CS375: Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

Question 1:

Q: Why are you Here? or, why are you taking this course?

Ans: ???

Question 2:

Q: Who do you think is the most important scientist from the last (20-th) century?

Ans: keep your answer to yourself. The same question will be asked at the end of the semester again.

For the first question: why are you here?

You are here to learn three things.

Three things you will learn in this class:

1: The foundation of modern day computers

- i.e., Turing machines (1936)
- a piece of work that changed the world/ human history

1: The foundation of modern day computers

Such as: how to design a machine that can perform arithmetic operations? or, how to design a machine that can process/parse strings?

Three things you will learn in this class:

2: The person who developed that theory

Dr. Alan Turing

- The Nobel Prize equivalent in computer science area (Turing Award) was named after him

Three things you will learn in this class:

3: A little history on the life of that person

Dr. Alan Turing (1912-1954)

 including the reason why the logo of the Apple Computer company is a bitten

Table of Contents:

Week 1: Preliminaries (set algebra, relations, functions) (read Chapters 1-4) Weeks 2-5: Regular Languages, Finite Automata (Chapter 11) Weeks 6-8: Context-Free Languages, **Pushdown Automata (Chapters 12)** Weeks 9-11: Turing Machines (Chapter 13)

Table of Contents (conti):

Weeks 12-13: Propositional Logic (Chapter 6), Predicate Logic (Chapter 7), Computational Logic (Chapter 9), Algebraic Structures (Chapter 10)

Notations:

$\{x/P\}$: the set of all x that satisfies P

e.g., the set of odd natural numbers = {1,3,5, ... }

$$= \{ x \mid x = 2k+1 \text{ for some } k \in N \}$$

power(
$$\{a, b, c\}$$
) = ?
If $|S| = n$ then $|power(S)| = 2^{n}$

1/7/2025

1/7/2025

e.g.,

A - B (depends on where B is)

Union and intersection are commutative, associative, and distribute over each other

Absorption:

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

De Morgan's Laws.

$$(A \cup B)' = A' \cap B'$$

 $(A \cap B)' = A' \cup B'$

Absorption 1: $A \cup (A \cap B) = A$

So $A \cup (A \cap B) = A$

Absorption 2 : $A \cap (A \cup B) = A$

So $A \cap (A \cup B) = A$

So $(A \cup B)' = A' \cap B'$

University of Kentucky

1/7/2025

Properties:

1/

|S| : cardinality of S

Union rule : $|A \cup B| = |A| + |B| - |A \cap B|$

Difference rule : $|A - B| = |A| - (|A \cap B|)$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Inductively defined sets: used for sets with a linear order

To define a set S inductively is to do three things:
Basis: Specify one or more elements of S.
Induction: Specify one or more rules to construct elements of S from existing elements of S.
Closure: Specify that no other elements are in S (always assumed).

(Basis elements and induction rules are called constructors)

Example. Find an inductive definition for $S = \{\Lambda, ac, aacc, aaaccc, ...\} = \{a^n c^n \mid n \in \mathbb{N}\}.$ Solution: Basis: $\Lambda \in S$.

Induction: If $x \in S$ then axc $\in S$.

 $a^n c^n = a a^{n-1} c^{n-1} c$

Example. Find an inductive definition for $S = \{a^{n+1}bc^n \mid n \in N\}.$ Solution: Basis: $ab \in S$. Induction: If $x \in S$ then $axc \in S$.

1/7/2025

Functions Must be precise and unique What is a function?

a function is a way to classify/characterize things.

For instance, you can classify/characterize a group of people by their birthdays.

Functions

A **function** f from A to B associates each element of A with EXACTLY one element of B. Notations: $\rightarrow B$:Acòdomain (image) domain f a f(a)=f(b)=1b 2 Function? f(c)=f(d)=3R 33 Α Yes 1/7/2025 31

Functions

Floor and Ceiling functions:

$$\lfloor x \rfloor = floor(x)$$

: largest integer not greater than x

$$\left\lceil x \right\rceil = ceiling(x)$$

: smallest integer not less than x

are functions from $R \rightarrow Z$

Things you need to know about functions:

- Composition of functions
- Inverse function
- GCD, Division algorithm, Euclid algorithm
- Mod functions and inverses
- Pigeon Hole Principle
- Hash functions
- Recursively defined functions
- Binary trees

Greatest Common Divisor (gcd):

x, y : integers, not both zero gcd(x, y) =largest integer that divides x and y

Is gcd(x, y) a function? Yes gcd(a,b) = gcd(b,a) = gcd(a, -b) gcd(a,b) = gcd(b,a-bq) for some integer q gcd(a,b) = ma+nb for some integers m and n If d|ab and gcd(d,a) = 1, then d|b
$$q = a / b$$

Functions

Division algorithm

a, b : integers, *b* != 0

there exist unique integers q and r such that

 $a = bq + r, \qquad 0 <= r < |b|$

Euclid's algorithm (for finding gcd(a,b))

a, b: natural integers, not both zero
while (b > 0) do {
 find q, r so that a = bq+r and 0<= r < b;
 a := b; b := r;
}
Output(a);</pre>

Examples: find gcd(189, 33) a = q * b + r· <mark>3</mark> 189 = 5 33 + 1 | 6 + 24 9 24 33 9 2 3 ╋ 24 = |2|9 6 ╋ 3 1 Since b=0, so output a=3

mod function

1/7/2025

q = i - 1 or i - 2 ? a/b a/b - *r/b* q = i-2i-2 (a) (b) 1/7/2025 40

Example: It is *2am* in Paris. What time is it in San Francisco (9 hours difference)?

(12 hr clock): (2-9) mod 12 = (-7) mod 12 = $-7 - 12 \lfloor -7/12 \rfloor = -7 - 12(-1) = 5$ pm

1/7/2025

Constructing Functions

Composition:

Constructing Functions

Composition:

g: A -> B and f: B -> C Composition of f and g: $(f \circ g): A \rightarrow C$ $(f \circ g)(x) = f(g(x))$

Examples:

 $floor(log_2 20) = floor(4.xx) = 4$

ceiling $(\log_2 20) = \text{ceiling}(4.xx) = 5$

Given: *f* : *A* -> *B*

Injective (one-to-one): $x \neq y \Rightarrow f(x) \neq f(y)$

Surjective (onto):
$$\forall b \in B \exists a \in A \text{ such that } b = f(a)$$

Bijective (one-to-one & onto): injective + surjective

Inverse: If f is a <u>bijection</u>, then the inverse of f, f^{-1} , exists and is defined by $f^{-1}(b) = a$ iff f(a) = b

Injective (one-to-one): $x \neq y \Rightarrow f(x) \neq f(y)$

Example: $f: N_8 \rightarrow N$ where $N_n = \{0, 1, \dots, n-1\}$ $f(x) = 2x \mod 8$ Is f injective? (f(0) =? f(4) =?)NO Example: f:Z -> N $f(x) = x^2$ Is f injective? (f(2) = ? f(-2) = ?)1/7/2025 46 NO

One-to-one Functions

How many different one-to-one functions from A to B can be defined?

$$5 \times 4 \times 3 = \frac{5!}{(5-3)!} = \frac{5!}{2!}$$

Surjective (onto): $\forall b \in B \exists a \in A \text{ such that } b = f(a)$

Example:
$$f: Z \rightarrow N$$

$$f(x) = x^2$$

Is f surjective?

Example:
$$f : Z \rightarrow N$$

 $f(x) = |x|$

f surjective but not injective

1/7/2025

Onto Functions

How many different onto functions from A to B can be defined?

$$3^5 - F_1 - F_2$$

where F_i (i = 1, 2) is the number of different functions from A to B with each image set having i elements only.

1/7/2025

Onto Functions

$$F_{2} = (2^{5} - 2) \binom{3}{2}$$
Why?
For a 2-element subset of B, the number of onto functions from
A to that subset is: $2^{5} - 2$

$$A = \frac{a}{c} \frac{b}{c} \frac{f}{d} \frac{f}{2}$$
And B has $\binom{3}{2}$ 2-element subsets.

$$F_{2} = (2^{5} - 2) \binom{3}{2}$$
So $F_{2} = (2^{5} - 2) \binom{3}{2}$

Bijective (one-to-one & onto):

Example:
$$f:(0, 1) \rightarrow (2, 5)$$
 defined by $f(x) = 3x + 2$
is a bijection

Proof:

Example: $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^3$

Is f bijective ? Yes

Functions

$$f: A \to B$$

$$|A| = m$$
 $|B| = n$

(1) How many different functions can be defined from A to B?

(2) If $m \le n$ then how many different one-to-one functions can be defined from A to B?

(3) If $m \ge n$ then how many different onto functions can be defined from A to B?

Inverse: If f is a bijection, then the inverse of $f_{,}(f^{-1})$, exists and is defined by $f^{-1}(b) = a$ iff f(a) = b

Hence, $f^{-1}(f(a)) = ?$ $f(f^{-1}(b)) = ?$

 $f^{-1}(f(a)) = a$ $f(f^{-1}(b)) = b$

Why should we take 'c' and 'k' such that f(c) = 0 and 1 = ak + nm? To ensure that $f(f^{-1}(y)) = y$ $f(f^{-1}(y)) = f(ky + c) = a(ky + c) + b$ = aky + ac + b= aky + qn for some $q \in Z$ =((1-nm)y+qn) $= y - (nmy + qn) = y \mod n$ 1/7/202558

Example:
$$f: N_5 \rightarrow N_5$$
 defined by $f(x) = (4x + 1) \mod 5$
is a bijection
 $f^{-1} = ?$

Since gcd(4, 5) = 1, the theorem says that f is a bijection. First, find a 'c' such that f(c) = 0. e.g., f(1) = 0. Then use Euclid's algorithm to verify that 1 = gcd(4, 5) and work backwards through the equations to find that

$$1 = 4(-1) + 5(1)$$
. So $k = -1$.

Thus $f^{-1}(x) = (-x + 1) \mod 5$. $= (4x + 1) \mod 5$

Find
$$gcd(23, 4)$$

 $23 = 5 + 3$
 $4 = 1 + 1$
 $3 = 3 + 1$
 $1 = 4 + (23 - 5 + 4) \cdot (-1)$
 $1 = 4 + (23 - 5 + 4) \cdot (-1)$
 $1 = 4 + (23 - 5 + 4) \cdot (-1)$
 $1 = 4 + (23 - 5 + 4) \cdot (-1)$
 $1 = 4 + (23 - 5 + 4) \cdot (-1)$
 $1 = 4 + (23 - 5 + 4) \cdot (-1)$
Since b=0, so output a=1

Population of Mexico City Number of people with different number of hairs

Example. How many people are needed in a group to say that three were born on the same day of the week?

Solution:

would 15 people work?

Properties of Functions: hashing

Hash Functionsuse keys to look up information in a
table, but without searching,
so we can cut operation time from
O(n) to O(1).

Items are stored into a table (called a hash table) based on the value of a search key (e.g., birthday).

If collisions occur, then a second key (e.g., last name) is used.

The idea is to use the keys to jump directly to the entry where the information is stored without any searching.

String Algebra

Given an alphabet A={a, b, c, d, e}

2. what is the number of strings of length 5 over A that contains at least one c?

 $(5^4 * 2)$

Recursiveness does not save computation time, it only makes your code more compact

f(0) = 0;

More on Functions

Recursively Defined Functions

Function f is recursively defined : at least one f(x) is defined in terms of another f(y), where $x \neq y$.

sum = 0;for $(i=1; i \le 1000; i++)$ sum = sum + i; f(n) = f(n-1) + rule(s) on n

Technique (when argument domain is inductively defined)

- 1. Specify a value f(x) for each basis element x of S.
- 2. Specify rules that,

for each inductively defined element x in S,

define f(x) in terms of previously defined values of f.

More on Functions

One way to write the code:

sum = 0; sum = sum + 1; sum = sum + 2; sum = sum + 3; sum = sum + 4; sum = sum + 5; \vdots

Computation time is the same

sum = sum + 1,000,000;

A better way to write the code:

A **binary relation** R over a set A is a subset of $A \times A$. If $(x, y) \in R$ we also write xRy.

Example. Binary relations over $A = \{0, 1\}$:

 \emptyset , $A \times A$, $eq = \{(0, 0), (1, 1)\}, less = \{(0, 1)\}.$

Definitions: Let R be a binary relation over a set A.

- R is **reflexive** : xRx for all $x \in A$.
- *R* is **symmetric** : $xRy \implies yRx$ for all *x*, $y \in A$.
- *R* is **transitive** : xRy, $yRz \implies xRz$ for all x, y, $z \in A$.

Binary Relations

Composition: If *R* and *S* are binary relations, then composition of *R* and *S* is $R \circ S = \{(x, z) \mid xRy \text{ and } ySz \text{ for some } y\}$. $(x, y) \circ (y, z) = (x, z)$ **Example (digraph representations).** Let $R = \{(a, b), (b, a), (b, c)\}$ over $A = \{a, b, c\}$. Then R, $R^2 = R \circ R$, and $R^3 = R^2 \circ R$ can be represented by directed graphs:

$$R = \{ (a, b), (b, a), (b, c) \}$$
$$R^{2} = \{ (a, a), (b, b), (a, c) \}$$
$$R^{3} = \{ (a, b), (b, a), (b, c) \}$$

1/7/2025
Provides a way to partition the domain set

A binary relation is an *equivalence relation* if it has the three properties: reflexive, symmetric, and transitive (RST).

Examples. a. Equality on any set.

Equivalence Relations

b. $x \sim y$ iff |x| = |y| over the set of strings $\{a, b, c\}^*$.

c. x ~ y iff x and y have the same birthday over the set of people.

Quiz. Which of the relations are RST?a. xRy iff $x \le y$ or x > y over Z.b. xRy iff $|x - y| \le 2$ over Z.c. xRy iff x and y are both even over Z.177905Answers. Yes, No, No.

Equivalence Classes: If *R* is RST over *A*, then for each $a \in A$

the equivalence class of a, denoted [a], is the set $[a] = \{x \mid xRa\}$.

Property: For every pair $a, b \in A$ we have either [a] = [b] or $[a] \cap [b] = \emptyset$.

Example. Suppose x ~ y iff x mod 3 = y mod 3 over N. Then the equivalence classes are, $[0] = \{0, 3, 6, ...\} = \{3k | k \in \mathbb{N}\}$ $[1] = \{1, 4, 7, ...\} = \{3k + 1 | k \in \mathbb{N}\}$ $[2] = \{2, 5, 8, ...\} = \{3k + 2 | k \in \mathbb{N}\}.$

1/7/2025

A **Partition** of a set is a collection of nonempty disjoint subsets whose union is the set.

Example. From the previous example, the sets [0], [1], [2] form a partition of *N*.

Theorem (RSTs and Partitions). Let *A* be a set. Then the following statements are true.

- 1. Equivalence classes of any RST over A form a partition of A.
- Any partition of A yields an RST over A, where the sets of the partition act as the equivalence classes.

Example. Let x ~ y iff x mod 2 = y mod 2 over Z. Then ~ is an RST with equivalence classes [0], the evens, and [1], the odds. Also {[0], [1]} is a partition of Z.

Example. *R* can be partitioned into the set of half-open intervals $\{(n, n + 1) \mid n \in Z\}$. Then we have an RST ~ over *R*, where $x \sim y$ iff $x, y \in (n, n + 1]$ for some $n \in Z$.

Refinements of Partitions. If *P* and *Q* are partitions of a set *S*, then *P* is a refinement of *Q* if every $A \in P$ is a subset of some $B \in Q$.

1/7/2025

Example. Let $S = \{a, b, c, d, e\}$ and consider the following four partitions of S.

$$P1 = \{\{a, b, c, d, e\}\},\$$

$$P2 = \{\{a, b\}, \{c, d, e\}\},\$$

$$P3 = \{\{a\}, \{b\}, \{c\}, \{d, e\}\},\$$

$$P4 = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}\},\$$

Each *Pi* is a refinement of *Pi*–1. *P1* is the "coarsest" and *P4* is the "finest".

End of Preliminaries