S. Define P (t∗, B, L) to be the
probability that team t∗ 6∈ S beats all of the teams in B and
loses to all the teams in L. Then

P (t∗, B, L) =

|B|∏
k=1

(pt∗,bk) ·
|L|∏
k=1

(plk,t∗).

Let U(T, S∗, g∗) be the probability that the teams in set T
are (all of the) co-winners of a tournament of teams T

⋃
S∗

(T∩S∗ = ∅) with each team in T winning exactly g∗ games.
Observe that

V (t∗, S, g) =
∑

B⊆S,|B|=g

P (t∗, B, S \B)

·

 g−1∑
g2=d(|S|−1)/2e

∑
T⊆S

U(T, S \ T, g2)

+
∑
T⊆B

U(T, S \ T, g)


.

Note that we deal separately with the cases when the winner
of the sub-tournament had the same number of games as t∗.

In the case that T = {t1}, U(T, S, g) = V (t1, S, g).
While these recursive definitions do not necessarily offer

improvements on the other methods described in this sec-
tion, they will form the basis for a polynomial-time algo-

rithm in the next section which bounds the probability of
tournament victory in the symmetric-probabilities case.

Case When All Probabilities are Equal
A Modified Recursive Algorithm
In the section on the recursive framework, we introduced
a method of recursive computation of the probability of
tournament victory which relied on a concept of sub-
tournaments. In the general case, we provide no argument
that this improves on the time complexity of an enumera-
tive solution, but here we consider the special case that all
the match-ups have symmetric probabilities. This will allow
us to take advantage of problem symmetries to reduce our
computational complexity.

Further, let us change our objective from computing the
exact probability that a given team wins, and let us focus in-
stead on placing upper and lower bounds on this probability.

Our solution will use a dynamic programming approach
to short-cut redundant computations, and this will provide a
means to apply an inductive argument to estimating the time
complexity of this algorithm.

First, we define two tables, TC [|S|, g] and TE [|S|, g]
which take the number of teams in the sub-tournament (the
number of teams other than the one we are considering)
and a number of victories and returns the lower and up-
per bounds on the probability that a given team (call it t∗,
t∗ 6∈ S) wins g games and is a co-winner or an exclusive
winner, respectively, of the entire tournament. For the pur-
pose of the following algorithms, let us say that values in
these tables are initialized to some negative number.

We then define the overall probability of t∗ winning in
a symmetric-probabilities tournament with teams t∗

⋃
S in

terms of its probability of winning such a tournament with g
victories, for each value of g (Algorithm 1).

Algorithm 1 Summing Across g.
Inputs: |S|. Outputs: An upper and lower probability

1: procedure PROBTOWIN

2: for g ∈ {d |S|2 e . . . |S|} do
3: sumUpper ← sumUpper + PC(|S|, g).upper
4: sumLower ← sumLower+PC(|S|, g).lower

5: return sumLower, sumUpper

To reduce the difference between the upper and lower
bounds, we take the intersection of two separately computed
ranges: one expresses the probability of winning; the other
is the complement of the probability of losing. Note that in
our algorithm we compute each probability of victory given
that the winners get g victories, then we scale that by the
probability that the winners do get g victories.

We attempt to reduce the difference between bounds by
eliminating cases of overcounting and undercounting of ties
(which are only estimated by our algorithm). In particular,
we are interested in the winner of a subtournament, but we
don’t know who that may be; however, we may sum across
the probability that each is the winner (nonexclusively and
exclusively) to obtain upper and lower bounds. But these

Algorithm 2 Probability of t∗ Being a Co-Winner.
Inputs: |S|, g. Outputs: An upper and lower probability

1: procedure PC

2: if ¬(d |S|2 e ≤ g ≤ |S|) then
3: return 0, 0
4: else if |S| = g then
5: return 1

2|S|
, 1
2|S|

6: else if TC [|S|, g] ≥ 0 then
7: return TC [|S|, g]
8: else
9: sumUp1← 1− PLosing(|S|, g).lower

10: sumLow1← 1− PLosing(|S|, g).upper
11: sumUp2← PWinning(|S|, g).upper
12: sumLow2← PWinning(|S|, g).lower
13: sumUpper ← min(sumUp1, sumUp2)
14: sumLower ← max(sumLow1, sumLow2)

15: TC [|S|, g]← lower
(|S|g)
2|S|

, upper
(|S|g)
2|S|

16: return lower (|S|g)
2|S|

, upper
(|S|g)
2|S|

Algorithm 3 Probability of t∗ Being the Exclusive Winner.
Inputs: |S|, g. Outputs: An upper and lower probability

1: procedure PE

2: if ¬(d |S|2 e ≤ g ≤ |S|) then
3: return 0, 0
4: else if |S| = g then
5: return 1

2|S|
, 1
2|S|

6: else if TE [|S|, g] ≥ 0 then
7: return TE [|S|, g]
8: else
9: sumUp1← 1− PLosing(|S|, g − 1).lower

10: sumLow1← 1− PLosing(|S|, g − 1).upper
11: sumUp2← PWinning(|S|, g − 1).upper
12: sumLow2← PWinning(|S|, g − 1).lower
13: upper ← min(sumUp1, sumUp2)
14: lower ← max(sumLow1, sumLow2)

15: TE [|S|, g]← lower
(|S|g)
2|S|

, upper
(|S|g)
2|S|

16: return lower (|S|g)
2|S|

, upper
(|S|g)
2|S|

bounds can be improved. We may think of PC(|S|, g) −
PE(|S|, g) as the probability of there being a tie for the given
team. Since all ties must involve at least two teams, and all
teams’ victories are represented, each tie must be counted
at least twice, and we can subtract |S|(PC(|S|,g)−PE(|S|,g))

2
from the upper bound. Likewise, if we only consider the ties
from one team, we know that none of these will be repre-
sented in the cases that each is an exclusive winner, so we
may safely add PC(|S|, g)−PE(|S|, g) to our lower bounds
(Algorithms 4, 5).

Algorithm 4 Totalling the Probabilities that t∗ Loses.
Inputs: |S|, ginput. Outputs: An upper and lower probability

1: procedure PLosing

2: lower, upper ← 0
3: for g ∈ {ginput + 1 . . . |S| − 1} do
4: lower ← lower+PC(|S|−1, g).lower+(|S|−

1)PE(|S| − 1, g).lower

5: over ← |S|PC(|S|−1,g).upper+PE(|S|−1,g).upper
2

6: upper ← upper + over

7: end for
8: lower ← lower + PC(|S| − 1, ginput).lower +

(|S| − 1− ginput)PE(|S| − 1, ginput).lower
9: diff ← PC(|S| − 1, ginput).upper − PE(|S| −

1, ginput).upper

10: fracT ies← 1− |s|−1−ginput

2(|s|−1)
11: ties← diff · fracT ies
12: upper ← upper + (|S| − ginput)(PE(|S| −

1, ginput).upper + ties)
13: return lower,upper

Algorithm 5 Totalling the Probabilities that t∗ Wins.
Inputs: |S|, ginput. Outputs: An upper and lower probability

1: procedure PWinning

2: lower, upper ← 0
3: for g ∈ {0 . . . ginput − 1} do
4: lower ← lower+PC(|S|−1, g).lower+(|S|−

1)PE(|S| − 1, g).lower

5: over ← |S|PC(|S|−1,g).upper+PE(|S|−1,g).upper
2

6: upper ← upper + over

7: end for
8: lower ← lower+ ginputPE(|S|− 1, ginput).lower
9: diff ← PC(|S| − 1, ginput).upper − PE(|S| −

1, ginput).upper

10: fracT ies← 1− ginput−1
2(|s|−1)

11: ties← diff · fracT ies
12: upper ← upper + ginput(PE(|S| −

1, ginput).upper + ties)
13: return lower,upper

Time Complexity and Limitations of the
Equal-Probabilities Algorithm
We may estimate the time complexity of this algorithm by
considering a bottom-up approach to filling our dynamic

Figure 1: Empirical Examination of the Bounds and Ex-
pected Values for Victory in a Symmetric-Probabilities
Tournament. Note the improvement of our lower bound over
the trivial lower bound: 1

n .

programming tables (which we assume has O(1) access
time). For a number of teams in the tournament n, we will
need to consider sub-tournaments with {1, 2, 3, ..., n − 1}
teams. In each of these, we will be interested in cases when
the winner of the sub-tournament has {0, 1, 2, ..., n − 2}
wins. This means that the number of entries in our table
will be O(n2). Further more, filling a new entry in the ta-
ble uses constant-time operations on at most n other table
entries (since we iterate over number of wins for a con-
stant number of teams in the sub-tournament). This makes
the time to fill the tables O(n3). Since computing the total
probability of a team winning the entire tournament requires
a sum across at most n elements in the table, this will be
dominated by the cost of filling the table. This polynomial-
time algorithm makes it computationally feasible to evaluate
symmetric-probabilities tournaments with an order of mag-
nitude larger number of teams than is feasible with the enu-
merative solution.

Note that the upper bound can be shown empirically to
be too weak for accurate prediction of the behavior of large
tournaments (See Figure 1). However, we have no evidence
that these are the strongest bounds obtainable with this time
complexity. An area of future research may be the strength-
ening of these upper and lower bounds. It is possible that us-
ing related measures of the likelihood of the existence of a
unique winner or enumerating the number of possible win-
ners will provide stronger bounds with minimal computa-
tional overhead.

With improved bounds, or used with cases with a small
number of teams, an algorithm such as this one can be cou-
pled with the recursive framework described earlier to ef-
ficiently evaluate or approximate a tournament over a sub-
set of teams in the general case where that subset has the
special property of containing only symmetric probabilities.

This technique could also be applied to deterministic sub-
sets of the tournament (where match-ups have probabilities
1 and 0 respectively). The results from this efficiently com-
puted sub-tournament may then be used in the evaluation of
the remainder of the tournament.

Finally, it may be possible to generalize this technique
of bounding the probability of tournament victory to a
more general case by identifying subsets of the tournament-
outcome space which are expensive to enumerate, but where
probability of each team’s victory across this subset can be
cheaply bounded.

Conclusions
In this paper we have introduced a new model of prefer-
ences, we have described a recursive method of evaluat-
ing a tournament which can take advantage of simpler sub-
structures in a larger tournament, and we have introduced a
polynomial time algorithm to bound the probability of vic-
tory in an symmetric-probabilities round-robin tournament.
The model we introduced suggests that we may be able to
model other probabilistic (potentially non-transitive) domi-
nance relationships using preferences. For example, we may
model dilemmas from game theory or even military combat
using preferences. Thus, being able to reason about nontran-
sitive preferences may have not only benefits for our per-
sonal lives (when gambling on sports tournaments, for ex-
ample), but also a profound societal influence through eco-
nomics, psychology, and perhaps even military strategy.

Acknowledgments
This work is partially supported by the National Science
Foundation, under grant CCF-1215985. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.

We thank Martin Mundhenk for pointing out that the
equal-probabilities case should be at least as easy as the gen-
eral case of computing the probability of a team winning a
round-robin tournament.

References
Binkele-Raible, D.; Erdélyi, G.; Fernau, H.; Goldsmith, J.;
Mattei, N.; and Rothe, J. 2013. The complexity of proba-
bilistic lobbying. Discrete Optimization.
Hazon, N.; Aumann, Y.; Kraus, S.; and Wooldridge, M.
2008. Evaluation of election outcomes under uncertainty.
In Proc. AAMAS.
Hazon, N.; Aumann, Y.; Kraus, S.; and Wooldridge, M.
2012. On the evaluation of election outcomes under uncer-
tainty. Artificial Intelligence 189:1–18.
Mattei, N.; Goldsmith, J.; and Klapper, A. 2012. On the
complexity of bribery and manipulation in tournaments with
uncertain information. In Proc. FLAIRS.
Regenwetter, M.; Dana, J.; and Davis-Stober, C. P.
2011. Transitivity of preferences. Psychological Review
118(1):42.

Tversky, A. 1969. Intransitivity of preferences. Psycholog-
ical review 76(1):31.

