
CS 535 Computer Graphics 

Homework Assignment 3 Solution Set (40 points) 

Due: 9/27/2024    

1. Based on example programs 1-6 in the notes “OpenGL and Shaders”, write a 

simple C++/openGL program to animate 2D rotation of one of the following 

hollow blue squares of dimension 120x120 (pixels) at the center of your glfw 

window, the white (black) portion is of dimension 60x60 (pixels). Use “HW3 – 

Question 1” as the title of your glfw window and use white as the background 

color of your glfw window. Your vertex shader and fragment shader should be 

written in separate glsl files.  

        

Turn in a screen shot of the rotating hollow square and your program with the 

submission of your HW3. . (10 points) 

Sol: 

If you choose to rotate the hollow blue square on the left (the inner, smaller 

square is white), one approach is to decompose the hollow blue square into 8 

triangles such as the left case in the following figure, and then perform the 

rotation operation in the Vertex Shader. In this case your Fragment Shader 

needs to set one color (blue) only, for all the 8 triangles. 

      

If you choose to rotate the hollow blue square on the right (the inner, smaller 

square is black), one approach is to decompose the hollow blue square into 4 

triangles such as the middle and right cases in the above figure, and then 

perform the rotation operation in the Vertex Shader. In this case you need to call 

the function glDrawArrays() twice, first for triangles 0 and 1 with color blue, and 

then for triangles 2 and 3 with color black. This way, triangles 2 and 3 will 



overwrite the central portion of the bigger blue square (union of triangles 0 and 

1), so that the blue square and the black square will both be rotated, such as 

the case shown below.   

       

2.  If the two polygons shown in (a) and (b) are clipped against the left bounding edge 

of a 2D window using Sutherland-Hodgman and Weiler-Atherton algorithms, 

respectively, what would the outputs be in each case? In each case, the output by 

each algorithm is supposed to be a sequence of points (vertices of the original 

polygon or intersection points of the edges of the polygon with the left bounding 

edge of the window) or several sequences of points. For your convenience, 

intersection points of the polygon with the left bounding edge of the window are 

also shown below. (6 points) 

     

Sol: 

(For Sutherland-Hodgman and Weiler-Atherton algorithms, refer to ‘Polygon 

clipping techniques’ underneath the first programming assignment.) 

For case (a), the putput of the SH algorithm is one polygon: 

P: 𝑖1𝑣1𝑣2𝑖3𝑖5𝑣5𝑣6𝑖7 



 The output of the WA algorithm initially consists of two polygons:  

         P1: 𝑖1𝑣1𝑣2𝑖3      and     P2: 𝑖5𝑣5𝑣6𝑖7 

However, since the start vertex and end vertex of P2 are between the start vertex 

and end vertex of P1, P2 is then concatenated with P1 to form a single sequence. 

So the final output of WA algorithm is also one polygon: 

         P: 𝑖1𝑣1𝑣2𝑖3𝑖5𝑣5𝑣6𝑖7 

 

For case (b), the output of the SH algorithm is one polygon: 

         P: 𝑖1𝑣1𝑣2𝑖3𝑖5𝑣5𝑣6𝑖7 

The output of the WA algorithm consists of two polygons:  

         P1: 𝑖1𝑣1𝑣2𝑖3      and     P2: 𝑖5𝑣5𝑣6𝑖7 

P1 and P2 will not be merged into one sequence in this case (why?). 

3.  In perspective projection, if center of projection (COP) is at (-3, 0, -1) and the 

projection plane passes through the origin and is perpendicular to the vector (-

3, 0, -1) then what (4x4) matrix should we use to compute the projection of a 

given point (x, y, z) on the projection plane in homogeneous coordinates?  (5 

points)   

Sol: 

First, as the figure shown below, we perform a rotation about the y-axis so that 

after the rotation, COP is on the z-axis and the projection plane coincides with 

the xy-plane. 



         

The rotation matrix for that purpose, called Mr1 , is of the following form: 

 

𝑀𝑟1 = [

−1/√10 0
 0  1

3/√10  0
0  0

−3/√10  0
0 0

−1/√10  0
  0  1

] 

 

As shown below, after the rotation, the COP is at (0 , 0, √10).  

𝑀𝑟1 [

−3
0

−1
1

] = [

0
0

√10
1

] 

The next step is to perform a translation to move the COP to the origin of the 

coordinate system, as shown in the figure below. 

         

The translation matrix for that purpose, called Mt1 , is of the following form: 



𝑀𝑡1 = [

1 0
0 1

0     0
0     0

0 0
0 0

   1 −√10
    0 1

] 

For instance, if we multiply COP, (0, 0, √10), by 𝑀𝑡1 we get 

𝑀𝑡1 [

0
0

√10
1

] = [

0
0
0
1

] 

 

After the translation, the COP is at the origin of the coordinate system and the 

projection plane is at 𝑧 = −√10 (see the following figure). 

        

So we can use the standard perspective projection matrix Mper to perform 

perspective projection, as follows: 

       

Mper is of the following form: 



𝑀𝑝𝑒𝑟 = [

1 0
0 1

  
   0        0
   0        0

 0 0
0 0

1  0

−1/√10  0

] 

After the projection is performed, we translate the COP from the origin back to (0, 

0,√10 ), as follows: 

        

The translation matrix for this purpose, called Mt2, is of the following form: 

𝑀𝑡2 = [

1 0
0 1

0    0
0    0

0 0
0 0

1 √10
 0 1

] 

Next, as shown in the following figure, we perform a rotation about the y-axis to 

move the COP from (0, 0, √10 ) back to its original location (-3, 0, -1), as 

follows:  

        

The rotation matrix for that purpose, called Mr2 , is of the following form: 



𝑀𝑟2 = [

−1/√10 0
 0  1

−3/√10  0
0  0

3/√10  0
0 0

−1/√10  0
  0  1

] 

𝑀𝑟2 is the inverse of 𝑀𝑟1. Indeed, if we multiply (0, 0, √10) by Mr2 , we get (-3, 0, 

-1), as shown below. 

𝑀𝑟2 [

0
0

√10
1

] = [

−3
0

−1
1

] 

So the projected image of (x, y, z), as shown in the following figure, 

        

is M(x, y, z, 1)t where 

         M=Mr2Mt2MperMt1 Mr1=[

1/10   0
0   1

−3/10 0
0 0

  −3/10 0
   3/10 0

9/10   0
1/10   1

]  

You don’t need to compute the entries of M. It is sufficient as long as all the 

component matrices of M are listed.   

4.  In perspective projection, if the projection plane is perpendicular to z axis at z = -

4 and vanishing point of a line passing through A=(-5, 0, 0) and B=(0, 0, -5) is at 

(5, 0, -4), then where is the center of projection?  (5 points) 

Sol: 

Let L(t) be a parametric representation of the line that passes through A = (-5, 0, 

0) and B = (0,0, -5), as shown in the following figure. We have 



    L(t) = A + t(B-A) = (-5, 0, 0) + t(5, 0, -5),        t ∈ R 

Then any point on the line 

    L1(s) = (5, 0, -4) + s(5, 0, -5) = (5+5s, 0, -4-5s),     s ∈ R 

with a negative parameter (s < 0) can be a center of projection (why?). For 

instance, to choose a point of L1(s) that is also a point of the z-axis to be the 

center of projection (such a point’s x-component and y-component are both zero), 

we need to set s = -1. In such case, the center of projection is (0, 0, 1). 

        

5.  In 3D graphics, for perspective projection, we do clipping in homogeneous 

coordinates, i.e, before the perspective division step. Why?  (5 points)  

Sol: 

In OpenGl’s implementation of 3D graphics, perspective projection is 

implemented as a perspective transformation followed by an orthographic 

(parallel) projection. Perspective transformation is to convert a canonical 

view volume for Perspective projection to a quasi-canonical view volume for 

parallel projection (see the figure below).   



     

Perspective transformation is performed by multiplying each point (x, y, z, 1) 

by the so-called perspective transformation matrix 𝑀𝑝𝑡 as follows: 

     

After the multiplication, the x-, y-, z- and the w-components are all divided 

by the fourth component (the w-component) to make the fourth component 

equal to 1 again (see the second part and the third part of the above 

equation). This step is called the perspective division step. This step is not 

a continuous numerical operation. Points close to each other before this 

step might not be close to each other again after this step, and this would 

cause problem. Consider the line segment PQ on the left side of the 

following figure. The sub-segment RS of PQ is inside the canonical view 

volume for perspective projection and is mapped to the sub-segment 𝑅′𝑆′ 

on the right side of the following figure. Since 𝑅′𝑆′  is inside the quasi-

canonical view volume for parallel projection, it should be kept and sent for 

rendering subsequently. However, since P and Q are mapped to 𝑃′ and 

𝑄′ and they are both to the right of the plane z=-1, so the clipping algorithm 

would think the entire line segment 𝑃′𝑄′ is to the right of the plane z=-1 

and, consequently, outside the view volume for parallel projection, so the 

entire line segment 𝑃′𝑄′ would be discarded even though 𝑅′𝑆′ is actually 

inside the canonical view volume for parallel projection. 



     

The reason that P is mapped to a point to the right of the plane z=-1 is 

because the perspective division step changed the sign of the third 

component (z-component) in doing the perspective transformation process. 

If we don’t do the perspective division immediately (i.e., keeping the fourth 

component as -z) after perspective transformation, then 𝑃′ would remain 

as a point to the left the xy-plane as the case shown on the right side of the 

following figure. Consequently we wouldn’t have the problem of discarding 

the entire line segment 𝑃′𝑄′ in the clipping process because now 𝑃′ and 

𝑄′ are on different sides of the canonical view volume. We would still have 

to do the perspective division step, but only after the clipping step. 

     

6. For the alternative data structure given in slides 3-6 of the notes “3D Data Structures” 

for 3D objects with bounding faces (polygons) represented as sequences of 

bounding edges, which of the following queries can be answered in constant time? 

(4 points) 

(a) Given a face, which faces are adjacent to it? 

(b) Given an edge, which faces are sharing it as a bounding edge? 

(c) Given a vertex, which faces are adjacent to it? 

(d) Given a vertex, which edges are adjacent to it? 

 



Sol: 

(a) NO. The answer is LINEAR TIME (w.r.t. the number of edges of the face). For 

instance, in the following figure, if face A is given, we can follow the pointers 

from Face Table to Edge Index Table 1 and then to Edge Table to find all the 

edges of A (i.e., E0, E1, E2 and E3) and then follow pointers from Edge Table 

to Face Table to find all the faces that share those edges with A (i.e., D, C, 

B, … ). 

(b) YES. If we know the index of that edge, we can go directly to that edge in the 

Edge Table and then follow the two pointers in that entry of the Edge Table to 

the Face Table to get the two faces that share this edge. 

     

 

(d) YES. Given a vertex, if we know the index of that vertex, say V0, we can go 

directly to that vertex in the Vertex Table. From the fourth entry of that vertex, 

we would know how many edges share this vertex as an endpoint (in this case, 

3; see the following figure) and then follow the pointer in the fifth entry of that 

vertex to Edge Index Table 2 and then to Edge Table, we would be able to find 

all the edges in the Edge Table that share V0 as an endpoint (i.e., E0, E3 and 

E4; see the following figure) immediately. 

(c) NO. The answer is LINEAR TIME (w.r.t. the number of edges adjacent to the 

vertex). Given a vertex, we can first use the technique of (d) to find all edges 

adjacent to that vertex, and then use the technique of (b) to find all faces that 

share these edges. These faces are faces that are adjacent to the given vertex. 



     

 

7.  To use the winged-edge data structure to represent the following pyramid, 

we need an Edge Table, a Vertex-Edge Table and a Face-Edge Table. To 

find all the adjacent edges of vertex v4, how many times do we have to 

access the Edge Table, the Vertex-Edge Table and the Face-Edge Table, 

respectively? Justify your answer.  (5 points) 

         

Sol: 

We start with the Vertex-Edge Table. If the edge selected for vertex V4 in 

the Vertex-Edge Table is, say e5, then we go to edge e5 in the Edge Table. 

If the direction of e5 is from V2 to V4, then in the entry for e5 in the Edge 

Table, we find the successor edge of e5 in counter-clockwise direction. 

Otherwise we find the successor edge in clockwise direction. In either case 

we will get e6. Then we go to the entry for e6 in the Edge table. There again, 

we find the successor edge of e6 in counter-clockwise direction if the 

direction of e6 is from V5 to V4. Otherwise, we find the successor edge of 

e6 in clockwise direction. In either case, we will get e4. When we go to the 

entry in Edge Table for e4 to repeat the same process, we would get e1 as 



the successor edge of e4 either in counter-clockwise direction or clockwise 

direction. When we go to the entry in Edge Table to repeat the same process, 

we would get e5 as the successor edge of e1 either in counter-clcokwise 

direction of clockwise direction. So we know the edge we started with has 

been reached and we stop, and e5, e6, e4, and e1 are the adjacent edges 

of V4.  

Totally, we have accessed the Edge Table 4 times, the Vertex-Edge Table 

once and the Face-Edge Table 0 times. 

 


