
CS 535 Computer Graphics 

Homework Assignment 5 Solution Set (40 points) 

Due: 11/01/2024 

 

1. Given a point 𝑝0 of a surface S with normal vector V (see the left figure below). If the 

surface S is transformed by an MV matrix M to a new location 𝑀𝑆, then the normal 

vector of 𝑝0 at its now location (see the right figure below) would be (𝑀−1)𝑡𝑉 where 

𝑉 is represented as a column vector. Why?  (5 points) 

         

 

 

 

 

 

 

 

 

2. Given the normal of a surface at a given point N and an incident ray L, we need to compute 

the specular reflection ray R at that point to compute its shade. Develop an incremental 

method to compute that vector for points of a triangle, assuming R1, R2 and R3 at the 

three vertices of the triangle are already given.  (5 points) 

 

According to the Appendix of the note “ Lighting and Shadows I”, the normal vector 

at 𝑝0 after the transformation is 𝑉𝑀−1 where V is the homogeneous normal, a 

row vector. Therefore 𝑉𝑀−1 is also a row vector. If V is represented as a column 

vector, then the normal vector would be 𝑉𝑡𝑀−1 and when written as a column 

vector we have (𝑉𝑡𝑀−1)𝑡 = (𝑀−1)𝑡𝑉. 



 

Sol: 

The normal of a triangle is a constant. Therefore, to compute the intensity/color for a point 

of the triangle, we only need to know the specular reflection vector of that point. 

Computing the real specular reflection vector for each point of the triangle is a very 

expensive process, so one alternative (besides the Phong shading) is to estimate the 

specular reflection vector for each point of the triangle if we know the specular reflection 

vectors at the vertices of the triangle. This can be done as follows. 

   For each edge of a polygon, we use a representation as follows: 

 

Rmin is the specular reflection vector of the lower vertex of the edge. So, for edge e2, this 

entry would be R2 and for edge e3 this entry would be R1. ΔR is the step size for specular 

reflection vector in y direction. So for edge e2, ΔR is computed as follows: 

∆𝑅 = (𝑅3 − 𝑅2)/(𝑦3 − 𝑦2) 

 

     For scan line y, once we have Ra and Rb from edge e2 and edge e3 (e2 and e3 are 

edges in the Active Edge List now), we compute a step size for the specular reflection 

vector ∆𝑥𝑅 as follows: 

 

∆𝑥𝑅 = (𝑅𝑏 − 𝑅𝑎)/(𝑏 − 𝑎) 

 

Then the specular reflection vector for each subsequent pixel in the span [a, b] would 

simply be the sum of the specular reflection vector of the previous pixel and ∆𝑥𝑅. So, the 

specular reflection vector for x=a+1 would be 

 

𝑅𝑎+1 = 𝑅𝑎 + ∆𝑥𝑅 

 

And the specular reflection vector for x=a+2 would be 

 

𝑅𝑎+2 = 𝑅𝑎+1 + ∆𝑥𝑅. 

 

 

3. Gouraud shading (intensity-interpolation shading) and Phong shading (normal-

interpolation shading) can both be used to eliminate intensity discontinuities when 

rendering a polygonal mesh. However, Gouraud shading could generate the so-called 

Mach band effect and Phong shading would not. However, Phong shading has a 



disadvantage over Gouraud shading. What is that disadvantage? Is there a way to 

overcome that disadvantage of Phong shading?  (5 points) 

 

 

 

 

 

 

 

 

 

 

4. The shadow volume based 'shadow generation' algorithm can be integrated with the 

scan-line hidden surface elimination process so that we can do hidden surface elimination 

and shadow generation at the same time. Can the shadow volume based 'shadow 

generation' algorithm be integrated with the Z-buffer method so we can also do hidden 

surface elimination and shadow generation at the same time, and how or why not?   (10 

points) 

 

 

 

 

 

5. The shadow map based 'shadow generation' algorithm is easy to implement. But it has 

a potential problem. What is it? What is the reason for getting this potential problem? Is 

there a way to overcome this potential problem?   (10 points) 

 

Sol: Consider the case shown in the following figure. The line segment AC is visible both to the 

view point and the light source. Therefore, theoretically, none of the points of the line segment 

should be in shadow. 

 

Phone shading is not as efficient as Gouaud shading because Phone shading 

has to compute the specular reflection vector R for each point of the polygon 

mesh. One option is to use the bisector the angle between L and V, H, to 

compute the color/intensity, the so called Blinn-Phone shading. This can only 

improve the performance to certain degree though. Another option is to use the 

above incremental method (Question #2) to estimate the specular  reflection 

vector for each point of the triangle (also called fast Phong shading: 

https://people.eecs.berkeley.edu/~jfc/cs184f98/lec30/lec30.html)  

See Section 9.6 of the notes “Lighting and Shadows II” 



 

 

However, if the coordinates of points A, B and C in the light source coordinate system are (3, 

4, -4), (3.11, 4, -5) and (3.14, 4, -6), respectively (see the left side of the following figure), then 

after projection, they will all have (3, 4) as the x- and y-coordinates (see the right side of the 

following figure). Since A has the largest depth (z-coordinate) value, entry (3, 4) of the depth 

array D2 will store the depth of A, -4. The depth value of B is -5 and the depth value of C is -

6, both are smaller than the depth of A, content of entry (3, 4) of D2. Therefore, both points 

(actually the entire line segment except A) will be considered not visible to the light source and 

consequently will be shown as points in shadow (see the next figure). 

 

 

 

 

 

    To overcome this problem, one way is to increase the resolution of the display surface 

(this is not really a solution, but a way to reduce the seriousness of the problem). A real solution 

to this problem is to build a link list for each entry of the depth array D2 (see the following 



figure). 

 

 

 

    When the Z-buffer method is performed with respect to the light source, each point 

projected into pixel (m, n) will not only be comparing its depth (z-coordinate) value with the 

current content of entry (m, n) of the depth array D2, the point (with coordinates before 

projection) will also be inserted into a link list for that entry. The link list is sorted by depth. 

Therefore for entry (3, 4) of D2, we would have A, B, and C in the link list (in that order; see 

the above figure).  

    For each point that is visible to the view point, say point B, we first compute coordinates of B 

in the light source coordinate system, (3.11, 4, -5). After rounding, we get (3, 4, -5). Then we 

compare the depth of B, -5, with the content of entry (3, 4) of D2. If -5 equals the content of entry 

(3, 4), B is obviously not in shadow. If -5 is smaller than the content of entry (3, 4) of D2, we then 

search through the link list of entry (3, 4) to find B. If none of the points in the list before B blocks 

B, then B is not in shadow. Otherwise, B is classified as in shadow. Question: how do you tell if a 

point in the list before B blocks B? (if light source location, that point and B are collinear) 

 

 


