CS375 Homework Assignment 6 Solution Set (40 points)
Due date: 10/30/2024

1. (6 points)
Given the context-free grammar {S — A ; S — aSb ; S — bbS }, we can convert it to a one-
state empty-stack acceptance PDA as follows.

aa bb
pop ’ pop .
AS
S pop, push(b), push(S), push(a)
Start AS
pop, push(S), push(b), push(b)
AS
pop

On the other hand, given such a one-state empty-stack acceptance PDA, we can convert it to
a CFG. In this case, we have one type-4 path, three type-1 paths and two general type-3
paths. The type-4 and type-1 paths and their corresponding CFG productions are shown
below.

AS
S pop
S
start 6 0 S
AS
pop
@2(0) se—[t
a,a
pop
Agp | 2
b, b

AS
a
pop,push(b),push(S) push(a)

In the following, fill out the blanks in the general type-3 paths for nd

AS
pop,push(s),push(b) push(b)

and the blanks in the corresponding CFG productions.

AS a,a AS b,b

@ pop, push(a, S, b) >/0.\ pop \/0\ pop \/0—\ pop \@

Soo = [Aoo]||Soo Béo

AS b,b b,b A S

pop, push(b, b, S) pop pop pbop

S00 = |Boo|[Boo |IS00

After a simple simplification process, we would get a CFG exactly the same as the given one.

. (1 point)

Final-state acceptance and empty-stack acceptance are equivalent only for NPDA’s. They are
not equivalent for DPDA’s. For DPDA’s the class of languages defined by final-state
acceptance is bigger. In the following, use the given DPDA

4)(&'%
a X aa
push(a)’ push(a)

to show that this is indeed the case by pointing out the language L = { a |neN}is
accepted by the given (final-state) DPDA, but is not accepted by the DPDAWHen viewed as
an empty-stack DPDA.

. (5 points)
Given the following final-state DPDA,

a, X Qa,a

push(a) push(a) p,a

and the following strings

N\, aa, bb, aaa, bbb, ab, ba, aabb, bbaa, aaabbb, bbbaaa

which of these strings are accepted by the given final-state DPDA? Put your answer in the
following blank.

A, aa, aaa, ab, aabb, aaabbb

(1.5 points)

If the given final-state DPDA is considered as an empty-stack NPDA (state O is no longer a
final state), then which of the given strings are accepted by the empty-stack DPDA? Put your
answer in the following blank.

ab, aabb, aaabbb

(1.5 points)

Now, consider the following two general questions. First, what is the language L, accepted
by the given final-state DPDA? Put your answer in the following blank.

Li = Ha%:a7b™ | n eN-m€E N
1

or

Ly = |{a",a™ ™| n EN;me Nt}

(1 point)

Second, what is the language L, accepted by this DPDA when viewed as an empty-stack
DPDA? Put your answer in the following blank.

L,=|{a™b™| me Nt}

(1 point)

L, obviously is bigger than L,.

4. (5 points)
The following empty-stack PDA accepts the language L = { w € {a, b}* | n,(w) = 2n,(w) }
(assuming A € L). In the following blanks show the execution of the string bbabab by this
PDA.

b,X b,b b,a
push(b) * push(b)’ pop

ADb AX Aa
pop ' push(a) ’ push(a)

Start
I a,X a,b a,a
= push(a) "pop ’ push(a)
pop
(0, bbabab, X) (0, babab, bX) §
R (0, abab, bbX) (1, bab, bX) j
) (1, A\bab, bX) (0, bab, X) Ll
L0, ab, bx) (1,5, X) g
L{ (1, 26,) (0, b, ax) .
) (0, A, X) (2, A, @)
accepted
5. (4 points)

The empty-stack PDA given in question #4 has one type 4, four type 1 and eight type 3
instructions. In the following four possible type 3 instructions, which one(s) are legitimate type
3 (i.e., they really exist)?

JO="0E020
b, X a,_b AX

0 @D
b,b ba A b
h(b pop

JO 0N 0en0

Put your answer in the following blank.

(b), (d)

For case (b), consider the string ‘bab’ which is a member of the language L

accepted by the PDA given in Question #4.
The execution of 'bab' by the PDA given in Question #4 can be performed as

follows:
(0, bab, X)
% ba
push(b) pop
(0, ab, bX) 0, A, X)
2l it
pop pop
(1,b, X)

Put ‘A’ in front of ‘b’

(1, Ab, X)

AX
push(a)

(0, b, aX)
|

So, by combining the first, the second and the last instructions we get a type 3

path.

6. (6 points)

Given the following parse tree where S, A, B are non-terminals, a and b are terminals and
A is the empty string, show the corresponding left-most derivation of the yield in the blanks

on the right side. (6 points)

S

It is easy to see that the grammar used to build the

AB

aAbB

aaAbbB

aa/\bbB

aa/\bbaB

aa/\bbaaB

aa/\bbaa/\

aabbaa

above parse tree has the following productions:
S—- AB A—- aAb| A B-aB|A

The language of this grammar is:

{a™b™a™ |n,m € N}

Does the derivation show the grammar is an LL(1) grammar?

Yes « No (1 point)

(Hint: consider the input string ‘aa’)

Does the derivation show the grammar is an LL(2) grammar?

Yes X No (1 point)

(Hint: consider the same input string ‘aa’)

(0.5 points each)

7. (2 points)
| claim the following grammar for {a™*"b™c™ | m,n € N} is an LL(1) grammar.

S—aSc|T T—aTb|A

My justification is that | can build a leftmost derivation for the string aaabcc by examining
only one input symbol for each step of the derivation. The leftmost derivation is shown

below.
S =|aSc (step 1)

= |aaScc (step 2)

= [aaTcc (step 3)

= |aaaTlbcc | (step4)

= |aaabcc (step 5)

If you think the above derivation is correct, mark the True box below. Otherwise, mark the
False box and give your reason in the box below the correct box.

True False |X

What is wrong with the derivation:

Step 3 is not correct.
According to the third symbol in the input string, the

8. (4 points)
Given the following context-free grammars for the language {a™*"b™c™ | m,n € N},
(@ S—aSc|aBb|A
B—aBb|A
(b) S—aSc|B|A
B—aBb|A
(co S—aSc|B
B—aBb|A

(i) which one orones are LL(1)? (2 points)

None.
Hint: try ‘ab’ as input string for all three cases.

(i) which one or ones are ambiguous? (2 points)

None.

Note that the production ‘S = aSc’ will always be used before any
‘S = aBb’ can be used in the construction of the parse tree for an
input string, except when the input string contains no c’s. In such a
case, only ‘S = aBb’ will be used in the construction of the parse
tree. What this means is: the parse tree of each input string is of a
unique structure. Hence, cannot be ambiguous.

9. (4 points)
Given the following context-free grammars for the language {a™*™b™c™ | m,n € N}, which
one or ones are LL(2) but not LL(1)?
(&) S — aaScc|aaBbc|aaBbb|aBb|ac|A

B—aBb|A

(b) S — aaScc|aaBbc|aBb]|ac|A
B—aBb|A

(c) S —aaScc|aaBbc|B|ac|A
B—aBb|A

(d) S — aaScc|aaBbc|B]|ac
B—aBb|A

None.

Hint: try ‘aabb’ as input string for all four cases.

10. (3 points)

The language generated by the following grammar is
(1 point)

S—aS|A|A A — abA | A
Is this an LL(1) grammar? Yes X
Is this an LL(2) grammar? Yes X

Hint: consider ‘aab’ as input string in both cases.

{a™(ab)" | m,neN }

No

No

(1 point)

(1 point)

