Prioritized Component Systems

Gerhard Brewka
Comp. Sci. Institute
University of Leipzig
Leipzig, Germany
brewka@informatik.uni-leipzig.de

Abstract

We introduce a flexible framework to specify problem so-
lutions (outcomes) and preferences among them. The pro-
posal combines ideas from answer-set programming (ASP),
answer-set optimization (ASO) and CP-nets. The problem
domain is structured into components. ASP techniques are
used to specify values of components, as well as global{inte
component) constraints among these values. ASO methods
are used to describe preferences among the values of a com-
ponent and CP-net techniques to represent inter-component
dependencies and corresponding preferences.

Introduction

Qualitative preferences have received considerabletatien

in Al lately (cf. the special issue Computational Intelli-
gence, 20(2), 2004). A popular representation of qualita-
tive preferences are CP-nets (Boutiletral. 1999; 20044a;
2004b). They are directed acyclic graphs of variables an-
notated with conditional preference tables. The table-asso
ciated with a variablexplicitly describes conditional pref-

llkka Niemela
Dept. of Comp. Sci. and Eng.
Helsinki University of Technology
Helsinki, Finland
llkka.Niemela@tkKk.fi

Mirostaw Truszczynski
Dept. of Comp. Sci.
University of Kentucky
Lexington, KY 40506-0046, USA
mirek@cs.uky.edu

ordering on answer sets. They are strong because they apply
without theceteris paribugestriction. They are defeasible
since they may be overridden by other rules.

CP-nets allow the user to fully exploit dependency struc-
ture, both for preference representation and elicitation.
However, they are restrictive in the way preferences on the
values of a single variable can be specified. They basically
assume that variables have a small number of known val-
ues and that a total order of these values can be explicitly
given. The ASO approach uses an answer-set program to
represent a single variable with complex outcomes, where
outcomes are modeled by answer sets of the program. It also
provides flexible means for expressing possibly conflicting
and/or incomplete preferences on outcomes, as well as indif
ference. However, dependencies among parts of outcomes
remain implicit and are not fully exploited.

Prioritized component systemsur main contribution,
combine key aspects of both approaches. The setup is ba-
sically that of CP-nets. We have variables, each with its do-

erences among the values of that variable as a function of ain " and each possibly depending on its parent variables.
value assignments to the parent variables. The problemis to iy en a variable, for every set of values of parent variables

specify a preference ordering @mutcomesthat is, assign-

we also have an ordering of elements of the domain of that

ments of a value to each variable. Preferences are given a, 4 iaple. However, unlike in CP-nets, variables may have

ceteris paribugother things being equal) interpretation. For
example, the statemerdd cars are preferred over blue cars
is taken to mean: if two cars differ only in colour, and one is

large domains, with elements known only implicitly. We re-
fer to these “complex” variables asmponentand, follow-
ing the ASO approach, represent them by answer-set pro-

red while the pther blue, then the red one is preferred (not: grams. Preference orderings on the values for the compo-
each red car is better than any blue car). Preference rulespant also are specified following the ASO approach. Each

express strict constraints on the preference ordering 6n ou
comes, but are weak in the sense that they applyunder
theceteris paribugestriction.

Another approach, callemhswer-set optimizatiofASO),

component” comes with a set of preference rules, whose
bodies (and only the bodies!) may contain literals froan-
entcomponents. Each assignment of values (answer sets)
to the parent components selects a set of relevant preferenc

has been developed in the context of answer-set program-jes for C. These rules express defeasible multi-criteria

ming (Brewka, Niemela, & Truszczyhski 2003). Although
preference rules are used there as well, their meaningtis qui

preference information that determines the preferencererd
ing on the answer sets @f, given the answer sets (values)

different. Each rule expresses a ranking on answer sets. o the parent components.

However, the rankings provided by different rules may dif-
fer, and a combination method is used (Pareto in (Brewka,
Niemela, & Truszczyhski 2003)) to generate a global prefe

ence order. Hence, a rule can be viewed as a single criterion

in multi-criteria decision making. ASO preference rulasgh
are strong but defeasible constraints on the global predere

Copyright © 2005, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

The choice of answer-set programs to represent compo-
nents (or outcomes, in the case of ASO programs) is not es-
sential for our discussion. Any constraint formalism (ge.g.
propositional logic) could be used instead. In selecting
answer-set programs we were motivated by the minimal-
ity and groundedness of their answer-set semantics, which
make them useful for knowledge representation.

Our approach generalizes both CP-nets and ASO pro-



grams. CP-nets are component systems with dependency We now have the following key definition.

structure, but with the simplest possible components tist j
pick a single value for a variable. ASO programs are com-
ponent systems with a single, possibly complex component
but, clearly, no component dependencies. The framework
we develop here allows us to model systems anywhere in
between these two extremes.

Background
In most abstract terms, we are concerned with comparing the
quality of elements in a set. Thus, we need (i) a formalism to
specify a set of elements orspace of outcomese wish to

Definition 3 Let S be a set of literals ana a preference
rule of the form (1). Theatisfaction degreef r in S (de-
noted bys,.(5)) is given as follows. If |= « and, for some
i, 1 < i <mn,S [ v, thens,(S) is the smallest index
of a satisfied boolean combination in the head oDther-
wise the rule is irrelevant and.(.S) is denoted by a special
symboll.

We assume that the smaller the index of a satisfied goal
the better. For trivial reasons, irrelevant rules are nbt su
optimally satisfied as they either do not apply or have no

compare, and (ii) a way to represent and reason about prefer-902ls satisfied at all (cf. (Brewka, Niemela, & Truszczins
ences on outcomes. The two aspects are typically separated2003) for a more extensive discussion of that issue). Thus,

for greater modularity, flexibility and generality.

We will now describe two formalisms for specifying and
reasoning about preferences that are of primary intertest la
in the paper. They areanswer-set optimization programs
(ASO-programgfor short) (Brewka, Niemela, & Truszczyh-
ski 2003) andCP-netqBoutilier et al. 1999; 2004a; 2004b).

ASO programs

In ASO programs, individual outcomes are sets of literals
over a fixed sefl¢ of propositional atoms. To represent a set
of outcomes, we use a logic program over the set of atoms
At and assume that feasible outcomes are precisely the an-
swer sets of? (we assume some familiarity with the logic
programming terminology; we refer the reader to (Gelfond
& Lifschitz 1991; Simons, Niemela, & Soininen 2002) for
relevant details). As we noted, our choice of programs to
model outcomes is motivated by knowledge-representation
concerns but other constraint-based formalisms could also
be used.

To represent preferences in ASO programs, wepneé
erence rulegor simply, preferencepof the form

(1)
where they;s areboolean combinationsf atoms inAt, i.e.,
formulas built of atoms ind¢ using disjunction Y), con-
junction (A), strong €) and default ot ) negation, with
the restriction that- can appear only in front of atoms, and
not only in front of literals and where is a conjunction of
literals and expressions of the fomwt | wherel is a literal.

Definition 1 Ananswer-set optimizatiofor ASO) program
over the set of atomdt is a pair (C, ®), whereC'is a logic
program (overAt), called agenerator prograpand® is a
collection of preference rules (ovelrt), called apreference
program Answer sets af' are outcomef (C, ®).

To specify how to use preferences to compare sets of lit-
erals and, in particular, outcomes of ASO programs, we in-
troduce asatisfactionrelation between sets of literals and
boolean combinations.

Definition 2 Satisfaction of a boolean combinationin a
set of literalsS, denotedS |= v, is defined as:

0 T e [ AR 0%

S =1 (1 literal) iff les

S Enotl(lliteral) iff ¢S

S):’}/l\/’}/g iff S':’leI'S):’}/Q
S':’}/l/\’}/Q iff 8'2'71 andSl:yg.

we consider to be as good a satisfaction degreé ashese
intuitions are made formal by a preordief on the set of sat-
isfaction degrees: for, 3 € {I,1,2,...},a = gif g =1
or3 = I,ora andg are integers and < «. The relation=
is in fact atotal preorder. We write< for the strict counter-
part to the relation< (o < g if a < § and it is not the case
that3 < «). The relation< is antisymmetric and transitive
and so, its closure under reflexivity, igartial order.

Let (C,®) be an ASO program anfl a set of literals.
The satisfaction degrees of rules framin S form the ba-
sis for defining a global preference ordering on outcomes of
(C, ®). Several methods can be used for this purpose. We
will restrict our discussion here to the Pareto method.

Definition 4 Let(C, ®) be an ASO program and lét and
S’ be its outcomes (answer sets). An outcdirie Pareto-
preferredto an outcomeS’ of C (S’ <4 S) if for every
ruler € @, s.(5") < s.(9). If ' <¢ S and itis not the
case thatS <4 S’ (that is, for at least one rule € @,
sr(8") < s,(9)), thenS is strictly Pareto-preferred taS’
(S/ <o S)

An outcomeS is optimalfor (C, ®) if there is no outcome
S’ such thatS <g S’.

The relation<g4 is a preorder relation for the set of out-
comes of(C, ®). The relation<s, when closed under re-
flexivity, is a partial order on the set of outcomes.

For simplicity, we restrict the class of generator programs
to normal programs (default negation in the bodies only, no
classical negation symbols) with cardinality constra{is
mons, Niemela, & Soininen 2002). Cardinality constraints
allow us to specify lower and upper bounds on the number
of certain atoms in an answer set. For this paper we will only
need rules of the form{as, ..., a,}1 < « expressing that
exactly onea; must be contained in answer sets satisfying
«. Answer sets of such programs are sets of atoms.

CP-nets

CP-nets were introduced in (Boutiliet al. 1999; 2004a).
Let A = {A4,...,A,} be a finite set of variables (at-
tributes). For each variabld € A, let D4 be thedo-
main of A, that is, a finite and non-empty set wvélues
for A. Without loss of generality, we assume that variable
domains are pairwise disjoint. Aautcomeis ann-tuple
U= (up,...,up)suchthat, € Dy, , 1 <i<n.

LA binary relation is gpreorderif it is reflexive and transitive.



A conditionis a conjunction of atomic expressions of the
form (A = a) and their negations, wherd € A4 and
a € D 4. A conditional preference ruléor, conditional pref-
erence is an expression of the form : 7 such thatx is a
condition and, for some variablé, « is a total preorder on
the domainD 4. We writea <, bif (a,b) € =, i.e.,ifbis at
least as good asin © anda <, b to denote thestrict pref-
erenceof b overa, i.e., ifa <, b holds butb <, a does not.
We note that unlike<,., <, (when closed under reflexivity)
is a partial order.

We use total preorders rather than total orders (even
though the latter is a more common choice in the literature)
to provide means to modgldifference It is important as in
practice the users may be unwilling or just unable to specify
a total order on the set of values of a variable in a situation
when they consider different values as equally good.

A CP-netover a set of variabled is a pair( P, ®), where
P is aparent functionand® is a collection of conditional
preferences such that for every conditional preferencer
in ®, which orders values of a variablg, « involves only
variables that belong t&(A4)2.

with < ¢p (closed under reflexivity). The relationcp and
the notion of optimality we consider in the paper were intro-
duced and studied in (Brafman & Dimopoulos 2004).

Component systems

In an ASO prograniC, ®), the role ofC is to describe the
space of available outcomes and the roleab to capture
preferences of a user regarding these solutions. In this gen
eral form, ASO programs do not provide explicit means to
handle complexity and structure present in large-scale ap-
plications, where domains and problems decompose into
subdomains and subproblems with well-defined dependen-
cies. Adding structure based on dependencies, and so im-
plicitly expressing independence, has proven successful i
knowledge representation formalisms such as Bayes nets
and CP-nets. These formalisms exploit structure to ensure
concise factoredproblem representations. Our main objec-
tive is to bring structure to answer-set optimization to mak
the process of modeling spaces of solutions and relevant
preference information more transparent and systematic. |
the process, we obtain a formalism for qualitative reaspnin

In a standard approach to CP-nets, preference statementsypoyt preferences that generalizes both ASO-programs and
are represented by conditional-preference tables — one ta- cp_pets.

ble for each variable. Rows in the table for a varialdle
correspond to tuples of values from the domdihs, where

B € P(A) (exactly one row for each tuple), and each row
contains a relevant ordering of values in the domain.
The approach we adopt here is more general.

The main contribution of CP-nets is in how they use con-
ditional preferences to order outcomes. In what follows,
given a variabled and an outcomé&/, by U(A) we denote
the value from the domain of that appears i¥/.

Definition 5 An outcomé/ is one-step preferre an out-
comeWV if for some variableA:

1.V(B) = W(B) for every variableB € A\ {A} (thatis,
for every variable other thar), and

2. ® contains a conditional preferenee: 7 for A such that
W (and hence als®") satisfiesx andW (A) <, V(A).

If V' is one-step preferred " with respect to a variable
A, then we say that there is @amproving A-flip from W to
V and that there is worseningA-flip from V to W.

Definition 6 The outcomé&” is CP-preferredo W, W <¢p
V, if V can be obtained fromiV’ by a (possibly empty) se-
guence of improving flips. The outcorieis strictly CP-
preferredo W, W <¢p V,if W <¢op V and it is not the
case thal” <cp W. An outcomé’ is optimalif there is no
outcomel such thafl’ <¢op U.

For every CP-net, the relatior cp, when closed under
reflexivity, is a partial ordering. The relatioficp in general
is not; it is a preorder only. However, facyclic CP-nets
(CP-nets whose parent function induces a directed acyclic
graph on the set of variables) and with all preferences spec-
ifying total orders <¢p is a partial order and it coincides

2Including a parent function in the description of a CP-net is
redundant as the dependency information is contained idittons
of conditional preference rules. However, it makes thegreafce
elicitation process more systematic.

Let At(P) be the set of atoms appearing in a progri@dm
Definition 7 A component systeis a pair (II, G), where

1.1 ={C,...,C,} is acollection of logic programs with
pairwise disjoint sets of atoms, calledmponentsf the
component system, and

2. G is a set oftonstraintsthat is, logic program clauses of

the form — body

such thatAt(G) € Ugen At(C).

An outcomeof (II, G) is a tuple (M (C4), ..., M(Cy)),
where for eveny; € I1, M (C;) C At(C;) and|J M (C;) is
an answer set of the prograGi U | JI1.

Directly from the definition and from the properties of
logic programdI andG it follows that if M is an outcome
of a component systefil, G) then, for every component,
the setM (C) is an answer sets df.

Logic programs represent sets of literals (sets of atoms, if
we restrict, as we do in this paper, to normal programs with
cardinality constraints). The answer sets have no explicit
structure or, are “flat”. Component systems replace this flat
representation with a two-level one. Elements of outcomes
are no longer atomic but have structure of their own. They
are collections of atoms — answer sets of system compo-
nents. In other words, each componéhtan be thought of
as a variable, its domains represenimgblicitly by a logic
program (' itself) and consisting of the answer set3’of

Every tuple of answer sets of programs forming compo-
nents of a component systeffl, G) is an outcome of the
component systerfil, {}). The role ofG is to exclude some
combinations. Adding a constraint- body to a logic pro-
gram eliminates all answer sets of the program that satisfy
body. Since there are no restrictions on atoms appearing in
the clauses iz, the prograntG representglobal (or inter-
component) restrictions on ways, in which component val-
ues can be combined into outcomegdf G).



The structure of a component systéhh G) is implicitly
present in the prografn IT U G. Namely, there is a 1-to-1

anda is built of atoms indt(C) U Upe p(c) At(D). We
call such preference rule§-preferencesind denote the

correspondence between outcomes of the componentsystem  set of allC-preferences by .

(I1, G) and answer sets of the progr@gil U G: for an out-
comeM of (I, G), MY = Jpen M(C) is an answer set
of UII U G and, for an answer séf of | JII U G, the tuple

—

N = (N N At(C):C € 1I) is an outcome ofIl, G). The
ability to make the structure explicit is, however, impaoitta
It allows us to model directly the structure present in appli
cations, an issue we discuss in the last section.

We will illustrate the idea of a component system with a
simple example of configuring a daily menu (more formally,
describing the space of daily menus). We first establish that
a daily menu consists of three components: breakfast, lunch
and dinner. We then describe each of them separately, for
instance, by programs listed below.

breakfast: 1{continental, american}1
lighty «— continental

lunch: 1{soupy, salad; } 1
1{meat,, fish;,lasagne;}1
1{ fries;,noodles; }1 « not lasagne;
light; «— lasagne;, salad;

dinner: 1{soupq, salady}1

{meatq, fishq,lasagneq}1
1{ friesq,noodlesq}1 — not lasagneq
lightq < lasagnegy, salady

The components specify the possible choices for each case.

Sofarthere are x 10x 10 = 200 possible outcomes. Global
constraintss exclude certain combinations (for lack of va-
riety or for health reasons), for instance

— meat;, meatq
«— lasagney,lasagneq
«— not lighty, not light;, not lightg

While the same set of menus can be represented by a sin-

gle program consisting of all these rules, component system
structure the rules in a way conceptually linked to the struc
ture inherent in the application domain. However, a fun-

Outcomedor a prioritized component systefl, G, P, )
are the outcomes for its component sys{emG).

We now define the preference relation on outcomes of a
PCS(IL, G, P, ®). To this end, we first focus on the PCS
(IL, 0, P, ®). Every outcome ofIl, G, P, ®) is an outcome
of (11, 0, P, ®). Moreover, outcomes dfl, (), P, ®) are pre-
cisely those tupled/ such that for every’ € II, M (C) is
an answer set @f'. The first step is to introduce the notion of
aflip between outcomes of a prioritized systéih ), P, D).

Definition 9 Let M and M’ be outcomes fofII, (), P, D)
andC € II a component. There is@-flip from M to M’ if
M # M’ and for everyD € 11, D # C impliesM'(D)
M(D).

A flip from M to M’ is improvingif M <. M’ (thatis,
with respect to the Pareto-preference relation determimgd
preference rules i ).

The choice of the Pareto-preference relation with respect
to preferences b is a consequence of the fact that we
defined the preference relation between outcomes of ASO
programs by means of that relation. If a different combina-
tion method for ASO programs is chosen, that relation has
to be used here.

Definition 10 Let(II, G, P, ®) be a PCS and let/ and M’
be outcomes fofIl, G, P,®). The outcomel!’ is PCS-
preferredo M, M =<pcs M, if there is a sequence of im-
proving flips fromM to M’ (possibly involving outcomes for
(I1, @, P, ®) not satisfying the constraints as intermediate
steps). Itisstrictly preferred, M <pcs M',if M <pcs M’
and it is not the case that!/’ <pcg M.

Definition 11 Let M be an answer set of a PAS We say
that M is an optimal outcome fo€ if there is no outcome
M’ for C such thatM <pcg M.

Let us consider again the daily menu example. To specify

damental advantage of component systems is that they lend her preferences the user first decides the dependency struc-

themselves well to a variety of methods to specify prefer-
ences among outcomes. We discuss that issue next.

Prioritized component systems

The main focus of this paper is on representing and reason-
ing about preferences pertaining to a collection of outcome

represented by a component system. To represent prefer-
ences we use preference rules as defined for ASO programs.

Definition 8 A prioritized component systeniPCS, for
short) is a quadrupl€ = (11, G, P, @), where

1. (I, G) is a component system;

2. P is aparent functiordescribing dependencies between
components: for every componénie 11, P(C') consists
of all components il thatC' depends on; and

3. @ is a set opreference rulesf the form (1) that are sub-
ject to the following restrictions: for each preferenceeul
1 > ... > v < «in ® there is a componend such
that formulasy;, 1 <14 < k, are built of atoms ind¢(C)

ture she wants to base her preferences on. Let us assume
that dinner and breakfast preferences do not depend on other
components, and that lunch depends on the other two. The
user first specifies her dinner and breakfast preferences, fo
instance, using the following preference rules:

(d1) meatq A friesq > fishqg > meatq A noodlesq

(d2) soupq > salady — meaty

(ds) salady > soupg < not meatq

(b1) light, > not lighty
She now describes conditional lunch preferences dependent
on the attributes of the other meals:

(I1) meat; > not meat; — lasagnegq, continental
(I2) salad; > soup; < soupy
(I3) fish; > lasagne; < salad,
(l4) soup; > salad; «— american
Now one of the optimal outcomes is:

({continental, lightyp}, {salad;, fishy, fries;},
{meatq, friesq, soupq})



Another optimal solution is obtained by exchangifiges; al. 2004a). Whenever a certain combination of variable val-

with noodles;. There are also optimal solutions containing ues, sayX; = z1,..., X, = z,, IS excluded by the global
lasagney andsalady. We are aware that the full power of  constraints in a constrained net, we include a correspgndin
our approach becomes more evidentin larger scale examplesconstraint of the form— X; = z4,..., X,, = =, in G.

for which we have no space here. Nevertheless, the exam- The PCS framework also generalizes answer-set opti-
ple illustrates the basic notions and some of the advantagesmization as described in (Brewka, Niemela, & Truszczyhsk
of PCSs: dependencies are between components, not sim-2003). Indeed, we have the following simple result.

ple variables with unstructured values; preferences can be thegrem 2 Let ¢ — (C,®) be an ASO program. Then
incomplete and conflicting (e.g. conflict betwelgrand!, ¢’ = ({C},0,0,®) (in other words, both the set of global
in case of american breakfast and dinner soup), and it is pos- ¢onstraints and the parent function are empty) is a PCS, its
sible to remain indifferent (no preference between fisbgfri outcomes are precisely the 1-tupled ), where)/ is an an-

and fish/noodles for dinner). swer set foiC, and for every two outcomed and M’ of C
The way we use improving flips to order outcomes fol- (answer sets af)

lows (Boutilieret al. 2004b), and disagrees with (Prestwich , , , N o
et al. 2004). The two approaches differ in their interpreta- 1M = M (!n €) !f and only !f<M> =pos <M,> (!n C,)

tion of constraints. In (Prestwiadt al. 2004) the constraints 2.M =< M (inC)ifand only if (M) <pcs (M') (in C’).

are viewed as specificationsfofbiddenconfigurations that The correspondences between CP-nets and PCSs can be
are completely unacceptable to the user. Hence, in that ap- summarized by the following table:

proach, outcomg is preferred to an outcomeif there is a CP-net | PCS
sequence of improving flips fromto y not passing through variablev, programC;

a forbidden outcome. That amounts to letting constraints value ofuv; answer set ot;
override CP-preferences (as forbidden outcomes are forced value assignmen configuration

to be least preferred) and appears to be a drastic change of CP-table forv; | preference program®c,
the CP-net semantics. The alternative approach of (Beutili v;-flip new answer set faf;
et al. 2004b) treats constraints as simply making some out- .
comes unav)ailable. The fact that an oFL)Jt)::ome isgunavailable Pareto and PCS ordering

has nothing to do with the user’s preferences — should the LetC = (II, G, P, ®) be a PCS. By disregarding the struc-
outcome become available its quality would be measured ac- ture inC, we obtain an ASO prograuso = (JIIUG, ®).
cording to user preferences specified in the CP-net. Conse-We noted earlier that there is a 1-to-1 correspondence be-
guently, (Boutilieret al. 2004b) (and we here) allow the use  tween outcomes of (which are outcomes dfll, G)) and

of unavailable outcomes to define the global preference re- outcomes o450 (answer sets of JIT U G), given by a
lation by means of improving flips. function that assigns to each outcomeof C, the set\/ ",

We now show that CP-nets and ASO-programs are special an answer set ¢f) IIUG (an outcome of 4s0). That corre-
cases of our formalism. A CP-ngP, ) can be represented  spondence suggests that a natural criterion for any omglerin
as a PCS in the following way. Lef be a variable of P, ®) of the outcomes df is that it extends the Pareto orderidg
and letzy, . .., 2, be its values. We define a component pro- of the outcomes of 450. We will now show that our PCS-
gram(C to consist of a single logic program rule (a choice preference ordering has indeed that property for the class o
rule in the syntax of (Simons, Niemela, & Soininen 2002))  acyclicPCSs. Itis not an overly restrictive assumption since

7 == Z =}l typical PCSs arising in applications are acyclic.
- 1’ ccty - n .

Theorem 3 LetC = (II, G, P, ®) be an acyclic PCS and

Let o : 7 be a conditional preference rule for a variable let M and M’ be two of its outcomes. fl ., M (C) <o
We denote by’ the formula where every occurrence-ofs U M'(C) thenM <¢cp M’ € -

. . Cenl CP .
replaced withnot . Next, letLq, ..., Ly be all maximal sets

of atoms of the formZ = z; such that alk;s are equivalent ~ PTof (sketch): Let,...C,, be an enumeration of the
with respect to the total preorderand such that atoms in ~ cOmponents of consistent with the parent functidh, that
L; are strictly preferred inr to atoms inL; if and only if is, for every componert;, P(Ci) C {C1, ..., Ci—1}. For

i < j.Wesetd;, 1 <i < k, to be the disjunction of atoms ~ &veryé, 1 < i < n, let M; = M(C;) and, similarly,
inL;. Aruled, > ... > dy — o is a preference inthe  Mi = M'(C}) (thatis, M; and M are answer sets of (val-
sense of ASO programs and PCSs. We denote the set of all U€S for) the componerd; appearing in outcomes/ and
preferences obtained by transforming the preferencds in > respectively). For every 1 < i <n + 1, we define

by ®'. We have the following theorem. Ny =(Mj{,..., M |, M;,...,M,).

Theorem 1 Let(P, ®) be a CP-net with the set of variables Itis clear thatM = N; andM’ = N, 1. Moreover, for

VY and letU andU’ be two of its outcomes. ThéhandU’ everyi, 1 < i < n, N;41 is a result of aC;-flip applied to
are outcomes of the PQ$C%: Z € V},0, P, ®') and N;. We can show that for each 1 < i < n, the C;-flip
1.U <cp U’ ifand only ifU <peg U’ from N; to N, is an improving one. O
2.U <cp U'ifand only ifU <pes U’ Our proof also works for a slightly broader class of PCSs

that contain preference rules whose bodies are conjursction

This theorem can be generalized to the case of “con- of formulas (not literals), each formula built of atoms of a
strained optimization with CP-nets” approach (Boutikr single component.



Complexity model describes valid product instances and customer pref-

The computational complexity of problems related to PCSs €'€Nces -P(Sed t(')b beh elicited f(;r ﬁhp(;'(;]g a preferred in-
depends on the class of programs used as components. Tostancg). escribe the space of choiGesdomain is struc-
make the discussion concrete, we consider PCSs whose!Ured into components. Each component has a generator
components are logic programs with cardinality and weight Program whose answer sets represent the valid choices for
constraints (Simons, Niemela, & Soininen 2002). However, thatcomponent. Faireference elicitatiotthe user is guided

all results in this section hold for PCSs whose components through the components. In each step, she picks a compo-

belong to any class of programs, for which one can check in N€Nt for which her preferences only depend on components
polynomial time whether a set of literals is an answer set. she has gl_ready ranked. In each case she gives preference
rules defining a preference order on answer sets of the cur-

rent component.

A major advantage of our framework is its flexibility. The
user is free to structure the domain into components in the
most adequate way for a particular application. Moreover,
the preference order on values of a component can be ex-
pressed conveniently using flexible rules, each one provid-
ing a criterion for assessing a value’s quality. Our results
show that making dependency structure explicit will, astea
in the acyclic case, increase comparability and thus lead to

Theorem 4 The following problem iPSPACE-complete:
Given a PCS and two of its outcomeX®/ and M’, decide
whetherM <pcg M.

Proof (sketch): Let = (II, G, P, ®). The problem can be
decided using aondeterministiduring machine that starts
with M; = M and correctly guesses a sequence of improv-
ing flips from M to M’. That is, in each iteration with
M, as the current outcome the machine correctly guesses

a componen€’ and an answer sét of C' so that (1) the re-
sult M of replacingM;(C) with S in M; is an outcome

of C, and (2)M; <¢. Ms. Then, the machine sef¥/;

to be M, until M’ is met. It is clear that the sequence of
outcomes produced by this Turing machine is an improv-
ing sequence and that the machine works in polynomial
space. It follows that our problem is in the cl&&BSPACE
Since PSPACE = NPSPACE (cf. (Papadimitriou 1994)),
the membership part of the assertion follows.

The hardness part follows from the fact that the class of
PCSs contains the class of CP-nets. In the domain of the
CP-nets, the problem we are considering here is known as
thedominanceproblem. It has been shown to BSPACE
complete in (Langgt al. 2005). o

Next, we study problems related to optimal outcomes.

Theorem 5 The problem to decide whether a PC&as an
optimal outcome ifNP-complete.

The problems concerning the existence of an outcome sat-
isfying some property given as a boolean combination, and
concerning deciding the optimality of an outcome are again
much harder.

Theorem 6 The next two problems aRSPACE-complete:

1. Given a PCS and a boolean combination, decide
whetherC has an optimal outcome satisfying

2. Given a PC& and its outcomé/, decide whetheb/ is
optimal.

While PSPACE-completeness results indicate that rea-
soning with PCSs is inherently hard, we note that analo-
gous problems for much simpler formalisms such as (gen-
eral) CP-nets are equally complex. One way then to inter-
pret the results in this section is that PCSs offer enhanced
representational flexibility over the formalism of CP-nats
no extra cost in the computational complexity.

Discussion

Prioritized component systems support a decoupled method-
ology for applications combining ASP with preference elic-
itation (an example is product configuration: a product data

more fine grained distinctions.

Acknowledgments

The authors acknowledge the support of EC contract
IST-FET-2001-37004 (WASP), Academy of Finland grant
211025 and NSF grants [1S-0097278, 11S-0325063.

References

Boutilier, C.; Brafman, R.; Hoos, H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. Proceedings of UAI-99

Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004a. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preferendesta

ments.JAIR21:135-191.

Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004b. Preference-based constrained optimiza-
tion with CP-netsComp. Intelligenc0(2):137-157.

Brafman, R., and Dimopoulos, Y. 2004. Extended seman-
tics and optimization algorithms for CP-networkSomp.
Intelligence20(2):218-245.

Brewka, G.; Niemela, I.; and Truszczyhski, M. 2003. An-
swer set optimization. IRroceedings of IJCAI-Q3

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databaddew Generation
Computingd:365-385.

Lang, J.; Goldsmith, J.; Truszczyhski, M.; and Wilson, N.
2005. The computational complexity of dominance and
consistency in CP-nets. Proceedings of IJCAI-05.

Papadimitriou, C. 1994. Computational Complexity
Addison-Wesley.

Prestwich, S.; Rossi, F.; Venable, K.; and Walsh, T. 2004.
Constrained CP-nets. Iaroc. of the Joint Annual Work-
shop of ERCIM/CoLogNet on Constraint Solving and Con-
straint Logic Programming

Simons, P.; Niemela, I.; and Soininen, T. 2002. Extending

and implementing the stable model semantidstificial
Intelligencel38(1-2):181-234.



