
Prioritized Component Systems

Gerhard Brewka
Comp. Sci. Institute
University of Leipzig

Leipzig, Germany
brewka@informatik.uni-leipzig.de

Ilkka Niemel ä
Dept. of Comp. Sci. and Eng.

Helsinki University of Technology
Helsinki, Finland

Ilkka.Niemela@tkk.fi

Mirosław Truszczyński
Dept. of Comp. Sci.

University of Kentucky
Lexington, KY 40506-0046, USA

mirek@cs.uky.edu

Abstract

We introduce a flexible framework to specify problem so-
lutions (outcomes) and preferences among them. The pro-
posal combines ideas from answer-set programming (ASP),
answer-set optimization (ASO) and CP-nets. The problem
domain is structured into components. ASP techniques are
used to specify values of components, as well as global (inter-
component) constraints among these values. ASO methods
are used to describe preferences among the values of a com-
ponent and CP-net techniques to represent inter-component
dependencies and corresponding preferences.

Introduction
Qualitative preferences have received considerable attention
in AI lately (cf. the special issue Computational Intelli-
gence, 20(2), 2004). A popular representation of qualita-
tive preferences are CP-nets (Boutilieret al. 1999; 2004a;
2004b). They are directed acyclic graphs of variables an-
notated with conditional preference tables. The table asso-
ciated with a variableexplicitly describes conditional pref-
erences among the values of that variable as a function of
value assignments to the parent variables. The problem is to
specify a preference ordering onoutcomes, that is, assign-
ments of a value to each variable. Preferences are given a
ceteris paribus(other things being equal) interpretation. For
example, the statementred cars are preferred over blue cars
is taken to mean: if two cars differ only in colour, and one is
red while the other blue, then the red one is preferred (not:
each red car is better than any blue car). Preference rules
express strict constraints on the preference ordering on out-
comes, but are weak in the sense that they applyonly under
theceteris paribusrestriction.

Another approach, calledanswer-set optimization(ASO),
has been developed in the context of answer-set program-
ming (Brewka, Niemelä, & Truszczyński 2003). Although
preference rules are used there as well, their meaning is quite
different. Each rule expresses a ranking on answer sets.
However, the rankings provided by different rules may dif-
fer, and a combination method is used (Pareto in (Brewka,
Niemelä, & Truszczyński 2003)) to generate a global prefer-
ence order. Hence, a rule can be viewed as a single criterion
in multi-criteria decision making. ASO preference rules thus
are strong but defeasible constraints on the global preference

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ordering on answer sets. They are strong because they apply
without theceteris paribusrestriction. They are defeasible
since they may be overridden by other rules.

CP-nets allow the user to fully exploit dependency struc-
ture, both for preference representation and elicitation.
However, they are restrictive in the way preferences on the
values of a single variable can be specified. They basically
assume that variables have a small number of known val-
ues and that a total order of these values can be explicitly
given. The ASO approach uses an answer-set program to
represent a single variable with complex outcomes, where
outcomes are modeled by answer sets of the program. It also
provides flexible means for expressing possibly conflicting
and/or incomplete preferences on outcomes, as well as indif-
ference. However, dependencies among parts of outcomes
remain implicit and are not fully exploited.

Prioritized component systems, our main contribution,
combine key aspects of both approaches. The setup is ba-
sically that of CP-nets. We have variables, each with its do-
main, and each possibly depending on its parent variables.
Given a variable, for every set of values of parent variables
we also have an ordering of elements of the domain of that
variable. However, unlike in CP-nets, variables may have
large domains, with elements known only implicitly. We re-
fer to these “complex” variables ascomponentsand, follow-
ing the ASO approach, represent them by answer-set pro-
grams. Preference orderings on the values for the compo-
nent also are specified following the ASO approach. Each
componentC comes with a set of preference rules, whose
bodies (and only the bodies!) may contain literals frompar-
ent components. Each assignment of values (answer sets)
to the parent components selects a set of relevant preference
rules for C. These rules express defeasible multi-criteria
preference information that determines the preference order-
ing on the answer sets ofC, given the answer sets (values)
for the parent components.

The choice of answer-set programs to represent compo-
nents (or outcomes, in the case of ASO programs) is not es-
sential for our discussion. Any constraint formalism (e.g.,
propositional logic) could be used instead. In selecting
answer-set programs we were motivated by the minimal-
ity and groundedness of their answer-set semantics, which
make them useful for knowledge representation.

Our approach generalizes both CP-nets and ASO pro-

grams. CP-nets are component systems with dependency
structure, but with the simplest possible components that just
pick a single value for a variable. ASO programs are com-
ponent systems with a single, possibly complex component
but, clearly, no component dependencies. The framework
we develop here allows us to model systems anywhere in
between these two extremes.

Background
In most abstract terms, we are concerned with comparing the
quality of elements in a set. Thus, we need (i) a formalism to
specify a set of elements or, aspace of outcomeswe wish to
compare, and (ii) a way to represent and reason about prefer-
ences on outcomes. The two aspects are typically separated
for greater modularity, flexibility and generality.

We will now describe two formalisms for specifying and
reasoning about preferences that are of primary interest later
in the paper. They are:answer-set optimization programs
(ASO-programs, for short) (Brewka, Niemelä, & Truszczyń-
ski 2003) andCP-nets(Boutilier et al. 1999; 2004a; 2004b).

ASO programs
In ASO programs, individual outcomes are sets of literals
over a fixed setAt of propositional atoms. To represent a set
of outcomes, we use a logic program over the set of atoms
At and assume that feasible outcomes are precisely the an-
swer sets ofP (we assume some familiarity with the logic
programming terminology; we refer the reader to (Gelfond
& Lifschitz 1991; Simons, Niemelä, & Soininen 2002) for
relevant details). As we noted, our choice of programs to
model outcomes is motivated by knowledge-representation
concerns but other constraint-based formalisms could also
be used.

To represent preferences in ASO programs, we usepref-
erence rules(or simply,preferences) of the form

γ1 > . . . > γk ← α (1)

where theγis areboolean combinationsof atoms inAt , i.e.,
formulas built of atoms inAt using disjunction (∨), con-
junction (∧), strong (¬) and default (not) negation, with
the restriction that¬ can appear only in front of atoms, and
not only in front of literals and whereα is a conjunction of
literals and expressions of the formnot l wherel is a literal.

Definition 1 Ananswer-set optimization(or ASO) program
over the set of atomsAt is a pair (C, Φ), whereC is a logic
program (overAt), called agenerator program, andΦ is a
collection of preference rules (overAt), called apreference
program. Answer sets ofC are outcomesof (C, Φ).

To specify how to use preferences to compare sets of lit-
erals and, in particular, outcomes of ASO programs, we in-
troduce asatisfactionrelation between sets of literals and
boolean combinations.

Definition 2 Satisfaction of a boolean combinationγ in a
set of literalsS, denotedS |= γ, is defined as:

S |= l (l literal) iff l ∈ S
S |= not l (l literal) iff l 6∈ S
S |= γ1 ∨ γ2 iff S |= γ1 or S |= γ2

S |= γ1 ∧ γ2 iff S |= γ1 andS |= γ2.

We now have the following key definition.

Definition 3 Let S be a set of literals andr a preference
rule of the form (1). Thesatisfaction degreeof r in S (de-
noted bysr(S)) is given as follows. IfS |= α and, for some
i, 1 ≤ i ≤ n, S |= γi, thensr(S) is the smallest index
of a satisfied boolean combination in the head ofr. Other-
wise the rule is irrelevant andsr(S) is denoted by a special
symbolI.

We assume that the smaller the index of a satisfied goal
the better. For trivial reasons, irrelevant rules are not sub-
optimally satisfied as they either do not apply or have no
goals satisfied at all (cf. (Brewka, Niemelä, & Truszczyński
2003) for a more extensive discussion of that issue). Thus,
we considerI to be as good a satisfaction degree as1. These
intuitions are made formal by a preorder1� on the set of sat-
isfaction degrees: forα, β ∈ {I, 1, 2, . . .}, α � β if β = 1
or β = I, orα andβ are integers andβ ≤ α. The relation�
is in fact atotal preorder. We write≺ for thestrict counter-
part to the relation� (α ≺ β if α � β and it is not the case
thatβ � α). The relation≺ is antisymmetric and transitive
and so, its closure under reflexivity, is apartial order.

Let (C, Φ) be an ASO program andS a set of literals.
The satisfaction degrees of rules fromΦ in S form the ba-
sis for defining a global preference ordering on outcomes of
(C, Φ). Several methods can be used for this purpose. We
will restrict our discussion here to the Pareto method.

Definition 4 Let (C, Φ) be an ASO program and letS and
S′ be its outcomes (answer sets). An outcomeS is Pareto-
preferredto an outcomeS′ of C (S′ �Φ S) if for every
rule r ∈ Φ, sr(S

′) � sr(S). If S′ �Φ S and it is not the
case thatS �Φ S′ (that is, for at least one ruler ∈ Φ,
sr(S

′) ≺ sr(S)), thenS is strictly Pareto-preferred toS′

(S′ ≺Φ S).
An outcomeS is optimal for (C, Φ) if there is no outcome
S′ such thatS ≺Φ S′.

The relation�Φ is a preorder relation for the set of out-
comes of(C, Φ). The relation≺Φ, when closed under re-
flexivity, is a partial order on the set of outcomes.

For simplicity, we restrict the class of generator programs
to normal programs (default negation in the bodies only, no
classical negation symbols) with cardinality constraints(Si-
mons, Niemelä, & Soininen 2002). Cardinality constraints
allow us to specify lower and upper bounds on the number
of certain atoms in an answer set. For this paper we will only
need rules of the form1{a1, . . . , an}1← α expressing that
exactly oneai must be contained in answer sets satisfying
α. Answer sets of such programs are sets of atoms.

CP-nets
CP-nets were introduced in (Boutilieret al. 1999; 2004a).
Let A = {A1, . . . , An} be a finite set of variables (at-
tributes). For each variableA ∈ A, let DA be thedo-
main of A, that is, a finite and non-empty set ofvalues
for A. Without loss of generality, we assume that variable
domains are pairwise disjoint. Anoutcomeis an n-tuple
U = (u1, . . . , un) such thatui ∈ DAi

, 1 ≤ i ≤ n.

1A binary relation is apreorderif it is reflexive and transitive.

A conditionis a conjunction of atomic expressions of the
form (A = a) and their negations, whereA ∈ A and
a ∈ DA. A conditional preference rule(or,conditional pref-
erence) is an expression of the formα : π such thatα is a
condition and, for some variableA, π is a total preorder on
the domainDA. We writea ≤π b if (a, b) ∈ π, i.e., if b is at
least as good asa in π anda <π b to denote thestrict pref-
erenceof b overa, i.e., if a ≤π b holds butb ≤π a does not.
We note that unlike≤π, <π (when closed under reflexivity)
is a partial order.

We use total preorders rather than total orders (even
though the latter is a more common choice in the literature)
to provide means to modelindifference. It is important as in
practice the users may be unwilling or just unable to specify
a total order on the set of values of a variable in a situation
when they consider different values as equally good.

A CP-netover a set of variablesA is a pair(P, Φ), where
P is a parent function, andΦ is a collection of conditional
preferences such that for every conditional preferenceα : π
in Φ, which orders values of a variableA, α involves only
variables that belong toP (A)2.

In a standard approach to CP-nets, preference statements
are represented by conditional-preference tables — one ta-
ble for each variable. Rows in the table for a variableA
correspond to tuples of values from the domainsDB, where
B ∈ P (A) (exactly one row for each tuple), and each row
contains a relevant ordering of values in the domainDA.
The approach we adopt here is more general.

The main contribution of CP-nets is in how they use con-
ditional preferences to order outcomes. In what follows,
given a variableA and an outcomeU , by U(A) we denote
the value from the domain ofA that appears inU .

Definition 5 An outcomeV is one-step preferredto an out-
comeW if for some variableA:

1. V (B) = W (B) for every variableB ∈ A\{A} (that is,
for every variable other thanA), and

2. Φ contains a conditional preferenceα : π for A such that
W (and hence alsoV) satisfiesα andW (A) ≤π V (A).

If V is one-step preferred toW with respect to a variable
A, then we say that there is animprovingA-flip from W to
V and that there is aworseningA-flip from V to W .

Definition 6 The outcomeV isCP-preferredtoW , W �CP

V , if V can be obtained fromW by a (possibly empty) se-
quence of improving flips. The outcomeV is strictly CP-
preferredto W , W ≺CP V , if W �CP V and it is not the
case thatV �CP W . An outcomeV is optimalif there is no
outcomeU such thatV ≺CP U .

For every CP-net, the relation≺CP , when closed under
reflexivity, is a partial ordering. The relation�CP in general
is not; it is a preorder only. However, foracyclic CP-nets
(CP-nets whose parent function induces a directed acyclic
graph on the set of variables) and with all preferences spec-
ifying total orders, �CP is a partial order and it coincides

2Including a parent function in the description of a CP-net is
redundant as the dependency information is contained in conditions
of conditional preference rules. However, it makes the preference
elicitation process more systematic.

with ≺CP (closed under reflexivity). The relation≺CP and
the notion of optimality we consider in the paper were intro-
duced and studied in (Brafman & Dimopoulos 2004).

Component systems
In an ASO program(C, Φ), the role ofC is to describe the
space of available outcomes and the role ofΦ is to capture
preferences of a user regarding these solutions. In this gen-
eral form, ASO programs do not provide explicit means to
handle complexity and structure present in large-scale ap-
plications, where domains and problems decompose into
subdomains and subproblems with well-defined dependen-
cies. Adding structure based on dependencies, and so im-
plicitly expressing independence, has proven successful in
knowledge representation formalisms such as Bayes nets
and CP-nets. These formalisms exploit structure to ensure
concise,factoredproblem representations. Our main objec-
tive is to bring structure to answer-set optimization to make
the process of modeling spaces of solutions and relevant
preference information more transparent and systematic. In
the process, we obtain a formalism for qualitative reasoning
about preferences that generalizes both ASO-programs and
CP-nets.

Let At(P) be the set of atoms appearing in a programP .

Definition 7 A component systemis a pair (Π, G), where

1. Π = {C1, ..., Cn} is a collection of logic programs with
pairwise disjoint sets of atoms, calledcomponentsof the
component system, and

2. G is a set ofconstraints, that is, logic program clauses of
the form ← body

such thatAt(G) ⊆
⋃

C∈Π At(C).

An outcomeof (Π, G) is a tuple 〈M(C1), . . . , M(Cn)〉,
where for everyCi ∈ Π, M(Ci) ⊆ At(Ci) and

⋃
M(Ci) is

an answer set of the programG ∪
⋃

Π.

Directly from the definition and from the properties of
logic programsΠ andG it follows that if M is an outcome
of a component system(Π, G) then, for every componentC,
the setM(C) is an answer sets ofC.

Logic programs represent sets of literals (sets of atoms, if
we restrict, as we do in this paper, to normal programs with
cardinality constraints). The answer sets have no explicit
structure or, are “flat”. Component systems replace this flat
representation with a two-level one. Elements of outcomes
are no longer atomic but have structure of their own. They
are collections of atoms — answer sets of system compo-
nents. In other words, each componentC can be thought of
as a variable, its domains representedimplicitly by a logic
program (C itself) and consisting of the answer sets ofC.

Every tuple of answer sets of programs forming compo-
nents of a component system(Π, G) is an outcome of the
component system(Π, ∅). The role ofG is to exclude some
combinations. Adding a constraint← body to a logic pro-
gram eliminates all answer sets of the program that satisfy
body . Since there are no restrictions on atoms appearing in
the clauses inG, the programG representsglobal (or inter-
component) restrictions on ways, in which component val-
ues can be combined into outcomes of(Π, G).

The structure of a component system(Π, G) is implicitly
present in the program

⋃
Π ∪ G. Namely, there is a 1-to-1

correspondence between outcomes of the component system
(Π, G) and answer sets of the program

⋃
Π∪G: for an out-

comeM of (Π, G), M∪ =
⋃

C∈Π M(C) is an answer set
of

⋃
Π ∪G and, for an answer setN of

⋃
Π ∪G, the tuple

~N = 〈N ∩ At(C): C ∈ Π〉 is an outcome of(Π, G). The
ability to make the structure explicit is, however, important.
It allows us to model directly the structure present in appli-
cations, an issue we discuss in the last section.

We will illustrate the idea of a component system with a
simple example of configuring a daily menu (more formally,
describing the space of daily menus). We first establish that
a daily menu consists of three components: breakfast, lunch
and dinner. We then describe each of them separately, for
instance, by programs listed below.

breakfast: 1{continental, american}1
lightb ← continental

lunch: 1{soupl, saladl}1
1{meatl, f ishl, lasagnel}1
1{friesl, noodlesl}1← not lasagnel

lightl ← lasagnel, saladl

dinner: 1{soupd, saladd}1
1{meatd, f ishd, lasagned}1
1{friesd, noodlesd}1← not lasagned

lightd ← lasagned, saladd

The components specify the possible choices for each case.
So far there are2×10×10 = 200 possible outcomes. Global
constraintsG exclude certain combinations (for lack of va-
riety or for health reasons), for instance

← meatl, meatd
← lasagnel, lasagned

← not lightb,not lightl,not lightd

While the same set of menus can be represented by a sin-
gle program consisting of all these rules, component systems
structure the rules in a way conceptually linked to the struc-
ture inherent in the application domain. However, a fun-
damental advantage of component systems is that they lend
themselves well to a variety of methods to specify prefer-
ences among outcomes. We discuss that issue next.

Prioritized component systems
The main focus of this paper is on representing and reason-
ing about preferences pertaining to a collection of outcomes
represented by a component system. To represent prefer-
ences we use preference rules as defined for ASO programs.

Definition 8 A prioritized component system(PCS, for
short) is a quadrupleC = (Π, G, P, Φ), where

1. (Π, G) is a component system;
2. P is a parent functiondescribing dependencies between

components: for every componentC ∈ Π, P (C) consists
of all components inΠ thatC depends on; and

3. Φ is a set ofpreference rulesof the form (1) that are sub-
ject to the following restrictions: for each preference rule
γ1 > . . . > γk ← α in Φ there is a componentC such
that formulasγi, 1 ≤ i ≤ k, are built of atoms inAt(C)

andα is built of atoms inAt(C) ∪
⋃

D∈P (C) At(D). We
call such preference rulesC-preferencesand denote the
set of allC-preferences byΦC .

Outcomesfor a prioritized component system(Π, G, P, Φ)
are the outcomes for its component system(Π, G).

We now define the preference relation on outcomes of a
PCS(Π, G, P, Φ). To this end, we first focus on the PCS
(Π, ∅, P, Φ). Every outcome of(Π, G, P, Φ) is an outcome
of (Π, ∅, P, Φ). Moreover, outcomes of(Π, ∅, P, Φ) are pre-
cisely those tuplesM such that for everyC ∈ Π, M(C) is
an answer set ofC. The first step is to introduce the notion of
aflip between outcomes of a prioritized system(Π, ∅, P, Φ).

Definition 9 Let M and M ′ be outcomes for(Π, ∅, P, Φ)
andC ∈ Π a component. There is aC-flip fromM to M ′ if
M 6= M ′ and for everyD ∈ Π, D 6= C impliesM ′(D) =
M(D).

A flip fromM to M ′ is improvingif M �ΦC
M ′ (that is,

with respect to the Pareto-preference relation determinedby
preference rules inΦC).

The choice of the Pareto-preference relation with respect
to preferences inΦC is a consequence of the fact that we
defined the preference relation between outcomes of ASO
programs by means of that relation. If a different combina-
tion method for ASO programs is chosen, that relation has
to be used here.

Definition 10 Let(Π, G, P, Φ) be a PCS and letM andM ′

be outcomes for(Π, G, P, Φ). The outcomeM ′ is PCS-
preferredto M , M �PCS M ′, if there is a sequence of im-
proving flips fromM to M ′ (possibly involving outcomes for
(Π, ∅, P, Φ) not satisfying the constraintsG as intermediate
steps). It isstrictly preferred,M ≺PCS M ′, if M �PCS M ′

and it is not the case thatM ′ �PCS M .

Definition 11 Let M be an answer set of a PCSC. We say
that M is an optimal outcome forC if there is no outcome
M ′ for C such thatM ≺PCS M ′.

Let us consider again the daily menu example. To specify
her preferences the user first decides the dependency struc-
ture she wants to base her preferences on. Let us assume
that dinner and breakfast preferences do not depend on other
components, and that lunch depends on the other two. The
user first specifies her dinner and breakfast preferences, for
instance, using the following preference rules:

(d1) meatd ∧ friesd > fishd > meatd ∧ noodlesd

(d2) soupd > saladd ← meatd
(d3) saladd > soupd ← not meatd
(b1) lightb > not lightb

She now describes conditional lunch preferences dependent
on the attributes of the other meals:

(l1) meatl > not meatl ← lasagned, continental
(l2) saladl > soupl ← soupd

(l3) fishl > lasagnel ← saladl

(l4) soupl > saladl ← american

Now one of the optimal outcomes is:

〈{continental, lightb}, {saladl, f ishl, friesl},
{meatd, friesd, soupd}〉

Another optimal solution is obtained by exchangingfriesl

with noodlesl. There are also optimal solutions containing
lasagned andsaladd. We are aware that the full power of
our approach becomes more evident in larger scale examples
for which we have no space here. Nevertheless, the exam-
ple illustrates the basic notions and some of the advantages
of PCSs: dependencies are between components, not sim-
ple variables with unstructured values; preferences can be
incomplete and conflicting (e.g. conflict betweenl2 andl4
in case of american breakfast and dinner soup), and it is pos-
sible to remain indifferent (no preference between fish/fries
and fish/noodles for dinner).

The way we use improving flips to order outcomes fol-
lows (Boutilieret al. 2004b), and disagrees with (Prestwich
et al. 2004). The two approaches differ in their interpreta-
tion of constraints. In (Prestwichet al. 2004) the constraints
are viewed as specifications offorbiddenconfigurations that
are completely unacceptable to the user. Hence, in that ap-
proach, outcomey is preferred to an outcomex if there is a
sequence of improving flips fromx to y not passing through
a forbidden outcome. That amounts to letting constraints
override CP-preferences (as forbidden outcomes are forced
to be least preferred) and appears to be a drastic change of
the CP-net semantics. The alternative approach of (Boutilier
et al. 2004b) treats constraints as simply making some out-
comes unavailable. The fact that an outcome is unavailable
has nothing to do with the user’s preferences — should the
outcome become available its quality would be measured ac-
cording to user preferences specified in the CP-net. Conse-
quently, (Boutilieret al. 2004b) (and we here) allow the use
of unavailable outcomes to define the global preference re-
lation by means of improving flips.

We now show that CP-nets and ASO-programs are special
cases of our formalism. A CP-net(P, Φ) can be represented
as a PCS in the following way. LetZ be a variable of(P, Φ)
and letz1, . . . , zn be its values. We define a component pro-
gramCZ to consist of a single logic program rule (a choice
rule in the syntax of (Simons, Niemelä, & Soininen 2002))

1{Z = z1, . . . , Z = zn}1.

Let α : π be a conditional preference rule for a variableZ.
We denote byα′ the formula where every occurrence of¬ is
replaced withnot . Next, letL1, . . . , Lk be all maximal sets
of atoms of the formZ = zi such that allzis are equivalent
with respect to the total preorderπ and such that atoms in
Li are strictly preferred inπ to atoms inLj if and only if
i < j. We setdi, 1 ≤ i ≤ k, to be the disjunction of atoms
in Li. A rule d1 > . . . > dk ← α′ is a preference in the
sense of ASO programs and PCSs. We denote the set of all
preferences obtained by transforming the preferences inΦ
by Φ′. We have the following theorem.

Theorem 1 Let(P, Φ) be a CP-net with the set of variables
V and letU andU ′ be two of its outcomes. ThenU andU ′

are outcomes of the PCS({CZ : Z ∈ V}, ∅, P, Φ′) and

1. U �CP U ′ if and only ifU �PCS U ′

2. U ≺CP U ′ if and only ifU ≺PCS U ′

This theorem can be generalized to the case of “con-
strained optimization with CP-nets” approach (Boutilieret

al. 2004a). Whenever a certain combination of variable val-
ues, sayX1 = x1, . . . , Xn = xn, is excluded by the global
constraints in a constrained net, we include a corresponding
constraint of the form← X1 = x1, . . . , Xn = xn in G.

The PCS framework also generalizes answer-set opti-
mization as described in (Brewka, Niemelä, & Truszczyński
2003). Indeed, we have the following simple result.

Theorem 2 Let C = (C, Φ) be an ASO program. Then
C′ = ({C}, ∅, ∅, Φ) (in other words, both the set of global
constraints and the parent function are empty) is a PCS, its
outcomes are precisely the 1-tuples〈M〉, whereM is an an-
swer set forC, and for every two outcomesM andM ′ of C
(answer sets ofC),

1. M �Φ M (in C) if and only if〈M〉 �PCS 〈M ′〉 (in C′)
2. M ≺Φ M (in C) if and only if〈M〉 ≺PCS 〈M ′〉 (in C′).

The correspondences between CP-nets and PCSs can be
summarized by the following table:

CP-net PCS
variablevi programCi

value ofvi answer set ofCi

value assignment configuration
CP-table forvi preference programΦCi

vi-flip new answer set forCi

Pareto and PCS ordering
Let C = (Π, G, P, Φ) be a PCS. By disregarding the struc-
ture inC, we obtain an ASO programCASO = (

⋃
Π∪G, Φ).

We noted earlier that there is a 1-to-1 correspondence be-
tween outcomes ofC (which are outcomes of(Π, G)) and
outcomes ofCASO (answer sets of

⋃
Π ∪ G), given by a

function that assigns to each outcomeM of C, the setM∪,
an answer set of

⋃
Π∪G (an outcome ofCASO). That corre-

spondence suggests that a natural criterion for any ordering
of the outcomes ofC is that it extends the Pareto ordering�Φ

of the outcomes ofCASO . We will now show that our PCS-
preference ordering has indeed that property for the class of
acyclicPCSs. It is not an overly restrictive assumption since
typical PCSs arising in applications are acyclic.

Theorem 3 Let C = (Π, G, P, Φ) be an acyclic PCS and
let M andM ′ be two of its outcomes. If

⋃
C∈Π M(C) �Φ⋃

C∈Π M ′(C) thenM �CP M ′.

Proof (sketch): LetC1, . . . Cn be an enumeration of the
components ofC consistent with the parent functionP , that
is, for every componentCi, P (Ci) ⊆ {C1, . . . , Ci−1}. For
every i, 1 ≤ i ≤ n, let Mi = M(Ci) and, similarly,
M ′

i = M ′(Ci) (that is,Mi andM ′

i are answer sets of (val-
ues for) the componentCi appearing in outcomesM and
M ′, respectively). For everyi, 1 ≤ i ≤ n + 1, we define

Ni = 〈M ′

1, . . . , M
′

i−1, Mi, . . . , Mn〉.

It is clear thatM = N1 andM ′ = Nn+1. Moreover, for
everyi, 1 ≤ i ≤ n, Ni+1 is a result of aCi-flip applied to
Ni. We can show that for eachi, 1 ≤ i ≤ n, theCi-flip
from Ni to Ni+1 is an improving one. 2

Our proof also works for a slightly broader class of PCSs
that contain preference rules whose bodies are conjunctions
of formulas (not literals), each formula built of atoms of a
single component.

Complexity
The computational complexity of problems related to PCSs
depends on the class of programs used as components. To
make the discussion concrete, we consider PCSs whose
components are logic programs with cardinality and weight
constraints (Simons, Niemelä, & Soininen 2002). However,
all results in this section hold for PCSs whose components
belong to any class of programs, for which one can check in
polynomial time whether a set of literals is an answer set.

Theorem 4 The following problem isPSPACE-complete:
Given a PCSC and two of its outcomesM andM ′, decide
whetherM �PCS M ′.

Proof (sketch): LetC = (Π, G, P, Φ). The problem can be
decided using anondeterministicTuring machine that starts
with M1 = M and correctly guesses a sequence of improv-
ing flips from M to M ′. That is, in each iteration with
M1 as the current outcome the machine correctly guesses
a componentC and an answer setS of C so that (1) the re-
sult M2 of replacingM1(C) with S in M1 is an outcome
of C, and (2)M1 �ΦC

M2. Then, the machine setsM1

to beM2 until M ′ is met. It is clear that the sequence of
outcomes produced by this Turing machine is an improv-
ing sequence and that the machine works in polynomial
space. It follows that our problem is in the classNPSPACE.
SincePSPACE = NPSPACE (cf. (Papadimitriou 1994)),
the membership part of the assertion follows.

The hardness part follows from the fact that the class of
PCSs contains the class of CP-nets. In the domain of the
CP-nets, the problem we are considering here is known as
thedominanceproblem. It has been shown to bePSPACE-
complete in (Langet al. 2005). 2

Next, we study problems related to optimal outcomes.

Theorem 5 The problem to decide whether a PCSC has an
optimal outcome isNP-complete.

The problems concerning the existence of an outcome sat-
isfying some property given as a boolean combination, and
concerning deciding the optimality of an outcome are again
much harder.

Theorem 6 The next two problems arePSPACE-complete:

1. Given a PCSC and a boolean combinationγ, decide
whetherC has an optimal outcome satisfyingγ;

2. Given a PCSC and its outcomeM , decide whetherM is
optimal.

While PSPACE-completeness results indicate that rea-
soning with PCSs is inherently hard, we note that analo-
gous problems for much simpler formalisms such as (gen-
eral) CP-nets are equally complex. One way then to inter-
pret the results in this section is that PCSs offer enhanced
representational flexibility over the formalism of CP-netsat
no extra cost in the computational complexity.

Discussion
Prioritized component systems support a decoupled method-
ology for applications combining ASP with preference elic-
itation (an example is product configuration: a product data

model describes valid product instances and customer pref-
erences need to be elicited for choosing a preferred in-
stance). Todescribe the space of choices, a domain is struc-
tured into components. Each component has a generator
program whose answer sets represent the valid choices for
that component. Forpreference elicitationthe user is guided
through the components. In each step, she picks a compo-
nent for which her preferences only depend on components
she has already ranked. In each case she gives preference
rules defining a preference order on answer sets of the cur-
rent component.

A major advantage of our framework is its flexibility. The
user is free to structure the domain into components in the
most adequate way for a particular application. Moreover,
the preference order on values of a component can be ex-
pressed conveniently using flexible rules, each one provid-
ing a criterion for assessing a value’s quality. Our results
show that making dependency structure explicit will, at least
in the acyclic case, increase comparability and thus lead to
more fine grained distinctions.

Acknowledgments
The authors acknowledge the support of EC contract
IST-FET-2001-37004 (WASP), Academy of Finland grant
211025 and NSF grants IIS-0097278, IIS-0325063.

References
Boutilier, C.; Brafman, R.; Hoos, H.; and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. InProceedings of UAI-99.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004a. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments.JAIR21:135–191.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004b. Preference-based constrained optimiza-
tion with CP-nets.Comp. Intelligence20(2):137–157.
Brafman, R., and Dimopoulos, Y. 2004. Extended seman-
tics and optimization algorithms for CP-networks.Comp.
Intelligence20(2):218–245.
Brewka, G.; Niemelä, I.; and Truszczyński, M. 2003. An-
swer set optimization. InProceedings of IJCAI-03,
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9:365–385.
Lang, J.; Goldsmith, J.; Truszczyński, M.; and Wilson, N.
2005. The computational complexity of dominance and
consistency in CP-nets. Proceedings of IJCAI-05.
Papadimitriou, C. 1994. Computational Complexity.
Addison-Wesley.
Prestwich, S.; Rossi, F.; Venable, K.; and Walsh, T. 2004.
Constrained CP-nets. InProc. of the Joint Annual Work-
shop of ERCIM/CoLogNet on Constraint Solving and Con-
straint Logic Programming.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138(1-2):181–234.

