
Shadow Generation Using Discretized Shadow Volume In Angular Coordinates

Khageshwar Thakur
Lexmark International, Inc.

Lexington, KY 40550
kthakur@lexmark.com

Fuhua (Frank) Cheng
University of Kentucky
Lexington, KY 40506

cheng@cs.uky.edu

Kenjiro T. Miura
Shizuoka University

Hamamatsu, 432-8561 Japan
ktmiura@eng.shizuoka.ac.jp

Abstract

A technique to improve the performance of the shadow-
volume method is presented. This technique does not re-
quire (1) extensive edge/edge intersection tests and inter-
section angle computation in shadow polygon construction,
or (2) any ray/shadow-polygon intersection tests during
scan-conversion.

The first task is achieved by constructing ridge edge (RE)
loops, an inexact form of silhouette, instead of the silhou-
ette. The RE loops give us the shadow volume without any
expensive computation.

The second task is achieved by discretizing the shadow
volume into angular spans. The angular spans, which
correspond to scan lines, are stored in a lookup table.
This lookup table enables us to mark the pixels that are
in shadow directly, without the need of performing any
ray/shadow-polygon intersection tests.

In addition, the shadow on an object is determined on a
line-by-line basis instead of a pixel-by-pixel basis. The new
technique is efficient enough to achieve real time perfor-
mance, without any special hardware, while being scalable
with scene size.

1. Introduction

Shadow generation is a classic problem in computer
graphics. The problem is to identify the regions that are
in shadow and then modify the illumination accordingly. A
region is in shadow if it is visible from the viewpoint, but
not from the light source. Shadow generation is important
in that shadows not only increase realism of a picture, but
also provide better understanding of the spatial relationships
between objects.

The problem of shadow generation has been studied for
more than thirty years and various methods have been sug-
gested. A good survey of these methods can be found in [5]
and [9]. These methods can be classified as Area Subdivi-
sion method, Ray tracing method, Depth buffer method and

Shadow volume method.
In an area subdivision method [1][6], two passes of poly-

gon clipping are used to calculate the region in shadow. In
the first pass, a polygon clipper is used to separate the lit
portion from dark portion, then in the second pass clipping
is done with respect to the viewpoint to remove the hidden
faces. Due to the complexity of a good polygon clipper, this
method could not gain much popularity.

In ray tracing method, a ray is shot from the viewpoint;
a surface with minimum hit distance is declared as visible.
From each visible point a ray is shot to the light source, if it
intersects with any other object then the point is in shadow.
This straightforward method can capture shadows in direct,
reflected and refracted lighting conditions. Since rays are
traced from each visible point it becomes very expensive as
the number of objects in the scene grows.

In depth buffer method [8], a depth buffer (with respect
to the light source) is maintained to find lit faces. Lit por-
tions of the faces are then rendered from the viewpoint using
another depth buffer to remove hidden surfaces. Its simplic-
ity and ease of hardware implementation make this method
very popular even with its inherent aliasing problems. Re-
cently, Fernando et al. [4] proposed Adaptive Shadow Maps
to reduce aliasing problems in commonly used shadow map
methods.

A shadow volume method [3] creates shadow polygons
and places them into the scene as invisible surfaces. While
rendering the objects, a ray from viewpoint to current pixel
is pierced through these invisible surfaces. If the ray inter-
sects the invisible surfaces odd number of times before it
reaches a point in the scene, then that point is in shadow.
This is also a very popular method because it can be easily
integrated with the scan conversion process.

Many variations of this method have been proposed to
improve its performance, including a BSP tree based ap-
proach [2][7]. None of these methods, however, can com-
pletely avoid the two most expensive steps in this process:
(1) extensive edge/edge intersection and angle computa-
tion for shadow polygon construction, and (2) ray/shadow-
polygon intersection tests for each pixel during scan con-

version process.
In this paper, we present a technique that avoids these ex-

pensive steps and makes it easier to interleave shadow gen-
eration with scan conversion process. First, we find edges
with exactly one hidden and one visible adjacent face. Such
an edge is called a Ridge Edge (RE). As we prove later,
REs always form a closed loop. RE loop makes an inexact
form of silhouette and represents shadow boundary. An-
gular representations of shadow boundaries are discretized
and stored in a lookup table. The lookup table is made in
such a way that there is a direct correspondence between
scan lines and lookup table entries. During scan conver-
sion, lengths of shadow are found directly from the table.
In this method, the memory and time requirements increase
approximately linearly with a small constant factor, as the
number of objects increases. Apart from avoiding the two
most expensive steps of traditional shadow volume meth-
ods, this method also makes it possible to trade between
speed and quality. This is particularly useful if real time
performance is desired without special hardware support.

The remaining part of the paper is arranged as follows.
In Section 2, definitions and basic properties of REs and RE
loops are presented. Angular Representation and discretiza-
tion of Shadow Volumes are presented in Section 3. Issues
like Pair Correctness, Depth Information and Run Length
Computation are discussed in Sections 4, 5 and 6 respec-
tively. Section 7 summarizes the Shadow Generation Al-
gorithm. Performance, Scalability, Limitations and Special
Cases are discussed in sections 8, 9, 10 and 11 respectively.
Concluding remarks are given in Section 12.

2. Ridge Edge Loops

A shadow polygon of an object is a semi-infinite polygon
defined by the light source and a silhouette edge [3]. A
portion of an object edge is a silhouette edge if it satisfies
the following two conditions: (1) exactly one of its adjacent
faces is a visible face 1 and (2) its perspective projection is
a bounding edge of the object’s perspective projection (with
respect to the light source).

To check for the second condition, one needs to perform
extensive edge/edge intersection tests and intersection angle
computation. If the volume bounded by the shadow poly-
gons (i.e., the shadow volume) is all one is interested in,
then collecting object edges satisfying the first condition is
sufficient. For future reference, such edges will be called
Ridge Edges (REs) to distinguish them from the silhouette
edges. Note that REs include silhouette edges as subset -
a silhouette edge is either an RE or part of an RE. On the
other hand, points of an RE are either on the boundary or in-
side the region bounded by the silhouette edges. Therefore

1A face is called a visible face if the dot product of its outward normal
and a ray from the light source to any point on the face is less than zero.

the volume bounded by the semi-infinite polygons defined
by the light source and the REs is exactly the same as the
volume bounded by the shadow polygons of the object.

In the following we prove that REs always form a closed
loop for a closed object (without dangling faces). Consider
a vertex ‘� ’ in Figure 1(a), where a number of faces are
converging. Faces are labeled as ‘V’ or ‘H’ depending on
whether they are visible or hidden from the light source. We
start by counting the REs that converge at ‘� ’. The edges be-
tween two visible (hidden) faces are not REs, so for count-
ing purposes we can merge all the adjacent visible (hidden)
faces. Then Figure 1(a) reduces to Figure 1(b). Now we
see that any visible (hidden) face has two hidden (visible)
neighbors, except for the case when we started with all faces
visible (hidden). In any case, a face after merging, will have
zero or two neighbors of other kind. So if there are � visible
(hidden) faces after merging, there will be ��� REs (zero if
�����). Thus at any vertex, only even number of REs can
converge. This implies that there can not be any broken RE
loop. (If an RE loop is broken at any vertex, there must be
an odd number of REs). This completes the proof.

V

V

V

V V

V
H

H H H

HH

P

(a)

V

V

V

V V

V
H

H H H

HH

P

(b)

Figure 1. (a) Original faces converging at P.
(b) Faces after merging.

An object can have more than one RE loop. The RE
loops of an object can be connected or disjoint, overlapping
or completely inside another loop. The RE loops of a given
object represent a potential source of shadow on other ob-

jects or the object itself. Figure 2 shows RE loops of some
objects.

(a)

(b)

(c)

Figure 2. (a) Two disjoint loops (one of them
is an internal loop). (b) Single loop which is
coiled twice. (c) RE loop for a more com-
plex object. (Ridge Edges are shown by thick
lines)

3. Discretization of Shadow Volume in Angular
Coordinates

The shadow of an object has angular symmetry: the an-
gle subtended on the light source by the shadow remains the
same no matter where the shadow is produced. Hence, us-
ing angular coordinates for shadow representation is a nat-

ural choice.
We define angular coordinates (r, � , �) as:

� ��� ���	��
������� (1)

� ����� �������
� ��� (2)

� ����� ������� �� ��� (3)

where � ,
 and � are measured in a coordinate system
with origin at the light source and XY-plane parallel to the
projection plane.

This coordinate system is easily invertible. So it is easier
to transform to and from the Cartesian coordinate system
used in input data and scan conversion. In addition, any
line parallel to the -axis is a constant- � line and any line
parallel to the ! -axis is a constant- � line for fixed " . This
enables us to easily integrate the lookup process with the
scan conversion process.

RE loops are conceptually sliced along � . Each slice
(which corresponds to one � value) represents a span of
shadow along � . To do this, the range of � (which is#%$
�) is expanded to a large integral range say 0-600. This

is essentially a discretization of shadow volume. Figure
3(a) shows an illustration of discretized RE loops of ob-
ject shown in Figure 2(a). The integral range of expansion
or the discretization parameter determines the speed, qual-
ity and storage requirement. Larger range takes more stor-
age, more time and produces better quality output. Smaller
range is faster and takes less memory but produces aliasing.
Since the screen resolution is limited, there is an upper limit
on the discretization parameter. Beyond this limit, there is
no perceivable difference in output quality. Therefore, for
optimal results, discretization parameter must be selected at
this limit. This limit depends on the actual range of theta
considering all objects in the scene.

At the limiting range there is a unique � value for each
scan line. For example, if the light source is far away from
the scene then number of scan lines (or height in pixels) in
the scene is a good estimate for the range. If the light source
is close to scene then this range (&) can be estimated by this
formula:

& �'�)(*�+��� �)� ��,.-0/ � � ��� �)� ��,2143 �5� (4)

where �	(is the Z-coordinate of point farthest from light
source and ��,.-0/ and ��,6143 are the maximum and minimum� values in the scene. This range is computed at the set up
time based on the view volume. In practice, once the range
is determined, discretization of volume is merely an integer
multiplication of � values.

For easy computation of shadow, discretized shadow vol-
umes in the form of angular spans, are stored in a lookup ta-
ble index by � . The structure of the lookup table is shown in

3
4
5
6
7
8
9

11

2

10

1

P3 P4 P5

P7 P8 P9

P11 P12 P13

P15 P16 P17

P19 P20

P21 P22

P23 P24

P25 P26

P18

P14

P10

P6

P2P1

(a)

2 P P

3 P P P P

4 P P P P

5 P P P P

6 P P P P

1 2

3 6 4 5

7 10 8 9

11 14 12 13

15 18 16 17

19 207 P P

8 P P21 22

(b)

1

2

3

4

N

1, 1 2, 2 3, 3 4, 4r r r r

(c)

Figure 3. (a) RE loops of the object in Figure
2(a), � 1 are points on the loops. (b) Repre-
sentation of the RE loops in a. (c) General
structure of a lookup table.

Figure 3(b). Figure 3(c) shows a general structure of lookup
table. Several things are to be noted here. The above loops
range from � =2 to � =10. � =0 in the table will correspond
to a point in an RE loop which is a global (considering all
loops of all objects) minimum in � and � =N will correspond
to a point in an RE loop which is a global maximum in� . Every two consecutive pairs of � and � in a table entry
marks the beginning and end of shadow due to one loop for
the corresponding � . For example, in the entry � ��� of
Figure 3(b), the first two pairs of � and � mark the begin-
ning and end of shadow due to the external RE loop and the
third and the fourth pairs of � and � are the beginning and

end of the shadow due to the internal RE loop.
To check if a point (x, y, z) is in shadow, it is first con-

verted to angular coordinates (r, � , �). An integral equiva-
lent of � is obtained based on the range defined above. Then
the shadow is found from the lookup table entry at � .
4. Correctness of Pairing

The correctness of the above scheme relies on the cor-
rectness of pairing. As pairs mark the beginning and end of
shadows, both elements of a pair must come from the same
RE loop. For example, it will be incorrect to have list ele-
ments ��� , ��� , ��� , ��� in the second entry of Figure 3(b). To
prevent this from happening we must append RE loops in
the lookup table one at a time (in any order). Sometimes a
single loop can contribute to more than one pair at the same� . Again we must ensure correct pairing. Consider the ob-
ject of Figure 2(b). Its RE loop looks like the one shown
in Figure 4(a). In this case edge (a,b) must be paired with
edge (e,f) and edge (g,h) must be paired with edge (j, k) for
the shown constant- � line. If we incorrectly pair (a,b) with
(g,h) and (e,f) with (j,k) then the region from (g,h) to (e,f)
will be interpreted as a hole, which is not the case. The
cause of this problem is coiling of loop. A coil in general
will look like the case shown in Figure 4(b). The problem is
solved by the following scheme. Identify all local peaks in
the loop (points 	 ,
 and � in Figure 4(b)). Process edges
adjacent to the same local peak together, one peak at a time,
going as much down as possible each time. Groups without
crossover (e.g. ones starting at A & B) are merged side by
side. Groups with crossover (like the one starting at �) are
inserted appropriately in the lookup table. For example, in
Figure 4(b) we pick point 	 and process edges from ‘ 	 ’ to
‘ � ’ and ‘ 	 ’ to ‘ ’. Then we pick point ‘
 ’ and process
edges from ‘
 ’ to ‘ ’ and ‘
 ’ to ‘ � ’. Then we pick point
‘ � ’ and process edges from ‘ � ’ to ‘ � ’ and ‘ � ’ to ‘ � ’ (this
time we see a crossover of edges at �). Two groups starting
at 	 and
 are merged side by side while the group start-
ing at � is switched between � and � then inserted into
the lookup table. The final pairing result is shown in Figure
4(c). As indicated by arrows we see that points are paired
correctly.

5. Depth Information

So far the lookup table contains correct information
about shadow boundaries only. Since RE loops are not pla-
nar it is possible that a line joining two points of an RE loop
may not pass entirely through the object. In other words,
RE loops can not capture depth information about bumps or
cavities in the object. To have an exact depth map we also
include hidden edges in our lookup table. A hidden edge is

a

b
c

d e

f

g

h i

j

kl

Const.

(a)

A

E
F

CD

B

X

(b)

(c)

Figure 4. (a) RE loop of the object shown in
Figure 3(b). (b) A coil in general. (c) Append-
ing two pairs of branches starting from peaks.

one whose both adjacent faces are hidden from light source.
Since a hidden edge does not mark the beginning or end of a
piece of shadow, we insert them in duplicate to preserve the
meaning of the lookup table. For example, when we insert
hidden edges of the object in Figure 2(a) into the lookup ta-
ble of Figure 3(b), the table contains the whole picture as in
Figure 5.

Now we can find the depth of a shadow producing object
at any � inside a pair using simple trigonometry as we know
(r, �) of the end points. Note that inserting (in duplicate)
visible edges (with both adjacent faces visible) will work as
well.

Figure 5. Complete representation of the ob-
ject in Figure 2(a).

6. Calculation of Maximum Run Length

To find if a point (x, y, z) is in shadow, it is converted
to angular coordinates (r, � , �). If there is no entry in the
lookup table at � then the point is not in shadow. If the
bucket at � is not empty then (� , �) is compared with all
the pairs (� 1 � 1 , ��� � �) in the list. If there is a pair such that� -�� � � ��� and ((� - or � �) � �) then the point in ques-
tion is in shadow. If in shadow, the extent of shadow can
be calculated from � � . If not in shadow, then the minimum
distance of next shadow can be calculated from the small-
est of � � (which is greater than �). Thus a Run Length of
shadow is obtained. This Run Length is good for current � .
For planes not parallel to XY-plane, � will change with x.
Therefore, the above Run Length may not be valid for entire
scan line. Depending on the orientation of the plane, there
is a maximum limit on the Run Length which is calculated
as follows.

The Maximum Run Length (MRL) is the distance on a
scan line for which � stays the same.

Let
� � ���0
 �	� � �	
 ��� (5)

be the equation of the plane being scan converted, then for
fixed
 we have

� �	�
��
 � ��

Or,

 � � � ��
�� (6)

Since

��� �)� � � � �
 �
It follows that

 � � � ����� � � �
 �

With � being scaled and quantized, we can assume maxi-
mum permissible � � for a scan-line is 1. With this, equa-

tion (5) becomes,

 � � � � � ����� � � ��
 (7)

 � is the Maximum Run Length.

7. The Shadow Generation Algorithm

The Shadow Generation process can be summarized as
follows.
1. Build the Lookup Table:
1.1 Find REs
1.2 Connect REs to make RE loops
1.3 Get angular coordinates of all vertices on RE loops
1.4 Identify vertices with local peaks in � .
1.5 Starting from peaks, append all the points of edges to
the lookup table until a minimum in � is reached.
1.6 Insert hidden edges (in duplicate) in the lookup table.
1.7 Do a pairwise sorting (in terms of �) for all entries of
the lookup table.
2. While scan conversion, for each scan line, a query is
made at the first point say (x, y, z) to check if that point is in
shadow. The function which handles the above query does
the following:

Convert input x, y, z to r, � and �
If table entry at � exists

nextX = END
For all pairs (� 1�� � �) of table entry

If (�*1 � � � � � AND � 1 � �)
nextX = xEquivalentOf(� �)
return TRUE

Else if(� � � 1)
tempX = xEquivalentOf(� 1)
If (� ��� � � � � � � �)

nextX = tempX
return FALSE

Else
nextX = END
return FALSE

Thus callee returns an answer TRUE/FALSE and also resets
a variable nextX. The current state of shadow will remain
valid till nextX for current � .
3. Calculate MRL.
4. Depending on the return value, create or don’t create
shadow up to nextX or x+MRL which ever comes first.
5. Make the next query for shadow.

As evident from the above code fragment; the search for
shadow stops the very first time an instance of shadow is
found. This comes from the fact that the actual shadow is
a logical OR of shadows due to all objects. It is needless

to search for the entire list. This makes the lookup process
much faster, specially in dense scenes. It contrasts with tra-
ditional Shadow Volume methods where each shadow poly-
gon must be intercepted and counted.

8. Performance

This algorithm was implemented on a Silicon Graphics
machine (O2 @180MHz) using X-windows as the graphics
system. Figures 6-9 show some of the test cases.

As one can see in figure 6(a), the very low resolution in� causes aliasing. With the increase of resolution the qual-
ity improves as in figure 6(b). But increasing the resolution
further does not make any perceivable improvement in qual-
ity as there is an upper limit posed by screen resolution(see
figure 7(a)). We also implemented our algorithm on a Win-
dows machine with Pentium 4 processor @1.3GHz (Metrox
Millennium G450 32 MB card) using OpenGL as graphics
system. We achieved a frame rate of (approximately) 29
frames per second for a scene containing 540 polygons and
a moving light source.

The lookup table construction time is very small and in-
dividual lookup time is even smaller (about ����� � on SGI
machines). Since the lookup table is made only once, total
shadow generation time depends on how many lookup calls
are made. The number of lookup calls depend on the size
of polygons and their slope. If the � coordinate changes
very rapidly with � for a given scan-line then � will change
many times for the same scan-line requiring more lookup
calls. Above all, z-buffer method for scan conversion was
found to be the major bottle neck. So the performance could
be improved further by using hardware graphic pipelines for
z-buffer scan conversion.

9. Scalability

To test the scalability of this method a simulation was
done. Assuming that the number of elementary objects in a
scene is a representative of complexity of the scene, a large
number of cubes were rendered. Cube was picked as ele-
mentary object so the data can be generated automatically.
(This experiment was done on a Silicon Graphics machine
mentioned above.) Figure 9(b), shows the generated test
case when the number of cube is 125 (� Polygons = 750).
Figure 10(a) shows how much time is taken in lookup table
construction and all Lookup calls2 as the number of poly-
gons grows. Figure 10(b) shows how much memory is taken
by lookup table3. In this simulation, the total volume of the
scene was kept constant. This means that as the number

2This time does not include the time spent on other procedures like
scene generation, scan-conversion etc.

3This does not include other memory requirements like a placeholder
for scene itself, z-buffer for scan-conversion, RE loops etc.

(a)

(b)

Figure 6. (a) Low resolution (� = 0-99) & (b)
medium resolution (� = 0-299).

(a)

(b)

Figure 7. (a) Very high resolution (� = 0-599)
& (b) more complex object (� = 0-599).

(a)

(b)

Figure 8. Multiple objects with (a) one light
source & (b) two light sources (� = 0-599).

(a)

(b)

Figure 9. (a) Light in the center of the room &
(b) simulation test case (� = 0-599).

of objects grew their dimensions became smaller. This was
done to avoid the need for any clipping. As one can see

0

200

400

600

800

1000

1200

1400

0 5000 10000 15000 20000 25000

To
ta

l ti
m

e
(m

s)

number of polygons

Simulation Result

"REloop_t"

(a)

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000

Lo
ok

up
 T

ab
le

siz
e

(K
B)

number of polygons

Simulation Result

"REloop_m"

(b)

Figure 10. Simulation Results: (a) Time taken.
(b) Memory taken.

from the plots, for large number of objects, both storage
and processing time grows approximately O(N) where N is
the number of objects in the scene. Thus its storage require-
ment compares with BSP tree method, which also requires
O(N) in storage. But it does better on processing time which
for BSP tree method is O(� �).
10. Future work

Being the first of its kind, this method provides a good
ground for future research and development. Some of them
are described here.

One drawback of this method is that its storage require-
ment (like other Shadow Volume methods) grows with the
number of objects. However, this method may become
more amenable in storage management than its peers. As
pointed out earlier, the actual shadow is a logical OR of
shadows from all objects. Using this fact greatly reduces
the number of lookup calls and so the processing time. Sim-
ilarly, this concept can also be applied to storage. That is, if
there is one entry in the lookup table that encompasses other
entry then we need to use only one of them. This way the
lookup table will eventually become saturated and will not

grow any further. This will require some extra search at the
lookup table construction time but it will pay off in storage
and also in shadow generation as there are fewer elements
to look for.

In this method the speed depends on many factors like
slope of polygons, position of light source and viewer etc.
causing a non-uniform speed. For moving scenes, it might
be a good idea to add a variable time delay to get a smooth
output.

To make the scenes more realistic texturing is a good op-
tion. The shadow output of this method is essentially line
segments which makes texture application difficult. One
easy way to get textures would be to combine several scan
lines to get a patch of area and then apply texture. Possi-
bly textured shadow can also be made real time if we use
specialized hardware for texturing part.

11. Special cases

11.1. More than one light source

This is handled by making one lookup table for each light
source. When a query for shadow is made we look in all ta-
bles for the corresponding � and return the number of shad-
ows instead of just TRUE or FALSE. Further, � � � � value
set by lookup procedure is the smallest of � � � � values
obtained from all the tables. This means the scan conver-
sion procedure will make more lookup calls. These lead to
a slight reduction in speed. We experimented with two light
sources and found that overall time increases by about ����� .
Figure 8(b), shows a scene with two light sources.

11.2. Light source in the scene

To handle this case we can proceed in the same way
as described before while keeping track of objects in two
hemispheres (separated by XY-plane, in a coordinate sys-
tem fixed with light source) separately.

We split the RE loops whenever they cross the XY-plane.
During the scan conversion we also split the polygons cross-
ing XY-plane. These two steps essentially reduces the prob-
lem to a case when the light source is out of the scene. As
from Equation 4, a large discretization parameter is needed
near � =

#%$
� . A variable resolution lookup table is made

for this situation. Lower resolution is used near � � � and
a higher resolution is used near � � # $

� . An example is
shown in figure 9(a).

12. Conclusion

This paper presents an improved shadow volume method
for shadow generation which can achieve real time perfor-
mance. This technique identifies and uses the boundary of

shadow rather than interior of shadow. It exploits the angu-
lar symmetry of shadow by building a lookup table which
contains angular representations of shadow boundaries or
RE loops. As the actual shadow is a logical OR of shad-
ows due to all objects, searching the entire table for shadow
is not needed. This makes the use of lookup table more ap-
propriate. Several test cases including multiple light sources
and light source in the scene are generated. This technique
can also be used in association with specialized graphics
hardware for z-buffer to get even faster results. Simula-
tion results indicate the suitability of this method for larger
scenes. For low cost systems like a game box, where a fast
moving scene is desired without a high performance proces-
sor, this method allows some trade offs between speed and
quality.

References

[1] P. Atherton, K. Weiler, and D. Greenberg. Polygon shadow
generation. In Proceedings of SIGGRAPH 1978, Computer
Graphics Proceedings, Annual Conference Series, pages 275–
281. ACM, ACM Press / ACM SIGGRAPH, 1978.

[2] N. Chin and S. Feiner. Near real-time shadow generation us-
ing bsp trees. In Proceedings of SIGGRAPH 1989, Computer
Graphics Proceedings, Annual Conference Series, pages 99–
106. ACM, ACM Press / ACM SIGGRAPH, 1989.

[3] F. C. Crow. Shadow algorithms for computer graphics. In
Proceedings of SIGGRAPH 1977, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 242–248. ACM,
ACM Press / ACM SIGGRAPH, 1977.

[4] R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg.
Adaptive shadow maps. In Proceedings of SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series,
pages 387–390. ACM, ACM Press / ACM SIGGRAPH, 2001.

[5] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Com-
puter Graphics, Principles and practice. Addison-Wesley,
1990.

[6] T. Nishita and E. Nakamae. An algorithm for half-tone rep-
resentation of three-dimensional objects. In Information Pro-
cessing in Japan, pages 93–99, 1974.

[7] W. C. Thibault and B. F. Naylor. Set operations on polyhe-
dra using binary space partitioning trees. In Proceedings of
SIGGRAPH 1987, Computer Graphics Proceedings, Annual
Conference Series, pages 153–162. ACM, ACM Press / ACM
SIGGRAPH, 1987.

[8] L. Williams. Casting curved shadows on curved surfaces. In
Proceedings of SIGGRAPH 1978, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 270–274. ACM,
ACM Press / ACM SIGGRAPH, 1978.

[9] A. Woo, P. Poulin, and A. Fournier. A survey of shadow al-
gorithms. In IEEE Computer Graphics & Applications, pages
13–32. IEEE, 1990.

