
 CS 535 Computer Graphics

Homework Assignment 2 Solution Set (40 points)

Due: 9/17/2024

1. (6 points)

OpenGL has four buffers: color buffer, depth buffer, accumulation buffer and

stencil buffer. Each buffer has a specific function/purpose. For instance, a stencil

buffer is used to mask pixels in an image, to produce special effects. A

color buffer, the so-called frame buffer, is where the image to be shown on

screen stored. What are the functions of the depth buffer and the

accumulation buffer? Put your answer in the following text boxes for each

of them.

Depth buffer:

Accumulation buffer:

2. (8 points)

Modern 3D graphics programming utilizes a pipeline. Each stage of the pipeline is

done by a specific hardware. In the following chart, fill out the blanks for the

names of those stages. (6 points)

The depth buffer is used by the graphics pipeline to implement the Z-buffer

method to eliminate hidden lines/surfaces.

Initially, each entry of the depth buffer is set to -1 (why?). During the

rasterization step, the depth value (z-coordinate, a floating point number) of

each point (fragment) on the edges of or inside a triangle is computed and

stored in the corresponding entry of the depth buffer so that the pixel

operations step can use the depth information to determine which object’s

color should be used for each entry of the color (frame) buffer.

 The accumulation buffer is used by the graphics pipeline for two things:

double buffering and composing a sequence of successive images to

generate special effects such as anti-aliasing, motion blur, or depth of field.

 Some of the stages are programmable and some are not. Which one(s) are not

programmable and why? (2 points)

3. Based on example programs 1-6 in the notes “OpenGL and Shaders”, write a

simple C++/openGL program to show one of the following hollow blue squares of

dimension 50x50 (pixels) at the center of your glfw window, the white (black)

portion is of dimension 25x25 (pixels). Use “HW2 – Question 3” as the title of your

glfw window and use black as the background color of your glfw window. Your

vertex shader and fragment shader can be hard-coded in the C++/openGL

program or written in separate glsl files.

Take a screen shot of the output of your program (make sure the window title is

included in the screen shot) and include the screen shot in your HW2 submission,

vertex shader

tessellation shader

geometry shader

rasterization

fragment shader

pixel operations

The rasterization and pixel operations are not programmable.

These two stages use pre-defined algorithms to perform primitive

(lines, triangles) scan-conversion process and hidden line/surface

elimination process.

or turn in the screen shot as an attachment to your HW2 submission. Turn in your

program as an attachment too. (10 points)

Sol:

Two approaches. You can either decompose the hollow square into four separate

regions and draw each of them using the fixed (blue) color, or check the values of

“gl_FragCoord.x” and “gl_FragCoord.y” to determine if a point should be painted

in blue of white (black, in the second case).

4. “Event handling” used to be done by the openGL command “glutMainLoop ()”.

But now is handled by the command “glfwPollEvent()” in a while loop. The first

instruction in that while loop is the “display()” function. What is the advantage

of this kind arrangement? Put your answer in the following blank. (6 points)

5. What would happen to your program for Question #3 once it is executed if an

event other than clicking the “x” symbol at the upper-right corner of your glfw

window, such as “pushing a keyboard key” or “clicking at an arbitrary point inside

the glfw window” is generated and why? (5 points)

6. Depth buffer and color buffer should both be cleared when doing hidden surface

elimination (slide 61 of the notes “OpenGL and Shaders”). Why? (5 points)

With the “display()” function arranged as the first step in the while loop,

animation is automatically supported by a modern C++/openGL application

– simply render the entire scene each time display() is called.

 Nothing. As there are no callbacks defined for any other event types.

The depth buffer is cleared each frame to ensure hidden surfaces are

removed properly. The color buffer is cleared to avoid a moving object

leaving a trail as it moves. This is mainly useful for moving objects. Note

that if the depth buffer is not cleared, a moving object will still be shown in

the non-overlapping area from the previous frame. Why?

