
CS Dept, UK1

2. OpenGL and Shaders

⚫ What is openGL?

⚫ OpenGL, open Graphics Library, is a multi-platform

3D graphics API that incorporates both hardware and

software.

❑ consists of about 150 commands to be used to create interactive 3D

applications.

❑ maintained by the company The Khronos Group (since 2006)

❑ All Windows versions support openGL (run the software GLView to find

out the version of openGL your machine supports)

CS Dept, UK2

Advantages:

⚫ Developed on top of X Windows so it inherits many good

features of X Windows such as
⚫ Device-independence, API to graphics hardware

⚫ Event driven (when the user presses a particular button of the

mouse, say the left button, the event (left button pressed) and

the measure (location of the cursor) are put into a queue)

⚫ High end

– You don’t have to write your code for most of the applications

(OpenGL can do most of them for you

⚫ 3D-oriented

– Developed for 3D applications, 2D is a special case of 3D (in

what sense? e.g., z=0)

CS Dept, UK3

Things OpenGL can do:

⚫ Wireframe models (2D & 3D wireframe drawings)

CS Dept, UK4

Things OpenGL can do:

⚫ Depth-cuing effect

– lines farther from the eye are dimmer; when we do scan conversion of

a line/polygon, the intensity of a point considers the effect of depth

Multiplied by a percentage value

depending on its distance from the viewer

CS Dept, UK5

Things OpenGL can do:

⚫ Anti-aliased lines

– the intensity of a point is proportional to the areas of the pixel

covered by the line polygon)

Not anti-aliased Anti-aliased

Bresenham’s Line

Algorithm

Has less zigzag

effect

CS Dept, UK6

Things OpenGL can do:

⚫ Flat-shaded vs smooth-shaded polygons

Geometrical structures

are the same

Each polygon has

only one intensity

Intensity is

interpolated

CS Dept, UK7

Things OpenGL can do:

⚫ Shadows and textures (2D or 3D)

(conti)

A point is

in shadow

if it is

visible to

the view

point, but

not to the

light

source

For each

visible point,

find out

which value

of the given

texture to use

CS Dept, UK8

Things OpenGL can do:

⚫ Motion-blurred objects

– OpenGL has a special buffer called the accumulation buffer, it is

used to compose a sequence of images needed to blur the

moving object (double buffering, good for animation)

(conti)

openGL has 4 buffers: color buffer

(frame buffer), depth buffer (Z-buffer),

accumulation buffer, stencil buffer

CS Dept, UK9

Accumulation bufferFrame buffer

add or multiply values

copy

glAccum(GL_LOAD, value);

glAccum(GL_RETURN, value);

glAccum(GL_ACCUM, value);

glAccum(GL_ADD, value);

glAccum(GL_MULT, value);

CS Dept, UK11

Accumulation bufferFrame buffer

add or multiply values

copy

For instance:

// show average of the 5 previous frames

// if num_images == 5

CS Dept, UK12

Things OpenGL can do:

⚫ Atmospheric effect (fog)

- to simulate a smoke-filled room/space

(conti)

Using a technique

similar to depth-

cuing

CS Dept, UK13

Things OpenGL can do:

⚫ Depth-of-the-field effect

- Objects drawn with jittered viewing volumes into the

accumulation buffer for a depth-of-the-field effect

(conti)

CS Dept, UK14

Things OpenGL can do:

Note that in this class,

• we use openGL calls for tasks related to 3D

rendering

• We will also use several additional libraries:

❑ GLEW (openGL extension Wrangler (to determine which

openGL extensions are supported on the target platform))

❑ GLM (openGL Mathematics)

❑ SOIL2 (Simple OpenGL Image Loader (to do texture

mapping))

❑ GLFW (Graphics Library Framework (to create glfw

window to draw 3D scenes))

(conti)

CS Dept, UK15

2.1 Overview

• OpenGL has been extensively extended

• On the hardware side, modern openGL provides a

multi-stage graphics pipeline that is partially

programmable using a language called GLSL

(OpenGL Shading Language)

• On the software side, openGL’s API is written in C,

and thus the calls are directly compatible with C and

C++. C++ is the most popular language choice to

include openGL calls (referred as a C++/OpenGL application)

CS Dept, UK16

An overview of a modern
C++/OpenGL application

Display

monitor
GPU

Graphics Hardware

(Graphics Card)

GLSL shader

code

CPU
C++/OpenGL

application

The task of a

C++/OpenGL application

that contains GLSL code

to install the GLSL code

onto the graphics card

CS Dept, UK17

2.1 Overview

• Modern 3D graphics

programming utilizes a

pipeline.

• The process of

converting a 3D scene

to a 2D image is

broken into a series of

steps, as the figure

shown on the right

side.

Stages shaded in blue

are programmable in

GLSL

CS Dept, UK19

2.1 Overview

• Loading GLSL programs into the shaders is the job

of the C++/OpenGL application and is done as

follows:

❑ It uses C++ to obtain the GLSL shader code, either from

text file or hard-coded as strings

❑ It then creates openGL shader objects and loads the GLSL

shader code into them

❑ Finally, it uses OpenGL commands to compile and link

objects and install them on the GPU

CS Dept, UK20

2.1 Overview

• Usually it is

necessary to

provide GLSL code

for the vertex and

fragment shaders

• The tessellation and

geometry stages are

optional.

CS Dept, UK21

2.2 Basic Structure of OpenGL Programs

Window and coordinate system creation

Libraries Initialization

Event handling functions registration

(Infinite) Event Handling Loop

Initialization Procedures

Display and event handling Functions

}

int main (void)

{

Terminate and Exit

CS Dept, UK22

Structure of Old OpenGL Programs

⚫ Event handling functions

⚫ Initialization

– window and coordinate system creation

– libraries initialization

⚫ Registration

– Let the system know which event handling function should

be invoked when an event occurs

⚫ Infinite Event Handling Loop

– Entering (infinite) event handling loop

⚫ Terminate and Exit

CS Dept, UK23

Classical (X Windows based) event handling approach:

void main () {

 ….

 while (1) {

 XNextEvent (display, &event);

 switch (event.type) {

 case KeyPress:

 { event handler for a keyboard event }

 break;

 case ButtonPress:

 { event handler for a mouse event }

 break;

 case Expose:

 { event handler for an expose event }

 break;

 ….

 }

 }

}

CS Dept, UK24

Classical (X Windows based) event
handling approach

⚫ Event queue is maintained by the X Windows

⚫ But handling of the events is your job

– A statement like “case KeyPress” is like a

callback function registration

⚫ The entire structure then is replaced with one

instruction:

 glutMainLoop()

 But you don’t see it.

Application

program

CS Dept, UK25

2.3 A Modern OpenGL Example

We place code that

draws to the

GLFWwindow here

//

// Program 2.1

// A GLFWwindow is instantiated and the background is set to red

//

Application-specific

initialization tasks are

placed here

400,

CS Dept, UK26

2.3 A Modern OpenGL Example

Initialize libraries and

create glfw window

Means the machine

must be compatible

with openGL version

4.3

CS Dept, UK27

2.3 A Modern OpenGL Example

Output of the program:

CS Dept, UK28

2.3 A Modern OpenGL Example (conti)

⚫ glClearColor(1.0, 0.0, 0.0, 1.0) : set background

color to red and the opacity component to 1

⚫ glClear(GL_COLOR_BUFFER_BIT) : fill all the

color buffers with the specified clear (background)

color

⚫ glfwWindowHints() : sets hints for the next call to

glfwCreateWindow()

⚫ gefwCreateWindow(w, h, xxxx, m, s) : creates a

glfw window with width w, height h, title “xxxx”, ...

CS Dept, UK29

2.3 A Modern OpenGL Example (conti)

⚫ glfwMakeContextCurrent(window) : makes the
OpenGL or OpenGL ES context of the specified
window current on the calling thread

⚫ glfwSwapInterval(1) : sets the swap interval for the
current OpenGL or OpenGL ES context to 1

⚫ glfwSwapBuffers(window) : swaps the front and
back buffers of the specified window

⚫ glfwPollEvents() : processes all pending events

All drawing happens in

the current context.

Number of screen updates

30

2.4 OpenGL Graphics Pipeline
2.4.1 Vertex and Fragment Shaders

⚫ Our 1st openGL program didn’t actually draw
anything. To actually draw something, we need to
include a vertex shader and a fragment shader

⚫ The C++/openGL application must compile and link
appropriate GLSL vertex and fragment shader
programs, and load them into the pipeline

⚫ All vertices of openGL primitives (points, lines, and
triangles) pass through the vertex shader

⚫ To display vertices and triangles, we need to provide
a fragment shader

31

2.4.1 Vertex and Fragment Shaders

Declares

a

fragment

shader as

a char

string

//

// Program 2.2 Using shaders to draw a point

// …. #includes are the same as before

/// Declares

a vertex

shader as

a char

string

new declarations

#define numVAOs 1;

32

2.4.1 Vertex and Fragment ShadersGenerate a

shader object

33

2.4.1 Vertex and Fragment Shaders

….. Main() same as before

Output of the program:

See slide 31

34

2.4.1 Vertex and Fragment Shaders

Look at the shaders themselves now

The vertex shader (declared as arrays of strings):

#version 430

void main(void)

{ gl_Position = vec4(0.0, 0.0, 0.0, 1.0); }

gl_Position: built-in GLSL variable, set a vertex’s coordinate

 position in 3D space

vec4: GLSL datatype, hold a 4-tuple, representing X, Y, Z and

 the homogeneous component

35

2.4.1 Vertex and Fragment Shaders

The fragment shader (declared as arrays of strings):

#version 430

 out vec4 color;

 void main(void)

 { color = vec4(0.0, 0.0, 1.0, 1.0); }

The “out” tag: indicates the variable color is an output

It wasn’t necessary to specify an “out” tag for gl_Position in the

vertex shader b/c gl_Position is a predefined output variable.

Purpose of a fragment shader: to set the RGB color of a pixel

 to be displayed

36

2.4.1 Vertex and Fragment Shaders

One thing about the init() function

void init(GLFWwindow* window) {

 renderingProgram = createShaderProgram();

 glGenVertexArrays(numVAOs, vao);

glBindVertexArray(vao[0]);

}

In openGL, when sets of data are prepared for sending down

the pipeline, they are organized into buffers first, and then in

turn organized into Vertex Array Objects (VAOs).

Even if buffers are not needed, one still needs to create at least

one VAO whenever shaders are being used. The last two lines

are for that purpose.

37

2.4.2 Tessellation

⚫ The programmable tessellation stage provides

❑ a tessellater that can generate a large number of triangles,
usually as a grid

❑ some tools to manipulate those triangles

⚫ Useful for generating complex terrain

⚫ Efficient to generate a triangle mesh in GPU hardware
than doing it in C++

38

2.4.3 Geometry Shader

⚫ A primitive is processed at a time instead of a vertex
or a pixel

⚫ Triangle primitives could be

❑ altered (stretched or shrunken)

❑ deleted (to create “holes” in an object)

⚫ The geometry shader can

❑ generate additional primitives

❑ add surface texture (bumps, scales, …)
 to an object

Lighting

effects

included

39

2.4.4 Rasterization

⚫ To have a 3D object displayed on a 2D monitor, the
primitives in the object (usually triangles) have to be
rasterized into fragments first.

⚫ Rasterization determines the locations of pixels that
need to be drawn in order to produce the triangle
specified by its three vertices

Holds the information

associated with a pixel

Step

1

Step

2

40

2.4.4 Rasterization

⚫ Rasterization has two options, with or without step 2
performed

⚫ Without step 2 performed: only bounding edges of
the triangle primitives are rasterized

void display () {

glUseProgram();

glPolygonMode(GL_FRONT_AND_BACK,

GL_LINE);

glDrawArrays();

}

41

2.4.4 Rasterization

• With step 2 performed: bounding edges and interior
of the triangle primitives are both rasterized

void display () {

glUseProgram();

glPolygonMode(GL_FRONT_AND_BACK,

GL_FILL);

glDrawArrays();

}

Fully rasterized torus but

lighting effects not

included

42

2.4.4 Rasterization

• With and without step 2 performed: with wireframe
grid superimposed on fully rasterized primitives

void display () {

glUseProgram();

glPolygonMode(GL_FRONT_AND_BACK,

GL_FILL);

glDrawArrays();

glPolygonMode(GL_FRONT_AND_BACK,

GL_LINE);

glDrawArrays();

}

Lighting effects

not included

43

2.4.5 Fragment Shader

⚫ Purpose of fragment shader: to assign colors to
the rasterized pixels

⚫ GLSL affords us virtually limitless creativity to
calculate colors

⚫ One can use the predefined GLSL variable
gl_FragCoord, for instance, to set a pixel’s color
based on its location

44

2.4.5 Fragment Shader

#version 430

 out vec4 color;

 void main(void)

 { if (gl_FragCoord.x < 200) color = vec4(1.0, 0.0, 0.0, 1.0);

 else color = vec4(0.0, 0.0, 1.0, 1.0);

 }

Output of the program:

By modifying

example program 2.2

45

2.4.6 Pixel Operations

⚫ This stage of the openGL graphics pipeline is to
determine a color/intensity for each entry (pixel) of
the color buffer

⚫ If a pixel is the projection of several points in the 3D
scene, then the color/intensity of that pixel should be
set to the color/intensity of the point closest to the
viewer

⚫ Several methods (hidden surface removal algorithms)
can be used to determine which point is the closest
point for each pixel. Z-buffer method is used by
openGL

46

2.4.6 Pixel Operations

47

2.4.6 Pixel Operations

Z-Buffer Method:

⚫ Initially set all entries of the color buffer to the back-
ground color and all entries of the depth buffer to 1

⚫ When a pixel color is output by the fragment shader,
its distance from the viewer is computed

⚫ If the computed distance is less than the distance in
the depth buffer for that pixel, then the pixel color
replaces the color in the color buffer for that pixel, and
the distance replaces the current distance value in the
depth buffer. Otherwise the pixel is discarded.

CS Dept, UK48

2.5 Detecting OpenGL and GLSL Errors

• Debugging GLSL errors is difficult because

❑ GLSL compilation happens at C++ runtime

❑ GLSL code doesn’t run on CPU (it runs on GPU), so the

operating system cannot always catch openGL runtime

errors.

• How to catch/display GLSL errors? build utilities to

❑ Check the openGL error flag for the occurrence of an

openGL error

❑ Display the contents of openGL’s log when GLSL

compilation failed

❑ Display the contents of openGL’s log when GLSL linking

failed

49

///

// Program 2.3

// An OpenGL program with modules to catch GLSL errors

///

2.5 Detecting OpenGL and GLSL Errors

50

2.5 Detecting OpenGL and GLSL Errors

51

2.5 Detecting OpenGL and GLSL Errors

52

2.5 Detecting OpenGL and GLSL Errors

53

2.5 Detecting OpenGL and GLSL Errors

CS Dept, UK54

2.6 Reading GLSL Code from Files

⚫ Storing GLSL shader code inline in strings is not

practical for complicated cases. Shader code should

be stored in text files and read in by our C++/openGL

program

⚫ The following sample program shows how to read the

vertex and fragment shader code stored in text files

“vertShader,glsl” and “fragShader.glsl”, respectively, to

build vShader and fShader for the pipeline.

55

2.6 Reading GLSL Code from Files
//

// Program 2.4 Reading GLSL source from files

// …. #includes, main(), display(), init() same as before, plus the following…

//

This function

reads content of

a text file

(specified by

“filePath”) into a

string object one

line a time and

return that string

object

e.g. “C:\\MyDirectory\\MyFile.bat”

56

2.6 Reading GLSL Code from Files.

CS Dept, UK57

2.7 Building Objects from Vertices

• How to draw objects constructed of many vertices?

❑ How should the vertex shader in Program 2.2 be modified?

❑ How should the glDrawArrays() call be modified?

• A sample program that draws a triangle is shown in

Program 2-5. Note that in

 glDrawArrays(GL_TRIANGLES, 0, 3)

 the primitive type is specified as GL_TRIANGLES

 and the number of vertices is set to 3. This means the

 vertex shader will run 3 times, once for each vertex.

CS Dept, UK58

2.7 Building Objects from Vertices
//

// Program 2.5 Draw a Triangle

// same as Program 2.4 except the vertex shader and glDrawArrays()

//

Vertex Shader

#version 430

void main(void)

{ if (gl_VertexID==0) gl_Position = vec4(0.25,-0.25, 0.0, 1.0);

else if (gl_VertexID==1) gl_Position = vec4(-0.25,-0.25, 0.0, 1.0);

else gl_Position = vec4(0.25, 0.25, 0.0, 1.0);

}

C++/OpenGL application – in display()

glDrawArrays(GL_TRIANGLES, 0, 3);

CS Dept, UK59

2.8 Animating a Scene

• How to arrange/structure a C++/openGL application

so that animation is supported?

• THE ANSWER: our main() is already structured to do

so. WHY?

• Main() calls the function display() repeatedly. Each

time display() is called, a new rendering of the scene

is shown on the screen with a 60-120 frame rate per

second.

• All we need to do is to design the display() properly to

alter what it draws over time.

60

2.8 Animating a Scene

//

// Program 2.6 A Simple Animation Example

// same #includes and declarations as before, plus the following…

//

//

61

2.8 Animating a Scene

Vertex Shader:

// remaining functions same as before

62

2.8 Animating a Scene

CS Dept, UK63

End

	Slide 1: 2. OpenGL and Shaders
	Slide 2: Advantages:
	Slide 3: Things OpenGL can do:
	Slide 4: Things OpenGL can do:
	Slide 5: Things OpenGL can do:
	Slide 6: Things OpenGL can do:
	Slide 7: Things OpenGL can do:
	Slide 8: Things OpenGL can do:
	Slide 9
	Slide 11
	Slide 12: Things OpenGL can do:
	Slide 13: Things OpenGL can do:
	Slide 14: Things OpenGL can do:
	Slide 15: 2.1 Overview
	Slide 16: An overview of a modern C++/OpenGL application
	Slide 17: 2.1 Overview
	Slide 19: 2.1 Overview
	Slide 20: 2.1 Overview
	Slide 21: 2.2 Basic Structure of OpenGL Programs
	Slide 22: Structure of Old OpenGL Programs
	Slide 23: Classical (X Windows based) event handling approach:
	Slide 24: Classical (X Windows based) event handling approach
	Slide 25: 2.3 A Modern OpenGL Example
	Slide 26: 2.3 A Modern OpenGL Example
	Slide 27: 2.3 A Modern OpenGL Example
	Slide 28: 2.3 A Modern OpenGL Example (conti)
	Slide 29: 2.3 A Modern OpenGL Example (conti)
	Slide 30: 2.4 OpenGL Graphics Pipeline 2.4.1 Vertex and Fragment Shaders
	Slide 31: 2.4.1 Vertex and Fragment Shaders
	Slide 32: 2.4.1 Vertex and Fragment Shaders
	Slide 33: 2.4.1 Vertex and Fragment Shaders
	Slide 34: 2.4.1 Vertex and Fragment Shaders
	Slide 35: 2.4.1 Vertex and Fragment Shaders
	Slide 36: 2.4.1 Vertex and Fragment Shaders
	Slide 37: 2.4.2 Tessellation
	Slide 38: 2.4.3 Geometry Shader
	Slide 39: 2.4.4 Rasterization
	Slide 40: 2.4.4 Rasterization
	Slide 41: 2.4.4 Rasterization
	Slide 42: 2.4.4 Rasterization
	Slide 43: 2.4.5 Fragment Shader
	Slide 44: 2.4.5 Fragment Shader
	Slide 45: 2.4.6 Pixel Operations
	Slide 46: 2.4.6 Pixel Operations
	Slide 47: 2.4.6 Pixel Operations
	Slide 48: 2.5 Detecting OpenGL and GLSL Errors
	Slide 49: 2.5 Detecting OpenGL and GLSL Errors
	Slide 50: 2.5 Detecting OpenGL and GLSL Errors
	Slide 51: 2.5 Detecting OpenGL and GLSL Errors
	Slide 52: 2.5 Detecting OpenGL and GLSL Errors
	Slide 53: 2.5 Detecting OpenGL and GLSL Errors
	Slide 54: 2.6 Reading GLSL Code from Files
	Slide 55: 2.6 Reading GLSL Code from Files
	Slide 56: 2.6 Reading GLSL Code from Files.
	Slide 57: 2.7 Building Objects from Vertices
	Slide 58: 2.7 Building Objects from Vertices
	Slide 59: 2.8 Animating a Scene
	Slide 60: 2.8 Animating a Scene
	Slide 61: 2.8 Animating a Scene
	Slide 62: 2.8 Animating a Scene
	Slide 63

