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Question 1:

Q: Why are you Here?

University of Kentucky

Ans: ???

why are you taking this course?

or,
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Question 2:

Q: Who do you think is the most

     important scientist from the 

     last (20-th) century?

University of Kentucky

Ans: keep your answer to yourself.

        

 

The same question will be asked 

at the end of the semester again.
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You are here to learn 

three things.

University of Kentucky

For the first question: why are 

you here?
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Three things you will learn in 

this class:

1: The foundation of modern

     day computers 

University of Kentucky

i.e., Turing machines (1936) 

- a piece of work that changed the world/

    human history 
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1: The foundation of modern

     day computers 

University of Kentucky

Such as: how to design a machine that can

               perform arithmetic operations?

               or, how to design a machine that can

               process/parse strings? 
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Three things you will learn in 

this class:

2: The person who developed

     that theory 

University of Kentucky

Dr. Alan Turing 

- The Nobel Prize equivalent in computer 

science area (Turing Award) was named 

after him
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Three things you will learn in 

this class:

3: A little history on the life of

    that person 

University of Kentucky

Dr. Alan Turing (1912-1954) 

- including the reason why the logo of the 

Apple Computer company is a bitten 

apple 
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The Arrangement:

University of Kentucky

Context-Free Languages + 

Pushdown Automata

Turing machines + Church-Turing Thesis

Regular Languages + Finite Automata

Preliminaries
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Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations, 

                          functions) (read  Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

                            Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages, 

Pushdown Automata  (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky
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Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter 

6), Predicate Logic (Chapter 7), 

Computational Logic (Chapter 9), 

Algebraic Structures (Chapter 10)

University of Kentucky



1/7/2025 12

1. Preliminaries – set algebra

◼ Set : collection of things 

             (order not important; repetition not allowed)

◼  Notations:

R,Q,N,Z       

Sx Sx,                   

 nx,,x,x,xS    321 = …

{  }, Φ : empty set
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 P|x :  the set of all x that satisfies P

   ?,,,, abccba =    ?,,,,, cbacbaa =

e.g., the set of odd natural numbers = {1,3,5, …  }

=

◼  Notations:

A = B   :    two sets A and B are equal
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◼  Notations:

BA :    A is a subset of B

RQZN 

Power(S) = the set of all subsets of S

power({a, b, c}) = ?

S ⊆ S Φ ⊆ S
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◼  Notations:

Venn diagram

A

B

A

B

A

B

A U B : union

A ∩ B : intersection

A ─ B : difference
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◼  Notations:

BA : symmetric

               difference

AUA −=' : universal

                      complement

A

B

Universal

A A’
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e.g.,

A

B
A - B

(depends on where B is)
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◼  Properties:

Union and intersection are commutative, associative,

and distribute over each other

Absorption:
   

                                                                      

A U  (A ∩ B ) = A

A ∩  (A U B ) = A

De Morgan’s Laws:

                                                           ( 𝐴 ∪ 𝐵 )′=  𝐴′  ∩ 𝐵′

( 𝐴 ∩ 𝐵 )′=  𝐴′  ∪ 𝐵′
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A

B

So       A U (A ∩ B) = A

Absorption 1:   A U (A ∩ B) = A

A∩B
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A

So       A ∩ (A U B) = A

Absorption 2 :   A ∩ (A U B) = A

B

AUB

AUB
AUB
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universe

A

A'
B

B'

A U B

De Morgan’s Law 1:
                                                           

( 𝐴 ∪ 𝐵 )′=  𝐴′  ∩ 𝐵′

(𝐴 ∪ 𝐵)′

So        (𝐴 ∪ 𝐵)′= 𝐴′ ∩ 𝐵′
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universe

De Morgan’s Law 1:
                                                           

( 𝐴 ∪ 𝐵 )′=  𝐴′  ∩ 𝐵′

(𝐴 ∪ 𝐵)′

So        (𝐴 ∪ 𝐵)′= 𝐴′ ∩ 𝐵′

A'

B’
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◼  Properties:

|S|  :  cardinality of S

Union rule :  |A U B| = |A| + |B| ─ | A ∩ B |                                                                 

Difference rule :  |A ─ B| = |A| ─ | A ∩ B |                                                 

|A U B U C | = |A| + |B| + |C| ─ |A ∩ B| 

                     ─ |A ∩ C| ─ |B ∩ C|

                        + |A ∩ B ∩ C|
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|A U B U C | = |A| + |B| + |C| ─ |A ∩ B| 

                     ─ |A ∩ C| ─ |B ∩ C|

                        + |A ∩ B ∩ C|

A

B

C

A ∩ C
B ∩ C

A
 ∩

 B

A ∩ B ∩ C
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Union rule :  |A U B| = |A| + |B| ─ | A ∩ B |                                                                 

|A U B U C | = |A U B| + |C| ─ |(A U B) ∩ C | 

                    = |A| + |B| ─ | A ∩ B | + |C|

                     −|(A ∩ C) U (B ∩ C)| 

                    = |A| + |B| + |C| ─ | A ∩ B |

                      ─ |A ∩ C| ─ |B ∩ C|

                        + |A ∩ B ∩ C|             

Why?



1/7/2025 26

Union rule :  |A U B| = |A| + |B| ─ | A ∩ B |                                                                 

      |(A ∩ C) U (B ∩ C)| 

      = |A ∩ C| + |B ∩ C| - |(A ∩ C) ∩ (B ∩ C)| 

              

      = |A ∩ C| + |B ∩ C| - |A ∩ B ∩ C|             

Here is why:
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◼  Inductively defined sets: used for sets with a

                                                      linear order

◼  To define a set S inductively is to do three things:

     Basis: Specify one or more elements of S.

     Induction: Specify one or more rules to construct 

                    elements of S from existing elements of S.

     Closure: Specify that no other elements are in S

                    (always assumed).

     (Basis elements and induction rules are called constructors)
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𝑎𝑛𝑐𝑛 = 𝑎𝑎𝑛−1𝑐𝑛−1c  

𝑎𝑛+1𝑏𝑐𝑛 = 𝑎𝑎𝑛𝑏𝑐𝑛−1c  
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Functions

What is a function?

a function is a way to classify/characterize 
things.

For instance, you can classify/characterize a 

group of people by their birthdays.

Must be precise 

and unique
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What is a function?

John  Scott

  Adam 

Candy  Clara 

  Matt

1/1 1/2  1/3  … 

1/31 

2/1  2/2  2/3  …

2/28  2/29 …

…

12/30  12/31

John’s birthday
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◼  A function f  from A to B associates each

    element of A with EXACTLY one element of B.

◼  Notations: 

domain codomain (image)

Function?

f
1

2

3

a

b

c

d
BA

f(a)=f(b)=1

f(c)=f(d)=3
Yes

Functions
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◼Notations: 

f(a)=f(b)=1

f(c)=f(d)=3

( Inverse image of {2} )

Functions
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a

b

c

d

1

2

3A B

f

Function?
f(a)=f(b)=1

f(c)=f(d)=3

f(c) = 2
No

are functions from R -> Z

Floor and Ceiling functions:

                                        

  )(xfloorx = :  largest integer not greater than x

  )(xceilingx = :  smallest integer not less than x

Functions
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a

b

c

d

1

2

3A B

f

Functions

How many different functions from A to 

B can be defined? 

3 × 3 × 3 × 3 = 34
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Things you need to know 

about functions:

• Composition of functions

• Inverse function

• GCD, Division algorithm, Euclid 

algorithm

• Mod functions and inverses

• Pigeon Hole Principle

• Hash functions

• Recursively defined functions

• Binary trees
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Greatest Common Divisor (gcd):

   x, y  :   integers, not both zero

    gcd(x, y) = largest integer that divides x and y

     Is  gcd(x, y)  a function?

gcd(a,b) = gcd(b,a) = gcd(a, -b)

gcd(a,b) = gcd(b,a-bq)  for some integer q

gcd(a,b) = ma+nb     for some integers m and n

If  d|ab  and  gcd(d,a) = 1, then  d|b 

Yes

Functions
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Division algorithm
    a, b : integers, b != 0

    there exist unique integers  q  and  r such that

        a = bq + r ,          0<= r < |b|

 Euclid’s algorithm (for finding gcd(a,b))

  

a, b: natural integers, not both zero

while  (b > 0)  do {

    find q, r so that  a = bq+r   and  0<= r < b;

    a :=  b;     b := r ; 

 }

Output(a);

Functions
q = a / b r = a % b
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Examples:  find  gcd(189, 33)

189 =        33  +   5 24

a = q * b  +  r

33  =        24  +   1 9

2 624  =        9  +   

1 39   =        6  +   

2 06  =          3  +   

3  =          0  +   

Since  b=0,  so output  a=39   =        6  +   1 3

Functions
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mod function

  a, b : integers with  b > 0

   a mod b = r if   a = bq + r    with   0 <= r < b   

   How to compute q and r?

                                                                                      

Division algorithm 

Solve the equation for      q =  a/b – r/b                   

Since  q  is an integer and    0 <=  r/b < 1

it follows that  

   

So we have    

 baq /=

 bababqar /−=−=

Functions
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i

i-1

i-2

a/b

r/b

q = i-1  or  i-2  ?

i

i-1

i-2

a/b

r/b
q = i-1

q = i-2

(a) (b)



mod function

  a, b : integers with b>0

   a mod b =  a – b 

  Example: It is  2am in Paris. What time is it in San Francisco

                   (9 hours difference)?

   

   (12 hr clock):   (2-9) mod 12 = (-7) mod 12

                                                                                     pm
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                                                                                          . ba /

  5)1(12712/7127 =−−−=−−−=

Functions

Quotient of a 

divided by b
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Paris time

San Francisco time

x

y = x-9

2 am

5 pm

remainder

remainder
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Composition:

 
                                                                                

g :  A  ->  B      and    f : B -> C

Composition of   f  and  g  :    

                                       

( ) CAgf →:

( )( ) ( )( )xgfxgf =

x g(x) f(g(x))

Constructing Functions



Composition:

 
                                                                                

Examples:                                                                          

          floor ( log2 20 )  =  floor (4.xx ) = 4

          ceiling ( log2 20 ) = ceiling (4.xx ) = 5
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g :  A  ->  B      and    f : B -> C

Composition of   f  and  g  :    

                                       

( ) CAgf →:

( )( ) ( )( )xgfxgf =

Constructing Functions
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Given:     f : A  ->  B

                                                   injective + surjective

        

 
                                                                                

Surjective  (onto):

Bijective  (one-to-one  &  onto):

Injective  (one-to-one) : )()( yfxfyx 

Properties of Functions
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Injective  (one-to-one) : )()( yfxfyx 

                                                                                                .

                                                                                                                             

.

NO

NO

Properties of Functions
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a

b

c

1 2  3

  4   5
A B

f

One-to-one Functions

How many different one-to-one 

functions from A to B can be defined? 

5 × 4 × 3 =
5!

5 − 3 !
=

5!

2!
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.

   Is  f  surjective? 

   NO

   f  surjective  but  not  injective

Example:    f : Z  →  N  

               𝑓 𝑥 =  𝑥2                                                        

Example:    f : Z  →  N                                         
                                                                                              

                 
f(x) = | x |

Surjective  (onto):

Properties of Functions
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Onto Functions

How many different onto functions from A to 

B can be defined? 

35 − 𝐹1 − 𝐹2

where 𝐹𝑖 𝑖 = 1, 2  𝑖𝑠 𝑡ℎ𝑒 number of different 

functions from A to B with each image set 

having 𝑖 elements only. 

a  b  

c  d   

eA

1

2

3 B

f 1 

2 

3



1/7/2025 50

a  b  c

 d   e

Onto Functions

𝐹1 = 3; 𝐹2 = (25 − 2)
3
2

1

2

3 B

f
A

Hence, the number of different onto functions 

from A to B = 35 − 3 − (25 − 2)
3
2
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Onto Functions

𝐹1= 3 Why?

a  b  

c  d   

eA

f 1
a  b  

c  d   

eA

2f

a  b  

c  d   

eA

f 3
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Onto Functions

𝐹2= (25 − 2)
3
2

             Why?

a  b  

c  d   

eA

f 1 

2

25 − 2

And B has 
3
2

 2-element subsets.

So    𝐹2 = (25 − 2)
3
2

For a 2-element subset of B, the number of onto functions from 

A to that subset is:



Bijective  (one-to-one  &  onto):
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Example:    f : (0, 1)  →  (2, 5)  defined by   f(x) = 3x + 2    

                   is a bijection 
                                                                                              

                   Proof:         

Example:    f :  R  →  R    defined by 𝑓 𝑥 = 𝑥3     
                                                                                              

YesIs  f  bijective ? 

Properties of Functions
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Functions

|A| = m      |B| = n

(1) How many different functions can be defined

     from A to B?

(2) If  m ≤ n then how many different one-to-one

     functions can be defined from A to B?

(3) If  m ≥ n then how many different onto

     functions can be defined from A to B?
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If  f  is a bijection, then the inverse of  f,         ,

                        exists and is defined by                   iff  

 
                                                                                

Inverse: 1−f

abf =− )(1
baf =)(

?))((          ?))((    Hence, 11 == −− bffaff

bbffaaff == −− ))((         ))(( 11

Properties of Functions
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Example:    f : (0, 1)  →  (2, 5)  defined by   f(x) = 3x + 2    

                   is a bijection 
                                              

                                  ?)y(f =−1

Properties of Functions
yx
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Example:                          defined by   f(x) = (4x+1) mod 5 

                   is a bijection 

                                              

                                     ?1 =−f

55: NNf →

Properties of Functions

𝑁5 = {0, 1, 2, 3, 4} 𝑓 𝑁5 = {1, 0, 4, 3, 2}
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To ensure that    𝑓 𝑓−1 𝑦 = 𝑦 

Why should we take ‘c’ and ‘k’  such 

that 𝑓 𝑐 = 0 and 1 = 𝑎𝑘 + 𝑛𝑚 ?

𝑓 𝑓−1 𝑦 = 𝑓 𝑘𝑦 + 𝑐  = 𝑎 𝑘𝑦 + 𝑐 + 𝑏

 

                 = 𝑎𝑘𝑦 + 𝑎𝑐 + 𝑏
                 

                   = 𝑎𝑘𝑦 + 𝑞𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑞 𝜖𝑍

                   = 1 − 𝑛𝑚 𝑦 + 𝑞𝑛

                    = 𝑦 − 𝑛𝑚𝑦 + 𝑞𝑛 = 𝑦 𝑚𝑜𝑑 𝑛
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Example:                          defined by   f(x) = ( 4 x +1) mod 5 

                   is a bijection 

                                              

                                     ?1 =−f

55: NNf →

Since gcd(4, 5) = 1, the theorem says that ƒ is a bijection.

First, find a ‘c’ such that ƒ(c) = 0. e.g., ƒ(1) = 0.

Then use Euclid’s algorithm to verify that 1 = gcd(4, 5) and 

work backwards through the equations to find that 

             1 = 4(–1) + 5(1).        So    k = –1.

Properties of Functions

= (4x + 1) mod 5
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Find  gcd(5, 4)

5   =         4  +   1 1

a = q * b  +  r

4  =          1 +   

Since  b=0,  so output  a=1

Find  1= 4·(-1) + 5·1

1 =  5  -  1·4

1 =  5·(1)  +  4·(-1)

1  =          0 +   

4              0

Properties of Functions
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Find  gcd(23,  4)

23   =        4  +   5 3

4  =         3 +   

Since  b=0,  so output  a=1

Find  1= 4·(6) + 23·(-1)

1 =  4  -  1·3

1 =  4  + 

        (23 – 5·4)·(-1)
3  =         1+   

1              1

3              0

1  =         0+   
1 =  4·6   + 23·(-1)

Properties of Functions
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◼ Pigeon Hole Principle   If m pigeons are put into n

     holes and m > n, then one hole has two or more pigeons.

     (or,  if A and B are finite sets with | A | > | B |, then there are

      no injections from A to B)

Example. In Mexico City there are two people with the same 

number of hairs on their heads (assumption: everyone has 

less than 10 million hairs on their head and the population of

Mexico City is more than 10 million).

 Number of pigeons=?      Number of holes = ?

Population of Mexico City Number of people with different number of hairs 

Properties of Functions
Number of elements 

in the domain

Number of elements 

in the codomain
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People with 1 

hair go here

People with 2 

hairs go here

People with 3 

hairs go here

People with 

one million 

hairs go here

1,000,001 people here.

(Each person has at least 1  

hair but at most one million 

hairs)
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Example.  How many people are needed in a group to say

that three were born on the same day of the week?

Solution:  

     would  14  people work?

     would  15 people work?

M

  2

T

 2

W

 2

R

 2

F

 2

ST

  2

SU

  2

Properties of Functions



1/7/2025 65

Hash Functions  use keys to look up information in a

                                   table, but without searching,

                                   so we can cut operation time from

                              O(n) to O(1). 

Properties of Functions: hashing

Items are stored into a table (called a hash table) 

based on the value of a search key (e.g., birthday).

If collisions occur, then a second key (e.g., last name) 

is used.

The idea is to use the keys to jump directly to the entry 

where the information is stored without any searching.
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Properties of Functions: hashing

E Lee

J Doe

.

      .

T Smith

S Lewis

.

      .

      .

      .

      .

      .

2

1

.

      .

60

61

.

      .

      .

      .

      .

      .

How to find T. Smith’s 

information?

Get T. Smith’s 

birthday : March 1

Compute the index:

31+28+1 = 60

So go to entry 60 to 

get T. Smith’s 

information

The operation time is O(1)
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Properties of Functions: hashing

To avoid collision problem, use a 

second key or even a third key, a 

fourth key, …

E Lee

J Doe

.

      .

S Lewis

.

      .

      .

      .

      .

      .

2

1

.

      .

60

61

.

      .

      .

      .

      .

      .

Adam    ….    Smith    …..

1  … .              19           …..   

The operation time is still O(1)

Memory is so cheap, we don’t 

use linear probing any more.

1
s
t k

e
y

2nd key
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Given an alphabet  A={a, b, c, d, e}

   1. what is the number of strings of length 5 over A   

       that ends in a  or b?

                                                              

    2. what is the number of strings of length 5 over A

       that contains at least one c?

a/b

Strings of

  length 5 

    over A

        

strings of length 5 over A that contains at least

one c

Strings of length of 5 

over A that contains no c

String Algebra

(54∗ 2)

(55 − 45)

5 555

45
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Recursiveness does not save computation 

time, it only makes your code more compact

Recursively Defined Functions

    Function ƒ is recursively defined : at least one ƒ(x) is

    defined in terms of another ƒ(y), where x ≠ y.

Technique (when argument domain is inductively defined)

    1. Specify a value ƒ(x) for each basis element

         x of S.

    2. Specify rules that, 

        for each inductively defined element  x in S, 

        define ƒ(x) in terms of previously defined values of ƒ.

sum = 0;

 for (i=1; i<=1000; i++)   sum = sum + i;

More on Functions

f(0) = 0;

f(n) = f(n-1) + rule(s) on n
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More on Functions

sum = 0;

sum = sum + 1;

sum = sum + 2;

sum = sum + 3;

sum = sum + 4;

sum = sum + 5;

         ⋮
sum = sum + 1,000,000;

One way to write the code:

A better way to write the code:

sum = 0;

 for (i=1; i<=1000; i++)   sum = sum + i;

Computation 

time is the same
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A binary relation  R  over a set  A  is a subset of A × A.

 If (x, y) ∈ R  we also write  xRy.

Example. Binary relations over A = {0, 1} :

                  ∅,  A × A,  eq = {(0, 0), (1, 1)},  less = {(0, 1)}.

Definitions: Let R be a binary relation over a set A.

⚫ R is reflexive :  xRx   for all x ∈ A.

⚫ R is symmetric :  xRy         yRx  for all x, y ∈ A.

⚫ R is transitive :  xRy, yRz          xRz   for all x, y, z ∈ A.

Binary Relations
Relation is a way to 

partition a set
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Composition: If R and S are binary relations, then composition

                         of  R  and  S  is

                              R ∘ S = {(x, z) |  xRy and  ySz  for some y}.

Example (digraph representations). Let R = {(a, b), (b, a),

     (b, c)} over A = {a, b, c}. Then  R,   𝑅2= R ∘ R ,  and   

       𝑅3= 𝑅2 ∘ R    can be represented by directed graphs:

} c) (b,  a), (b,  b), (a, { =R

} c)  (a,  b),  (b,  a),  (a, {2 =R

} c) (b, a), (b, b), (a, { 3 =R

(x, y)   (y, z) = (x, z)

Binary Relations
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A binary relation is an equivalence relation if it has the three 

properties: reflexive, symmetric, and transitive (RST).

Examples. a.  Equality on any set.

                   b.  x ~ y iff | x | = | y | over the set of strings {a, b, c}*.

                   c.  x ~ y iff x and y have the same birthday over the

                        set of people.

Quiz. Which of the relations are RST?

a. xRy  iff  x ≤ y or x > y over Z.

b. xRy  iff  | x – y | ≤ 2 over Z.

          c. xRy  iff  x and y are both even over Z.

                   Answers. Yes,  No,  No.

Provides a way

to partition the

domain set

(Not transitive)

(Not reflexive)

Equivalence Relations
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Equivalence Classes: If R is RST over A, then for each a ∈ A

 the equivalence class of a, denoted [a], is the set [a] = {x | xRa}.

 Property: For every pair a, b ∈ A we have either [a] = [b] or

                  [a] ∩ [b] = ∅.

Example. Suppose x ~ y iff x mod 3 = y mod 3 over N. Then the

                 equivalence classes are,

                 [0] = {0, 3, 6, …} = {3k | k ∈ N}

                 [1] = {1, 4, 7, …} = {3k + 1 | k ∈ N}

                 [2] = {2, 5, 8, …} = {3k + 2 | k ∈ N}.

Equivalence Relations
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A Partition of a set is a collection of nonempty disjoint subsets 

whose union is the set.

 Example. From the previous example, the sets [0], [1], [2] form a 

partition of N.

Theorem (RSTs and Partitions). Let A be a set. Then the 

following statements are true.

    1. Equivalence classes of any RST over A form a partition of A.

    2. Any partition of A yields an RST over A, where the sets of the

        partition act as the equivalence classes.

Equivalence Relations
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Example. Let x ~ y iff x mod 2 = y mod 2 over Z. Then ~ is an 

RST with equivalence classes [0], the evens, and [1], the odds. 

Also {[0], [1]} is a partition of Z.

Example. R can be partitioned into the set of half-open intervals 

{(n, n + 1] | n ∈ Z}. Then we have an RST ~ over R, where x ~ y 

iff x, y ∈ (n, n + 1] for some n ∈ Z.

Refinements of Partitions. If P and Q are partitions of a set S, 

    then P is a refinement of Q if every A ∈ P is a subset of some

    B ∈ Q.

Equivalence Relations
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Example. Let S = {a, b, c, d, e} and consider the

      following four partitions of S.

         P1 = {{a, b, c, d, e}},

        P2 = {{a, b}, {c, d, e}},

        P3 = {{a}, {b}, {c}, {d, e}},

        P4 = {{a}, {b}, {c}, {d}, {e}}.

    Each Pi is a refinement of  Pi–1. 

    P1 is the “coarsest” and P4 is the “finest”.

Equivalence Relations

a b

c

d
e
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End of Preliminaries
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