
CS535 Computer Graphics

Homework Assignment 7 Solution Set (40 points)

Due date: 12/02/2023

1. A modern CPU can have 4 or 8 cores, but a modern GPU can have

thousands. These GPU cores can be used for computationally intensive

tasks through the use of compute shaders. Compute shaders are

programmed in GLSL and run independently. A computer shader can

perform parallel computing in the following sense: if a compute shader is

required to perform a task on n different data sets, one can first creates n

copies of the compute shader (invokes the compute shader n times) and

then assign each copy of the compute shader a different data set (assign a

different task ID (invocationID)). These copies of the compute shader then

run in parallel to perform the task on assigned data sets. In the following

box, explain how these two things are implemented in a computer shader

program, especially the GLSL commands/variables needed for these two

steps. (10 points)

2. Given a 2D box defined by four bounding edges

 𝑥 = 𝑥𝑚𝑖𝑛 𝑥 = 𝑥𝑚𝑎𝑥 𝑦 = 𝑦𝑚𝑖𝑛 𝑦 = 𝑦𝑚𝑎𝑥

and a ray defined by

L(t) = S + tD

where S=(a,b) is the start point and D=(c,d) is the (normalized) vector of

direction (see the following figure), let 𝑡𝑥𝑚𝑖𝑛, 𝑡𝑥𝑚𝑎𝑥, 𝑡𝑦𝑚𝑖𝑛 and 𝑡𝑦𝑚𝑎𝑥 be the

parameters of the intersection points of the ray with the bounding edges 𝑥 =

First, one needs to use the following command to define a 1D, 2D or 3D

grid of n nodes with each node being a work group (core, but simply

think of it as a copy of the compute shader program):

 glDispatchCompute()

Here we assume the size of each work group to be 1.

Next, in the main() of the compute shader program, each work group will

get a task ID assigned by the special variable gl_GlobalInvocationID.*

and then perform the assigned task independently.

𝑥𝑚𝑖𝑛 , 𝑥 = 𝑥𝑚𝑎𝑥 , 𝑦 = 𝑦𝑚𝑖𝑛 and 𝑦 = 𝑦𝑚𝑎𝑥 , respectively. If we use the

notations defined in slide 90 of the notes “Ray Tracing I”, what would 𝑡𝑛𝑒𝑎𝑟

and 𝑡𝑓𝑎𝑟 be? Show your work in the following red box. (5 points)

3. If the case shown in the following figure is given, then what would 𝑡𝑛𝑒𝑎𝑟 and

𝑡𝑓𝑎𝑟 be? Show your work in the following red box. (5 points)

txmin < txmax < tymin < tymax

xmin xmax

ymax

ymin

txmin

txmax
tymin

tymax

S

L(t)
D

First note that, in this case, txmin > txmax > tymin > tymax.

Hence, we have

=min(,) = =max(,) =

=min(,) = =max(,) =

Consequently,

=max(,) = max(,) =

=min(,) = min(,) =

Since so the ray didn’t intersect the box.

4. [Solid Modeling] Given a virtual object represented as a CSG (Constructive

Solid Geometry) tree (see Section 10.10 for the definition of a CSG tree),

one can use ray casting or even ray tracing technique to render this virtual

object on screen. To use ray casting technique to render a CSG object, we

need to find the intersection points of each ray with the object. For instance,

for the CSG object given below (left figure), for the given ray, we need to

xmin xmax

ymax

ymin

txmin

txmax

tymin

tymax

tymin < txmin < tymax < txmax

L(t)

S

D

In this case we have tymin < txmin < tymax < txmax

Hence,

=min(,) = =max(,) =

=min(,) = =max(,) =

Consequently,

=max(,) = max(,) = < 0

=min(,) = min(,) =

Since and > 0 so the ray intersects the box.

find the parameters of the intersection points of the ray with the object (right

figure).

In the following, use the two given cases (intersection of a 2D sphere and a

2D cube, such as the intersection of B and S in the above CSG

representation) to explain which two parameters should be reported for each

case and why. (10 points)

In case (a), by taking the intersection of intervals [t1, t3] (the portion of the

ray that is inside B) and [t2, t4] (the portion of the ray that is inside S), we

get the interval [t2, t3] (note that t1 < t2 < t3 < t4). So the intersection points

of the ray with B∩S in this case are t2 and t3.

In case (b), by taking the intersection of intervals [t1, t4] (the portion of the

ray that is inside S) and [t2, t3] (the portion of the ray that is inside B), we

get the interval [t2, t3] (note that t1 < t2 < t3 < t4). So the intersection points

of the ray with B∩S in this case are also t2 and t3.

5. [Solid Modeling] The lookup tables in slide 23 of the notes “Ray Tracing II”

do not work for case (a) and case (b) shown below. This does not mean the

technique is not valid, only that a few things of the lookup tables have to be

modified. Show me how these lookup tables should be modified so that the

technique would work for the following cases as well. (5 points)

Solution:

Note that in the cases shown in the above figure, the regular neighborhood of P in

either A or B is no longer a half circle, but a quarter circle as shown in the following

figure.

Actually, in some cases, we could even have a regular neighborhood smaller than a

quarter circle. A better way to define a regular neighborhood should be in terms of

degree instead of size. We shall use N(P, r, 𝜃1, 𝜃2) to denote a regular neighborhood

for a point P with radius r and starting angle 𝜃1 and ending angle 𝜃2 as follows:

Using this notation, the regular neighborhood of the point P in (a) would be

 N(P, r, 90𝑜 , 180𝑜)

and in case (b) the regular neighborhood of P in A would be the same, but the regular

neighborhood of P in B would then be

 N(P, r, 0𝑜, 90𝑜)

If we use N(P, r, 𝛼1, 𝛼2) to denote a regular neighborhood of P in A and N(P, r ,

𝛽1, 𝛽2) to denote a regular neighborhood of P in B, then a lookup table for intersection

on A and B should be defined as follows:

Lookup tables for union and difference can be defined similarly.

6. Can texture mapping be integrated into the ray tracing process? Justify your answer

and be specific. For instance, if your answer is YES, you must tell me how it is done,

including how you get the texture space coordinates, how to handle out-of-range

problem, and how to handle the do-not-directly-match-a-texel problem. If your answer

is NO, then you have to tell me why this is not possible, with all the supporting

arguments. (5 points)

Sol.

Yes, ray tracing can be used with texture mapping to reproduce surface texture on an

otherwise smooth polygon surface.

How is this done? The most efficient way to do this is to perform the following steps

after the intersection point to the closest object has been determined so that we don’t

spend time calculating texture coordinates for hidden objects.

getTexture(point p)

Convert p from world coordinates to local object coordinates (lp)

Convert lp point to texture space coordinates (u,v)

If the (u,v) coordinates are out of range use tiling, mirroring, or another technique

to get appropriate coordinates.

If the (u,v) coordinates do not match directly use the nearest neighbor or

interpolation to get the correct color

Return the color to the ray tracer

Since we are still just returning a color to the ray tracer, texture mapping can be easily

integrated into the tracing process.

