
1/19/2025 1

CS375:

Logic and Theory of Computing

Fuhua (Frank) Cheng

Department of Computer Science

University of Kentucky

University of Kentucky

1/19/2025 2

Table of Contents:

◼ Week 1: Preliminaries (set algebra, relations,

 functions) (read Chapters 1-4)

◼ Weeks 2-5: Regular Languages, Finite

 Automata (Chapter 11)

◼ Weeks 6-8: Context-Free Languages,

Pushdown Automata (Chapters 12)

◼ Weeks 9-11: Turing Machines (Chapter 13)

University of Kentucky

1/19/2025 3

Table of Contents (conti):

▪ Weeks 12-13: Propositional Logic (Chapter

6), Predicate Logic (Chapter 7),

Computational Logic (Chapter 9),

Algebraic Structures (Chapter 10)

University of Kentucky

1/19/2025 5

Can a machine recognize a regular language?

Deterministic Finite Automaton (DFA)

 A finite digraph over an alphabet A (vertices are called

states).

 Each state emits one labeled edge for each letter of A.

One state is defined as the start state and several

states may be final states.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata algorithm

indicated by double

circles

Yes

1/19/2025 6

Example.
 Either one is acceptable

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

A={a, b}

1/19/2025 7

The execution of DFA for input string w ∈ A* begins at

the start state and follows a path whose edges

concatenate to w.

 The DFA accepts w if the path ends in a final state.

 Otherwise the DFA rejects w.

 The language of a DFA is the set of accepted strings.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

an empty string will

enter the start state

but the empty set

will not.Input string: abab

1/19/2025 8

Example. The example DFA accepts the strings

 The language of the DFA is

 University of Kentucky

6. Regular Lan|guages & Finite Automata

 - Finite Automata

{ ab , bb | n ϵ N, m ϵ N }
n m

1/19/2025 9

Example. The example DFA accepts the strings

 The regular expression of the language of the DFA is

 (a + b)b* Why?

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

a+b (a+b)b (a+b)b2 (a+b)bn

1/19/2025 10

Theorem (Kleene) The class of regular languages is

exactly the same as the class of languages accepted

by DFAs.

Proof. Need three lemmas or by induction.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata
over the same alphabet

Language accepted by this DFA is Φ

Language accepted by this DFA is {Ʌ}

a
Language accepted by this DFA is {a}

1/19/2025 11

Specifically, say A = {a, b}, then

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

1 a, b

1
a, b 2 a,b

21
a

a, bb

3
a, b

Φ is its language

{Ʌ} is its language

{a} is its language

1/19/2025 12

Theorem (Kleene) The class of regular languages is

exactly the same as the class of languages accepted

by DFAs.

Proof. (conti.)

 together with the basis step would prove the theorem.
University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

For instance, if 𝐿1 = {a} and 𝐿2 = {b}

then

1/19/2025 13University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

a

a, b
b

a, b

accepts {b}

a

a, bb

a, baccepts {a}

a

a, b
b

a, b

accepts {a, b}

a, b

𝐿1 ∪ 𝐿2

For instance, if 𝐿1 = {a} and 𝐿2 = {b}

then

1/19/2025 14University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

b

a, b
a

a, b
accepts {b}

a

a, bb

a, baccepts {a}

a

a, b
b

a, b
accepts {ab}

b

a 𝐿1 𝐿2

For instance, if 𝐿1 = {a} and 𝐿2 = {b}

then

1/19/2025 15University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

a

a, b
b

a, b

accepts {b}

a

a, bb

a, baccepts {a}

a

a, b
b

a, b

accepts {aa}

b

a

For instance, if 𝐿1 = {a} and 𝐿2 = {b}

then

1/19/2025 16University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

a

a, bb

a, baccepts {a}

a

a, b

b

a, b

accepts {aaa}

b

a a

b

a

a, b
b

a, b

accepts {b}

For instance, if 𝐿1 = {a} and 𝐿2 = {b}

1/19/2025 17University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

a

a, bb

a, baccepts {a}

a

a, b
b

a, b

accepts {b}

accepts {a}*a

b

a, b

b
a

then
𝐿1

∗

1/19/2025 18

Example. Find a DFA for each language over the alphabet {a,b}.

 (a) ∅. (b) {Λ}. (c) { (ab) | n ∈ N}, which has regular

 expression (ab)*.

Solution:

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

n

(a)

(b)

1/19/2025 University of Kentucky 19

A DFA that recognizes

 bc* + ac

c c

start

a

b

c

A DFA that recognizes

 bc* + abc* + ac

c c

start

a

b

c

b

1/19/2025 University of Kentucky 20

A DFA that recognizes

 bc* + ac

c c

start

a

b

c

A DFA that recognizes

 bc* + abc* + ac

c c

start

a

b

c

b

a,b

a,b

a,

b,

c

a, b, c

a,b

a

a,

b,

c

a, b, c

a, b, c a, b, c

Making them deterministic:

1/19/2025 University of Kentucky 21

A DFA that recognizes

 bc* + ac

c c

start

a

b

c

A DFA that recognizes

 bc* + abc* + ac

c c

start

a

b

c

b

a, b

a,

b,

c

a, b

a,

b,

c

a, b

a,

b,

c

a

a,

b,

c

Making them deterministic:

1/19/2025 University of Kentucky 22

To make each of these FA’s a DFA, you either

create a new state or use a non-final state as the

sink of all the remaining edges of the FA, or

both.

That state should not have outgoing edges, or

edges that would eventually lead to final state(s).

1/19/2025 University of Kentucky 23

Would the following DFA recognize

 a*bc* + ac only ?

c c

start

a

b

c

b

a

In addition to bc*,

a*bc* and ac,

does it recognize

anything else?

Yes, such as

aac, aaac, …

So, how should

such a DFA be

designed?

bc*

a*bc*

ac

1/19/2025 University of Kentucky 24

First, a DFA that recognizes

 bc* + abc* + 𝑎2bc* + ac

c c c

start

a a

b

c

b
b

1/19/2025 University of Kentucky 25

Then, a DFA that recognizes

 a*bc* + ac

c c c

start

a a

b

c

b
b

a

How to make

this FA a real

DFA?

bc* + abc* + 𝑎2bc* + 𝑎𝑛bc*

n ≥ 3

1/19/2025 University of Kentucky 26

A DFA that recognizes a*bc* + ac

1

c c

6

c

start
0

a a

b

c

b
b

a a real DFA

 now

a,b,c

One option:

Can we use

state 0 as the

sink state, or

state 6?

a,b

a,b,ca,b,c

1/19/2025 27

Table Representation of a DFA

DFA over A can be represented by a transition function

 T : States × A → States,

where T(i, a) is the state reached from state i along the edge

labeled a, and we mark the start and final states.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Example:

T

1/19/2025 28

Note: T can be extended to T : States × A* → States

 by T(i, Λ) = i , T(i, aw) = T(T(i, a), w) a ∈ A, w ∈ A*

Question: T(0, bba) =?

T(0, bba) = T(1, ba) = T(1, a) = T(2, Λ) = 2.
University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

or

1/19/2025 29

Example. Find a DFA to recognize (a + ba)*bb(a + ab)*.

A solution:

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

{bb}

}){(bbbaa +

a
a

a,b

a
a,b

any combination

of a* and (ba)*

After excuting (a+ba)*,

return to start point of bb

Start with the part that

has a fixed length

1/19/2025 30

Example (conti). Find a DFA to recognize (a + ba)*bb(a + ab)*.

A solution:

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

})(){( ++ ababbbaa
b

a,b a

a

b

any combination

of a* and (ab)*

This must be a final state

1/19/2025 31

Example (conti). Find a DFA to recognize (a + ba)*bb(a + ab)*.

A solution:

University of Kentucky

Would the following approach work?

})(){( ++ ababbbaa
b

any combination

of a* and (ab)*

a,b

The answer is

NO

Why not?

Would accept (ba)*

1/19/2025 32

Nondeterministic Finite Automata (NFA)

An NFA over an alphabet A is similar to a DFA except that

 Λ-edges are allowed,

 there is no requirement to emit edges from a state, and

 multiple edges with the same letter can be emitted from a state.

Example. The following NFA recognizes the language of

 a + aa*b + a*b.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

a ?

aa*b: ab, aab ?

a*b: b, ab ?

Is any item

redundant here?

1/19/2025 University of Kentucky 33

Intuitive examples
A = { d, g, m, o, r}

d o g

o

m r

NFA

7 states

6 dges

dog,

door,

doom

1/19/2025 University of Kentucky 34

Intuitive examples
A = { d, g, m, o, r}

d o g

o

m r

DFA

g,m,o,r

d,g,m,r

d,m,r

d,g,o

d,g,m,o

d,g,m,o,r

d,g,m,o,r

8 states

34 edges

1/19/2025 University of Kentucky 35

Intuitive examples
A = { d, g, m, o, r}

d
1

o g

o

rm

o

Actually, the NFA can also be defined as follow:

rm

o

dog,

door,

doom

1/19/2025 36

Example. NFA for the language of a + aa*b + a*b.

University of Kentucky

DFA for the language of a + aa*b + a*b.
a, ab, b,

aab, aaab,

…

0Start
b

2
a, b

3

a, ba

1
a

b

4
a

b

3 states,

5 edges

5 states,

10 edges

37

Example. NFA for the language of a + aa*b + a*b.

Would the following DFA (use state 0 to replace

state 3) work?

a, b, ab,

aab, aaab,

…

No, b/c it accepts bbb, baa,

and abbb.
0Start b

2
a, b

a

1
a

b

4
a

b

1/19/2025 University of Kentucky 38

DFA and NFA are equivalent concept.

A DFA is also an NFA.

But actually for every NFA there's a

corresponding DFA that accepts the same

language, but if the NFA has n states, the

DFA could have O(2𝑛) states.

So we work with NFAs because they’re

usually a lot smaller than DFAs.

1/19/2025 University of Kentucky 39

A few points about NFA’s.

The existence of Ʌ-edges implicitly creates the

concept of an extended state (a multiple-node

state) of a given state.

10
Ʌ

2
Ʌ

a c d

b d

e

f

Extended

state of 0

1/19/2025 University of Kentucky 40

Edges a, b, c, d, e, f, g are edges of the

extended state of 0.

Each edge of the extended state of 0 can be

used by state 0 through some Ʌ-edges.

So essentially state 0 has 7 edges to use

even though there are only 2 edges emitted

directly from state 0.

Extended

state of 0
b d g

a c e

f
10

Ʌ
2

Ʌ

1/19/2025 University of Kentucky 41

For an NFA, only edges really needed for its

function have to be designed.

NFA for the language of a + aa*b + a*b.

There is no

need to

design any

edges for

state 2.

1/19/2025 University of Kentucky 42

Why do we need “multiple edges with the

same label”?

NFA for the language of a + aa*b + a*b.

A letter can be used

as the lead symbol

for disjoint paths

Note that there

are two ways to

accept ‘ab’

1/19/2025 University of Kentucky 43

Question: can you think of a DFA that

would recognize a+ aa*b + a*b ?

start

a a

b b
b

a

How about:

a b ab aab aaab

a,b

a,b
What is the

difference

between this

DFA and the

one on slide

42?

1/19/2025 University of Kentucky 44

Question: can you think of a DFA that

would recognize a+ aa*b + a*b ?

start

a

b b

a

Does this DFA work?

a b ab aab aaab

a,b

a,b

1/19/2025 45

Table representation of NFA

An NFA over A can be represented by a function

 T : States × A ∪ {Λ} → power(States),

where T(i, a) is the set of states reached from state i along the

edge(s) labeled a, and we mark the start and final states.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Example:

1/19/2025 46

Theorem (Rabin and Scott) The class of regular

languages is exactly the same as the class of

languages accepted by NFAs.

Proof. First, show the three basis cases:

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Language accepted by this NFA is Φ

Language accepted by this NFA is {Ʌ}

a
Language accepted by this NFA is {a}

1/19/2025 47

Theorem (Rabin and Scott) The class of regular

languages is exactly the same as the class of

languages accepted by NFAs.

Proof. (conti.)

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Inductive step: prove that if 𝐿1 and 𝐿2 are accepted by

NFAs, then 𝐿1 ∪ 𝐿2, 𝐿1 𝐿2 and 𝐿1
∗ are accepted by NFAs.

Let the following NFA be the NFA for 𝐿1 where 𝑓1𝑖 are

final states of this NFA, 𝑖 = 1, 2, … , 𝑁1.

1/19/2025 48University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Let the following NFA be the NFA for 𝐿2 where 𝑓2𝑗 are

final states of this NFA, j = 1, 2, … , 𝑁2.

Then the following NFA is an NFA for 𝐿1 ∪ 𝐿2:

1/19/2025 49University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

the following NFA is an NFA for 𝐿1𝐿2:

And the following NFA is an NFA for 𝐿1
∗ :

EOP

Each 𝑓1𝑖 is

connected to 𝑆2

xx …. xyyy…..y

Each 𝑓1𝑖 is

connected to 𝑆2

1/19/2025 University of Kentucky 50

Rabin and Scott’s theorem is important

Regular languages

NFAsDFAs

(Rabin

and Scott

Theorm)

(proved next)

(So we get this

equivalence relation

automatically. We

don’t really need

Kleene’s Theorm)

1/19/2025 University of Kentucky 51

Joke for today:

I am 83 years old.

I was in the McDonald’s drive-thru this morning. The young lady

behind me leaned on her horn and started mouthing some ugly

things b/c I was taking too long to place my order.

So when I got to the 1st window, I paid for her order along with

my own. The cashier must have told her what I’d done, b/c as

we moved up, she leaned out her window and waved to me and

she began mouthing “Thank you, thank you” probably feeling

embarrassed that I had repaid her rudeness with kindness.

When I got to the 2nd window, I showed the server both receipts

and I took her food too.

Now she has to go back to the end of the queue and start all

over again.

Don’t blow your horn at old people, we have been around for a

lon---g time.

1/19/2025 52

Questions. Find an NFA for each of the

languages over {a, b}.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

})(,,{  abba

=

?

a,b

1/19/2025 53

Example. Find an NFA to recognize (a + ba)*bb(a + ab)*.

A solution:

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

{bb}

}){(bbbaa +

})(){( ++ ababbbaa

any combination

of a* and (ba)*

any combination

of a* and (ab)*

OK for

an NFA,

not for a

DFA

1/19/2025 54

Example (conti). Find an NFA to recognize (a + ba)*bb(a + ab)*.

A solution:

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

a

But not

})(){(*baabbbaa +

1/19/2025 55

Algorithm: Transform a Regular Expression (RE) to a Finite

Automaton

(1) Placing the RE on the edge between a start and final state:

(2) Apply the following rules to obtain a finite automaton after

erasing any ∅-edges.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata
(DFA or NFA)

1/19/2025 56

Example. Use the algorithm to construct a finite automaton for

 (ab)* + ba.

Solution:

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

1/19/2025 57

Quiz. Use the algorithm to construct a finite automaton for

 (a+ba)*bb(a+ab)*

 and compare your result with the NFA obtained on

 slide 51.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Do this at home.

We will discuss this question Thursday

1/19/2025 58

Algorithm: Transform a Finite Automaton to a Regular

 Expression

 Connect a new start state s to the start state of the FA

 and connect each final state of the FA to a new final state ƒ

 as shown in the figure.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Given

 FAs

Connect to start

state of FA

Ʌ
f

Connect from each

final state of FA

Ʌ

1/19/2025 59

If needed, combine all multiple edges between the same

two nodes into one edge with label the sum of the

labels on the multiple edges.

If there is no edge between two states, assume there is

an ∅-edge.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Φ

1/19/2025 60

Now eliminate each state k of the FA by constructing a

new edge (i, j) for each pair of edges (i, k) and (k, j)

where i ≠ k and j ≠ k.

 New label new(i, j) is defined as follows:

 new(i, j) = old(i, j) + old(i, k) old(k, k)* old(k, j)

Example:

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

A
A+ BC*D

Remove edge A as well

1/19/2025 61University of Kentucky

Think of the process of eliminating state k as a

two-step procedure:

ji

A

B k D

ji

A

BC*D

ji

A + BC*D

Put Φ here if

there is not a

direct edge

between i and

j originally

1/19/2025 62

Example. Transform the following NFA to a regular expression.

Solution I (eliminate state 1 first):

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

State 1 is also a state

between state 0 and state 0

State 1 is a state between

state 0 and state f

a*a(ba*a)*

0

a
0 a

1
b

1/19/2025 63

Example. Transform the following NFA into a regular expression.

Solution I (eliminate state 1 first):

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

aaf =+= ),0new(

ababaa +=+= )0,0(new

0

a
0 a

1
b

1/19/2025 64

Example. Transform the following NFA into a regular expression.

Solution I (eliminate state 1 first):

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

aabaaabafs  +=++=)()(),(new

Then eliminate state 0

1/19/2025 65University of Kentucky

You can think of the given

NFA as an NFA of the

following form

Or, eliminate state 1 first, the

following way:

1

ab

0

a

s
Ʌ a

1 f
Ʌ

State 1 plays 2

roles here

A midway state b/w

0 and fA midway state b/w

0 and 0

1/19/2025 66University of Kentucky

1

ab

0

a

s
Ʌ a

1 f
Ʌ

Or, eliminate state 1 first, the

following way:

a
f0

a

s
Ʌ

ab

aɅ*Ʌ

aɅ*b

1/19/2025 67University of Kentucky

Or, eliminate state 1 first, the

following way:

a
f0

a

s
Ʌ

ab

a
f0

a + ab

s
Ʌ

a

0 0ab

0 0a+ab

Why?

Then

1/19/2025 68University of Kentucky

Or, eliminate state 1 first, the

following way:

a
f0

a + ab

s
Ʌ

fs
Ʌ(a+ab)*a

fs
(a+ab)*a

(Now eliminate state 0)

1/19/2025 University of Kentucky
69

Question:

b

0
start

2

1
a

a

a

b

f
Λ

Λ

s
Λ

b

0

2

b

b

0
start

2

1
a

a

a

b

f
Λ

Λ

s
Λ

bb

a

a
b

?

1/19/2025 70

Example. Transform the following NFA into a regular expression.

Solution II (eliminate state 0 first):

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

State 0 is a midway state

b/w state s and state 1

State 0 is also a midway

state b/w state 1 and

state 1

b

a

1

1

0

1/19/2025 71

Example. Transform the following NFA into a regular expression.

Solution II (eliminate state 0 first):

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

aaaas  =+=)1,(new

abaaba  =+=)1,1(new

1/19/2025 72

Example. Transform the following NFA into a regular expression.

Solution II (eliminate state 0 first):

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

 =+=)()(),(new abaaaabaaafs

Then eliminate state 1

1/19/2025 73University of Kentucky

You can think of the given

NFA as an NFA of the

following form

Or, eliminate state 0 first, the

following way:

0

a

s
Ʌ

0

ba

a
1 f

Ʌ

a

1/19/2025 74University of Kentucky

Or, eliminate state 0 first, the

following way:

Ʌ
f1s

a*a

ba*a

0

a

s
Ʌ

0

ba

a
1 f

Ʌ

a

Ʌa*a

ba*a

1/19/2025 75University of Kentucky

Or, eliminate state 0 first, the

following way:

fs
a*a(ba*a)*Ʌ

fs
a*a(ba*a)*

Ʌ
f1s

a*a

ba*a

1/19/2025 76University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

Note. The two regular expressions obtained in the previous

example are equal, i.e., a*a(ba* a)* = (a + ab)*a.

Proof I.

 (a + ab)* a (R + S)* = R* (S R*)*

 = [a* ((ab) a*)*] a · is associative

= a* [((a b) a*)* a] · is associative

= a* [(a (b a*))* a] (R S)* R = R (S R)*

= a* [a ((ba*) a)*] · is associative

= a* a (ba* a)*

1/19/2025 77

Note. The two regular expressions obtained in the previous

example are equal, i.e., a*a(ba*a)* = (a + ab)*a.

Proof II.

 a* a (ba*a)* = a*[a((ba*) a)*] · is associative

= a*[(a (ba*))*a] R(SR)* = (RS)*R

 = a*[((ab)a*)* a] · is associative

 = [a* ((ab) a*)*] a · is associative

= (a + ab)*a R*(SR*)* = (R + S)*

QED.

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

1/19/2025 78

Note. The two regular expressions obtained in the previous

example are equal, i.e., a*a(ba*a)* = (a + ab)*a.

Intuitive Proof.

 LHS = a* a (ba*a)* = a*a(ba*a)(ba*a)(ba*a) ⋯ (ba*a)

RHS = (a + ab)*a = a*(ab)*a*(ab)* ⋯ a*(ab)*a

LHS ⊆ RHS Why?

a*a(ba*a)(ba*a)(ba*a) ϵ LHS

 = a*(ab)a*(ab)a*(ab)a*a

 = a*(ab)a*(ab)a*(ab)a*(𝑎𝑏)0a ϵ RHS

 Hence, LHS ⊆ RHS

University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

any combinations of

a* and (ab)*

1/19/2025 79

Note. The two regular expressions obtained in the previous

example are equal, i.e., a*a(ba*a)* = (a + ab)*a.

Intuitive Proof (conti).

 LHS = a* a (ba*a)* = a*a(ba*a)(ba*a)(ba*a) ⋯ (ba*a)

RHS = (a + ab)*a = a*(ab)*a*(ab)* ⋯ a*(ab)*a

RHS ⊆ 𝐿HS Why?

a*(𝑎𝑏)2a*(𝑎𝑏)2a*(𝑎𝑏)2a ϵ RHS

 = a*(ab)(ab)a*(ab)(ab)a*(ab)(ab)a

 = a*a(ba)(ba*a)(ba)(ba*a)(ba)(ba)

 = a*a(b𝑎0a)(ba*a)(b𝑎0a)(ba*a)(b𝑎0a)(b𝑎0a) ϵ LHS

 Hence, RHS ⊆ LHS
University of Kentucky

6. Regular Languages & Finite Automata

 - Finite Automata

1/19/2025 80

End of Regular

Languages and Finite

Automata II

University of Kentucky

1/19/2025 81

❑ (R + S)* = (R* + S*)* = (R*S*)* = (R*S)*R* = R*(SR*)*.

University of Kentucky

Closure Properties:

Proof:

Obviously LHS ⊆ RHS.

On the other hand, if 𝑤 ∈ 𝐿 𝑅∗ + 𝑆∗ ∗ = 𝐿(𝑅∗ + 𝑆∗)∗ then there exists 𝑛 ∈

𝑁 such that 𝑤 ∈ 𝐿(𝑅∗ + 𝑆∗)𝑛, or there exist 𝑤𝑖 ∈ 𝐿 𝑅∗ + 𝑆∗ for i=1, 2, … n

such that 𝑤 = 𝑤1𝑤2 ∙∙∙ 𝑤𝑛.

But 𝐿 𝑅∗ + 𝑆∗ = 𝐿(𝑅∗) ∪ 𝐿 𝑆∗ and

𝐿(𝑅)∗ = 𝐿(𝑅)0 ∪ 𝐿 𝑅 1 ∪ 𝐿 𝑅 2 ∪ …

𝐿(𝑆)∗ = 𝐿(𝑆)0 ∪ 𝐿 𝑆 1 ∪ 𝐿 𝑆 2 ∪ …

Hence, each 𝑤𝑖 ∈ 𝐿 𝑅 𝑖𝑗 or 𝐿(𝑆)𝑖𝑘 for some 𝑖𝑗 or 𝑖𝑘 . But then each 𝑤𝑖 ∈

𝐿 𝑅 + 𝑆 ∗. Consequently, w ∈ 𝐿 𝑅 + 𝑆 ∗.

So, RHS ⊆ LHS.

1/19/2025 82

❑ (R + S)* = (R* + S*)* = (R*S*)* = (R*S)*R* = R*(SR*)*.

University of Kentucky

Closure Properties:

Proof:

It is easy to see this by definition.

Note that 𝐿 𝑅∗ + 𝑆∗ ∗ = 𝐿(𝑅∗ + 𝑆∗)∗ = (𝐿 𝑅∗ ∪ 𝐿 𝑆∗)∗

= (𝐿 𝑅 0 + 𝐿 𝑅 1 + 𝐿 𝑅 2 + ∙∙∙ ∪ 𝐿 𝑆 0 + 𝐿 𝑆 1 + 𝐿 𝑆 2 + ∙∙∙)∗ (1)

On the other hand, 𝐿 𝑅∗𝑆∗ ∗ = 𝐿(𝑅∗𝑆∗)∗ = (𝐿 𝑅∗ 𝐿 𝑆∗)∗= (𝐿 𝑅 ∗𝐿 𝑆 ∗)∗

= (𝐿 𝑅 0 + 𝐿 𝑅 1 + 𝐿 𝑅 2 + ∙∙∙ 𝐿 𝑆 0 + 𝐿 𝑆 1 + 𝐿 𝑆 2 + ∙∙∙)∗ (2)

It is easy to see that Eq. (1) and Eq. (2) are equal ty definition.

So LHS = RHS.

1/19/2025 83

❑ (R + S)* = (R* + S*)* = (R*S*)* = (R*S)*R* = R*(SR*)*.

University of Kentucky

Closure Properties:

Proof:

First note that 𝐿 𝑅∗𝑆 ∗ ⊆ 𝐿 𝑅∗𝑆∗ ∗.

On the other hand,

(𝑅∗𝑆∗)∗= (𝑅∗𝑆∗)0+(𝑅∗𝑆∗)1+(𝑅∗𝑆∗)2+ ∙∙∙ (1)

For each (𝑅∗𝑆∗)𝑖 in (1), if the all the exponents of S are not zero, it is

covered by 𝑅∗𝑆 ∗. However, if the exponents of S are all zero, it is not.

But in such case, it is covered by (R*S)*R* (with the exponent of R*S

being zero). Hence, we have 𝐿 𝑅∗𝑆∗ ∗ ⊆ 𝐿((R∗S)∗R∗).

So LHS = RHS.

1/19/2025 University of Kentucky 84

while (i=0; i<=n; i++) { }

i += i;

1/19/2025 85

❑ R(SR)* = (RS)*R

.

University of Kentucky

Closure Properties:

Proof:

LHS = 𝑅((𝑆𝑅)0+(𝑆𝑅)1+(𝑆𝑅)2+ … + 𝑆𝑅 𝑛 + …)

 = 𝑅(Ʌ+(𝑆𝑅)1+(𝑆𝑅)2+ … + 𝑆𝑅 𝑛 + …)

 = 𝑅 + 𝑅 𝑆𝑅 + 𝑅(𝑆𝑅)2+ … + 𝑅 𝑆𝑅 𝑛 + …

 = 𝑅 + 𝑅𝑆 𝑅 + 𝑅𝑆 𝑅𝑆 𝑅 + … + 𝑅𝑆 𝑅𝑆 ⋯ 𝑅𝑆 𝑅 + …

 = Λ + 𝑅𝑆 + 𝑅𝑆 2 + … + 𝑅𝑆 𝑛 + … 𝑅

 =(𝑅𝑆)∗𝑅

 = RHS

n times

	Slide 1: CS375: Logic and Theory of Computing
	Slide 2: Table of Contents:
	Slide 3: Table of Contents (conti):
	Slide 5: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 6: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 7: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 8: 6. Regular Lan|guages & Finite Automata - Finite Automata
	Slide 9: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 10: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 11: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 12: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 13: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 14: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 15: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 16: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 17: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 18: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 28: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 29: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 30: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 31: Would the following approach work?
	Slide 32: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 46: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 47: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 48: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 49: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 50
	Slide 51
	Slide 52: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 53: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 54: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 55: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 56: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 57: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 58: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 59: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 60: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 61
	Slide 62: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 63: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 64: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 71: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 72: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 73
	Slide 74
	Slide 75
	Slide 76: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 77: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 78: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 79: 6. Regular Languages & Finite Automata - Finite Automata
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

