
1/7/2025 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

1/7/2025 2

Question 1:

Q: Why are you Here?

University of Kentucky

Ans: ???

why are you taking this course?

or,

1/7/2025 3

Question 2:

Q: Who do you think is the most

 important scientist from the

 last (20-th) century?

University of Kentucky

Ans: keep your answer to yourself.

The same question will be asked

at the end of the semester again.

1/7/2025 4

You are here to learn

three things.

University of Kentucky

For the first question: why are

you here?

1/7/2025 5

Three things you will learn in

this class:

1: The foundation of modern

 day computers

University of Kentucky

i.e., Turing machines (1936)

- a piece of work that changed the world/

 human history

1/7/2025 6

1: The foundation of modern

 day computers

University of Kentucky

Such as: how to design a machine that can

 perform arithmetic operations?

 or, how to design a machine that can

 process/parse strings?

1/7/2025 7

Three things you will learn in

this class:

2: The person who developed

 that theory

University of Kentucky

Dr. Alan Turing

- The Nobel Prize equivalent in computer

science area (Turing Award) was named

after him

1/7/2025 8

Three things you will learn in

this class:

3: A little history on the life of

 that person

University of Kentucky

Dr. Alan Turing (1912-1954)

- including the reason why the logo of the

Apple Computer company is a bitten

apple

1/7/2025 9

The Arrangement:

University of Kentucky

Context-Free Languages +

Pushdown Automata

Turing machines + Church-Turing Thesis

Regular Languages + Finite Automata

Preliminaries

1/7/2025 10

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations,

 functions) (read Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

 Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages,

Pushdown Automata (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky

1/7/2025 11

Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter

6), Predicate Logic (Chapter 7),

Computational Logic (Chapter 9),

Algebraic Structures (Chapter 10)

University of Kentucky

1/7/2025 12

1. Preliminaries – set algebra

◼ Set : collection of things

 (order not important; repetition not allowed)

◼ Notations:

R,Q,N,Z

Sx Sx,

 nx,,x,x,xS 321 = …

{ }, Φ : empty set

1/7/2025 13

 P|x : the set of all x that satisfies P

   ?,,,, abccba =    ?,,,,, cbacbaa =

e.g., the set of odd natural numbers = {1,3,5, … }

=

◼ Notations:

A = B : two sets A and B are equal

1/7/2025 14

◼ Notations:

BA : A is a subset of B

RQZN 

Power(S) = the set of all subsets of S

power({a, b, c}) = ?

S ⊆ S Φ ⊆ S

1/7/2025 15

◼ Notations:

Venn diagram

A

B

A

B

A

B

A U B : union

A ∩ B : intersection

A ─ B : difference

1/7/2025 16

◼ Notations:

BA : symmetric

 difference

AUA −=' : universal

 complement

A

B

Universal

A A’

1/7/2025 17

e.g.,

A

B
A - B

(depends on where B is)

1/7/2025 18

◼ Properties:

Union and intersection are commutative, associative,

and distribute over each other

Absorption:

A U (A ∩ B) = A

A ∩ (A U B) = A

De Morgan’s Laws:

 (𝐴 ∪ 𝐵)′= 𝐴′ ∩ 𝐵′

(𝐴 ∩ 𝐵)′= 𝐴′ ∪ 𝐵′

1/7/2025 University of Kentucky 19

A

B

So A U (A ∩ B) = A

Absorption 1: A U (A ∩ B) = A

A∩B

1/7/2025 University of Kentucky 20

A

So A ∩ (A U B) = A

Absorption 2 : A ∩ (A U B) = A

B

AUB

AUB
AUB

1/7/2025 University of Kentucky 21

universe

A

A'
B

B'

A U B

De Morgan’s Law 1:

(𝐴 ∪ 𝐵)′= 𝐴′ ∩ 𝐵′

(𝐴 ∪ 𝐵)′

So (𝐴 ∪ 𝐵)′= 𝐴′ ∩ 𝐵′

1/7/2025 University of Kentucky 22

universe

De Morgan’s Law 1:

(𝐴 ∪ 𝐵)′= 𝐴′ ∩ 𝐵′

(𝐴 ∪ 𝐵)′

So (𝐴 ∪ 𝐵)′= 𝐴′ ∩ 𝐵′

A'

B’

1/7/2025 23

◼ Properties:

|S| : cardinality of S

Union rule : |A U B| = |A| + |B| ─ | A ∩ B |

Difference rule : |A ─ B| = |A| ─ | A ∩ B |

|A U B U C | = |A| + |B| + |C| ─ |A ∩ B|

 ─ |A ∩ C| ─ |B ∩ C|

 + |A ∩ B ∩ C|

1/7/2025 24

|A U B U C | = |A| + |B| + |C| ─ |A ∩ B|

 ─ |A ∩ C| ─ |B ∩ C|

 + |A ∩ B ∩ C|

A

B

C

A ∩ C
B ∩ C

A
 ∩

 B

A ∩ B ∩ C

1/7/2025 25

Union rule : |A U B| = |A| + |B| ─ | A ∩ B |

|A U B U C | = |A U B| + |C| ─ |(A U B) ∩ C |

 = |A| + |B| ─ | A ∩ B | + |C|

 −|(A ∩ C) U (B ∩ C)|

 = |A| + |B| + |C| ─ | A ∩ B |

 ─ |A ∩ C| ─ |B ∩ C|

 + |A ∩ B ∩ C|

Why?

1/7/2025 26

Union rule : |A U B| = |A| + |B| ─ | A ∩ B |

 |(A ∩ C) U (B ∩ C)|

 = |A ∩ C| + |B ∩ C| - |(A ∩ C) ∩ (B ∩ C)|

 = |A ∩ C| + |B ∩ C| - |A ∩ B ∩ C|

Here is why:

1/7/2025 27

◼ Inductively defined sets: used for sets with a

 linear order

◼ To define a set S inductively is to do three things:

 Basis: Specify one or more elements of S.

 Induction: Specify one or more rules to construct

 elements of S from existing elements of S.

 Closure: Specify that no other elements are in S

 (always assumed).

 (Basis elements and induction rules are called constructors)

1/7/2025 28

𝑎𝑛𝑐𝑛 = 𝑎𝑎𝑛−1𝑐𝑛−1c

𝑎𝑛+1𝑏𝑐𝑛 = 𝑎𝑎𝑛𝑏𝑐𝑛−1c

1/7/2025 29

Functions

What is a function?

a function is a way to classify/characterize
things.

For instance, you can classify/characterize a

group of people by their birthdays.

Must be precise

and unique

1/7/2025 30

What is a function?

John Scott

 Adam

Candy Clara

 Matt

1/1 1/2 1/3 …

1/31

2/1 2/2 2/3 …

2/28 2/29 …

…

12/30 12/31

John’s birthday

1/7/2025 31

◼ A function f from A to B associates each

 element of A with EXACTLY one element of B.

◼ Notations:

domain codomain (image)

Function?

f
1

2

3

a

b

c

d
BA

f(a)=f(b)=1

f(c)=f(d)=3
Yes

Functions

1/7/2025 32

◼Notations:

f(a)=f(b)=1

f(c)=f(d)=3

(Inverse image of {2})

Functions

1/7/2025 33

a

b

c

d

1

2

3A B

f

Function?
f(a)=f(b)=1

f(c)=f(d)=3

f(c) = 2
No

are functions from R -> Z

Floor and Ceiling functions:

 )(xfloorx = : largest integer not greater than x

 )(xceilingx = : smallest integer not less than x

Functions

1/7/2025 34

a

b

c

d

1

2

3A B

f

Functions

How many different functions from A to

B can be defined?

3 × 3 × 3 × 3 = 34

1/7/2025 35

Things you need to know

about functions:

• Composition of functions

• Inverse function

• GCD, Division algorithm, Euclid

algorithm

• Mod functions and inverses

• Pigeon Hole Principle

• Hash functions

• Recursively defined functions

• Binary trees

1/7/2025 36

Greatest Common Divisor (gcd):

 x, y : integers, not both zero

 gcd(x, y) = largest integer that divides x and y

 Is gcd(x, y) a function?

gcd(a,b) = gcd(b,a) = gcd(a, -b)

gcd(a,b) = gcd(b,a-bq) for some integer q

gcd(a,b) = ma+nb for some integers m and n

If d|ab and gcd(d,a) = 1, then d|b

Yes

Functions

1/7/2025 37

Division algorithm
 a, b : integers, b != 0

 there exist unique integers q and r such that

 a = bq + r , 0<= r < |b|

 Euclid’s algorithm (for finding gcd(a,b))

a, b: natural integers, not both zero

while (b > 0) do {

 find q, r so that a = bq+r and 0<= r < b;

 a := b; b := r ;

 }

Output(a);

Functions
q = a / b r = a % b

1/7/2025 38

Examples: find gcd(189, 33)

189 = 33 + 5 24

a = q * b + r

33 = 24 + 1 9

2 624 = 9 +

1 39 = 6 +

2 06 = 3 +

3 = 0 +

Since b=0, so output a=39 = 6 + 1 3

Functions

1/7/2025 39

mod function

 a, b : integers with b > 0

 a mod b = r if a = bq + r with 0 <= r < b

 How to compute q and r?

Division algorithm

Solve the equation for q = a/b – r/b

Since q is an integer and 0 <= r/b < 1

it follows that

So we have

 baq /=

 bababqar /−=−=

Functions

1/7/2025 40

i

i-1

i-2

a/b

r/b

q = i-1 or i-2 ?

i

i-1

i-2

a/b

r/b
q = i-1

q = i-2

(a) (b)

mod function

 a, b : integers with b>0

 a mod b = a – b

 Example: It is 2am in Paris. What time is it in San Francisco

 (9 hours difference)?

 (12 hr clock): (2-9) mod 12 = (-7) mod 12

 pm

1/7/2025 41

 . ba /

  5)1(12712/7127 =−−−=−−−=

Functions

Quotient of a

divided by b

1/7/2025 42

Paris time

San Francisco time

x

y = x-9

2 am

5 pm

remainder

remainder

1/7/2025 43

Composition:

g : A -> B and f : B -> C

Composition of f and g :

() CAgf →:

()() ()()xgfxgf =

x g(x) f(g(x))

Constructing Functions

Composition:

Examples:

 floor (log2 20) = floor (4.xx) = 4

 ceiling (log2 20) = ceiling (4.xx) = 5

1/7/2025 44

g : A -> B and f : B -> C

Composition of f and g :

() CAgf →:

()() ()()xgfxgf =

Constructing Functions

1/7/2025 45

Given: f : A -> B

 injective + surjective

Surjective (onto):

Bijective (one-to-one & onto):

Injective (one-to-one) :)()(yfxfyx 

Properties of Functions

1/7/2025 46

Injective (one-to-one) :)()(yfxfyx 

 .

.

NO

NO

Properties of Functions

1/7/2025 47

a

b

c

1 2 3

 4 5
A B

f

One-to-one Functions

How many different one-to-one

functions from A to B can be defined?

5 × 4 × 3 =
5!

5 − 3 !
=

5!

2!

1/7/2025 48

.

 Is f surjective?

 NO

 f surjective but not injective

Example: f : Z → N

 𝑓 𝑥 = 𝑥2

Example: f : Z → N

f(x) = | x |

Surjective (onto):

Properties of Functions

1/7/2025 49

Onto Functions

How many different onto functions from A to

B can be defined?

35 − 𝐹1 − 𝐹2

where 𝐹𝑖 𝑖 = 1, 2 𝑖𝑠 𝑡ℎ𝑒 number of different

functions from A to B with each image set

having 𝑖 elements only.

a b

c d

eA

1

2

3 B

f 1

2

3

1/7/2025 50

a b c

 d e

Onto Functions

𝐹1 = 3; 𝐹2 = (25 − 2)
3
2

1

2

3 B

f
A

Hence, the number of different onto functions

from A to B = 35 − 3 − (25 − 2)
3
2

1/7/2025 51

Onto Functions

𝐹1= 3 Why?

a b

c d

eA

f 1
a b

c d

eA

2f

a b

c d

eA

f 3

1/7/2025 52

Onto Functions

𝐹2= (25 − 2)
3
2

 Why?

a b

c d

eA

f 1

2

25 − 2

And B has
3
2

 2-element subsets.

So 𝐹2 = (25 − 2)
3
2

For a 2-element subset of B, the number of onto functions from

A to that subset is:

Bijective (one-to-one & onto):

1/7/2025 53

Example: f : (0, 1) → (2, 5) defined by f(x) = 3x + 2

 is a bijection

 Proof:

Example: f : R → R defined by 𝑓 𝑥 = 𝑥3

YesIs f bijective ?

Properties of Functions

1/7/2025 54

Functions

|A| = m |B| = n

(1) How many different functions can be defined

 from A to B?

(2) If m ≤ n then how many different one-to-one

 functions can be defined from A to B?

(3) If m ≥ n then how many different onto

 functions can be defined from A to B?

1/7/2025 55

If f is a bijection, then the inverse of f, ,

 exists and is defined by iff

Inverse: 1−f

abf =−)(1
baf =)(

?))((?))((Hence, 11 == −− bffaff

bbffaaff == −−))(())((11

Properties of Functions

1/7/2025 56

Example: f : (0, 1) → (2, 5) defined by f(x) = 3x + 2

 is a bijection

 ?)y(f =−1

Properties of Functions
yx

1/7/2025 57

Example: defined by f(x) = (4x+1) mod 5

 is a bijection

 ?1 =−f

55: NNf →

Properties of Functions

𝑁5 = {0, 1, 2, 3, 4} 𝑓 𝑁5 = {1, 0, 4, 3, 2}

1/7/2025 University of Kentucky 58

To ensure that 𝑓 𝑓−1 𝑦 = 𝑦

Why should we take ‘c’ and ‘k’ such

that 𝑓 𝑐 = 0 and 1 = 𝑎𝑘 + 𝑛𝑚 ?

𝑓 𝑓−1 𝑦 = 𝑓 𝑘𝑦 + 𝑐 = 𝑎 𝑘𝑦 + 𝑐 + 𝑏

 = 𝑎𝑘𝑦 + 𝑎𝑐 + 𝑏

 = 𝑎𝑘𝑦 + 𝑞𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑞 𝜖𝑍

 = 1 − 𝑛𝑚 𝑦 + 𝑞𝑛

 = 𝑦 − 𝑛𝑚𝑦 + 𝑞𝑛 = 𝑦 𝑚𝑜𝑑 𝑛

1/7/2025 59

Example: defined by f(x) = (4 x +1) mod 5

 is a bijection

 ?1 =−f

55: NNf →

Since gcd(4, 5) = 1, the theorem says that ƒ is a bijection.

First, find a ‘c’ such that ƒ(c) = 0. e.g., ƒ(1) = 0.

Then use Euclid’s algorithm to verify that 1 = gcd(4, 5) and

work backwards through the equations to find that

 1 = 4(–1) + 5(1). So k = –1.

Properties of Functions

= (4x + 1) mod 5

1/7/2025 60

Find gcd(5, 4)

5 = 4 + 1 1

a = q * b + r

4 = 1 +

Since b=0, so output a=1

Find 1= 4·(-1) + 5·1

1 = 5 - 1·4

1 = 5·(1) + 4·(-1)

1 = 0 +

4 0

Properties of Functions

1/7/2025 61

Find gcd(23, 4)

23 = 4 + 5 3

4 = 3 +

Since b=0, so output a=1

Find 1= 4·(6) + 23·(-1)

1 = 4 - 1·3

1 = 4 +

 (23 – 5·4)·(-1)
3 = 1+

1 1

3 0

1 = 0+
1 = 4·6 + 23·(-1)

Properties of Functions

1/7/2025 62

◼ Pigeon Hole Principle If m pigeons are put into n

 holes and m > n, then one hole has two or more pigeons.

 (or, if A and B are finite sets with | A | > | B |, then there are

 no injections from A to B)

Example. In Mexico City there are two people with the same

number of hairs on their heads (assumption: everyone has

less than 10 million hairs on their head and the population of

Mexico City is more than 10 million).

 Number of pigeons=? Number of holes = ?

Population of Mexico City Number of people with different number of hairs

Properties of Functions
Number of elements

in the domain

Number of elements

in the codomain

1/7/2025 63

People with 1

hair go here

People with 2

hairs go here

People with 3

hairs go here

People with

one million

hairs go here

1,000,001 people here.

(Each person has at least 1

hair but at most one million

hairs)

1/7/2025 64

Example. How many people are needed in a group to say

that three were born on the same day of the week?

Solution:

 would 14 people work?

 would 15 people work?

M

 2

T

 2

W

 2

R

 2

F

 2

ST

 2

SU

 2

Properties of Functions

1/7/2025 65

Hash Functions use keys to look up information in a

 table, but without searching,

 so we can cut operation time from

 O(n) to O(1).

Properties of Functions: hashing

Items are stored into a table (called a hash table)

based on the value of a search key (e.g., birthday).

If collisions occur, then a second key (e.g., last name)

is used.

The idea is to use the keys to jump directly to the entry

where the information is stored without any searching.

1/7/2025 66

Properties of Functions: hashing

E Lee

J Doe

.

 .

T Smith

S Lewis

.

 .

 .

 .

 .

 .

2

1

.

 .

60

61

.

 .

 .

 .

 .

 .

How to find T. Smith’s

information?

Get T. Smith’s

birthday : March 1

Compute the index:

31+28+1 = 60

So go to entry 60 to

get T. Smith’s

information

The operation time is O(1)

1/7/2025 67

Properties of Functions: hashing

To avoid collision problem, use a

second key or even a third key, a

fourth key, …

E Lee

J Doe

.

 .

S Lewis

.

 .

 .

 .

 .

 .

2

1

.

 .

60

61

.

 .

 .

 .

 .

 .

Adam …. Smith …..

1 … . 19 …..

The operation time is still O(1)

Memory is so cheap, we don’t

use linear probing any more.

1
s
t k

e
y

2nd key

1/7/2025 68

Given an alphabet A={a, b, c, d, e}

 1. what is the number of strings of length 5 over A

 that ends in a or b?

 2. what is the number of strings of length 5 over A

 that contains at least one c?

a/b

Strings of

 length 5

 over A

strings of length 5 over A that contains at least

one c

Strings of length of 5

over A that contains no c

String Algebra

(54∗ 2)

(55 − 45)

5 555

45

1/7/2025 69

Recursiveness does not save computation

time, it only makes your code more compact

Recursively Defined Functions

 Function ƒ is recursively defined : at least one ƒ(x) is

 defined in terms of another ƒ(y), where x ≠ y.

Technique (when argument domain is inductively defined)

 1. Specify a value ƒ(x) for each basis element

 x of S.

 2. Specify rules that,

 for each inductively defined element x in S,

 define ƒ(x) in terms of previously defined values of ƒ.

sum = 0;

 for (i=1; i<=1000; i++) sum = sum + i;

More on Functions

f(0) = 0;

f(n) = f(n-1) + rule(s) on n

1/7/2025 70

More on Functions

sum = 0;

sum = sum + 1;

sum = sum + 2;

sum = sum + 3;

sum = sum + 4;

sum = sum + 5;

 ⋮
sum = sum + 1,000,000;

One way to write the code:

A better way to write the code:

sum = 0;

 for (i=1; i<=1000; i++) sum = sum + i;

Computation

time is the same

1/7/2025 71

A binary relation R over a set A is a subset of A × A.

 If (x, y) ∈ R we also write xRy.

Example. Binary relations over A = {0, 1} :

 ∅, A × A, eq = {(0, 0), (1, 1)}, less = {(0, 1)}.

Definitions: Let R be a binary relation over a set A.

⚫ R is reflexive : xRx for all x ∈ A.

⚫ R is symmetric : xRy yRx for all x, y ∈ A.

⚫ R is transitive : xRy, yRz xRz for all x, y, z ∈ A.

Binary Relations
Relation is a way to

partition a set

1/7/2025 72

Composition: If R and S are binary relations, then composition

 of R and S is

 R ∘ S = {(x, z) | xRy and ySz for some y}.

Example (digraph representations). Let R = {(a, b), (b, a),

 (b, c)} over A = {a, b, c}. Then R, 𝑅2= R ∘ R , and

 𝑅3= 𝑅2 ∘ R can be represented by directed graphs:

} c) (b, a), (b, b), (a, { =R

} c) (a, b), (b, a), (a, {2 =R

} c) (b, a), (b, b), (a, { 3 =R

(x, y) (y, z) = (x, z)

Binary Relations

1/7/2025 73

A binary relation is an equivalence relation if it has the three

properties: reflexive, symmetric, and transitive (RST).

Examples. a. Equality on any set.

 b. x ~ y iff | x | = | y | over the set of strings {a, b, c}*.

 c. x ~ y iff x and y have the same birthday over the

 set of people.

Quiz. Which of the relations are RST?

a. xRy iff x ≤ y or x > y over Z.

b. xRy iff | x – y | ≤ 2 over Z.

 c. xRy iff x and y are both even over Z.

 Answers. Yes, No, No.

Provides a way

to partition the

domain set

(Not transitive)

(Not reflexive)

Equivalence Relations

1/7/2025 74

Equivalence Classes: If R is RST over A, then for each a ∈ A

 the equivalence class of a, denoted [a], is the set [a] = {x | xRa}.

 Property: For every pair a, b ∈ A we have either [a] = [b] or

 [a] ∩ [b] = ∅.

Example. Suppose x ~ y iff x mod 3 = y mod 3 over N. Then the

 equivalence classes are,

 [0] = {0, 3, 6, …} = {3k | k ∈ N}

 [1] = {1, 4, 7, …} = {3k + 1 | k ∈ N}

 [2] = {2, 5, 8, …} = {3k + 2 | k ∈ N}.

Equivalence Relations

1/7/2025 75

A Partition of a set is a collection of nonempty disjoint subsets

whose union is the set.

 Example. From the previous example, the sets [0], [1], [2] form a

partition of N.

Theorem (RSTs and Partitions). Let A be a set. Then the

following statements are true.

 1. Equivalence classes of any RST over A form a partition of A.

 2. Any partition of A yields an RST over A, where the sets of the

 partition act as the equivalence classes.

Equivalence Relations

1/7/2025 76

Example. Let x ~ y iff x mod 2 = y mod 2 over Z. Then ~ is an

RST with equivalence classes [0], the evens, and [1], the odds.

Also {[0], [1]} is a partition of Z.

Example. R can be partitioned into the set of half-open intervals

{(n, n + 1] | n ∈ Z}. Then we have an RST ~ over R, where x ~ y

iff x, y ∈ (n, n + 1] for some n ∈ Z.

Refinements of Partitions. If P and Q are partitions of a set S,

 then P is a refinement of Q if every A ∈ P is a subset of some

 B ∈ Q.

Equivalence Relations

1/7/2025 77

Example. Let S = {a, b, c, d, e} and consider the

 following four partitions of S.

 P1 = {{a, b, c, d, e}},

 P2 = {{a, b}, {c, d, e}},

 P3 = {{a}, {b}, {c}, {d, e}},

 P4 = {{a}, {b}, {c}, {d}, {e}}.

 Each Pi is a refinement of Pi–1.

 P1 is the “coarsest” and P4 is the “finest”.

Equivalence Relations

a b

c

d
e

1/7/2025 78

End of Preliminaries

	Slide 1: CS375: Logic and Theory of Computing
	Slide 2: Question 1:
	Slide 3: Question 2:
	Slide 4: You are here to learn three things.
	Slide 5: Three things you will learn in this class:
	Slide 6
	Slide 7: Three things you will learn in this class:
	Slide 8: Three things you will learn in this class:
	Slide 9: The Arrangement:
	Slide 10: Table of Contents:
	Slide 11: Table of Contents (conti):
	Slide 12: 1. Preliminaries – set algebra
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

